Under review as a conference paper at ICLR 2024

A HARDWARE ENVIRONMENT

We optimize the benchmarking models on a physical machine, which has 4 NVIDIA P100 GPUs
(each has 16GB RAM), 2 Intel E5-2630 CPUs, and 128GB memory. We didn’t test our framework
with cross-machine scenario, but our framework do not require any knowledge of the environment
except the number of accelerators.

B SOFTWARE ENVIRONMENT

We use the PyTorch version 1.12.1, with Python 3.9.6, CUDA 11.4.2 and NCCL 2.11.4 and CUDNN
8.2.0. We made an minor modification of PyTorch to disable the gradients version check feature
introduced since PyTorch 1.5.0. The modification is very simple, we only need to change the condition
of a if statement in saved_variable.cpp (sav,) always be True, thus PyTorch will skip
the gradient version check. This modification is also required by PipeDream if they are using the
latest version of PyTorch.

C HYPERPARAMETERS OF DRL TRAINING

We train DRL-PP with deep reinforcement learning algorithm proximal policy optimization (PPO).
The objective function of PPO is shown in Eq. (6):

Aij=R—-Ri; 3)
r(0) = 2 @
T Oo1a
LR () — | [r 6) Am} (5)
LP(9) = E[min(r(0) A, j, clip(r(8),1 — €, 1+ €)A; ;)] (6)

where AZ ; is estimated advantage of placement (i, j) by subtracting the average of history reward R
from its reward R; ;. 7 is the policy based on current parameters 6, 64 is the parameters before
updating. To avoid an excessively large policy update, PPO uses clipped surrogate objective over trust
region policy optimization (TRPO) in Eq. 5. Here, € is a hyperparameter for adjusting the clip region.

During the DRL agent training with PPO algorithm, we sample 10 placements from each partition
scheme generated by the graph partitioner. For every 20 placements, we shuffled them into four
mini-batches and performed updates on each of the individual mini-batches. After repeating this
for three epochs, the DRL agent will generate new policies with updated parameters. For other
hyperparameters of PPO algorithm, we set the clip ratio € of 0.2, and the coefficient of entropy is
set to 0.001. We use Adam optimizer with a learning rate of 0.0003 and gradient clipping with a 1.0
norm.

D MORE EXPERIMENTAL RESULTS

As Table 2 shows, it takes 60 epochs for DRL-PP to train VGG16 to the target validation accuracy,
which is 2 epochs more than PipeDream and 4 epochs more than data parallelism. However, due to
the faster per-mini-batch runtime of DRL-PP compared to data parallelism, the wall clock training
time of DRL-PP is almost half that of data parallelism.

Table 2: Training time (in hours) and epochs of VGG16 on ImageNet to 68% Top-1 accuracy.

METHODS DP PIPEDREAM DRL-PP
OF HOURS 54.26 35.79 28.35
OF EPOCHS 56 58 60

12

Under review as a conference paper at ICLR 2024

60 1 60 1
> >
8 40 8 40
=1 =1
3 3
< <
5 201 Methods 5 201 Methods
] — DP e — DP
PipeDream PipeDream
.......... DRL-PP wwe. DRL-PP
0 T T T T T T 0) T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 60
Time (hours) Epochs
(a) Top-1 accuracy vs. time (b) Top-1 accuracy vs. epoch

Figure 7: Training curve of VGG-16 on ImageNet dataset with different methods.

As the training curve shown in Figure 7b, we observed that DRL-PP and PipeDream have similar
accuracy vs. epochs curve, which means their converge speed is almost the same. In the first 40
epochs, data parallelism converges faster than both DRL-PP and PipeDream significantly. This is
because data parallelism does not introduce any staleness in the training, thus the quality of the
model weights update is better. In the last 20 epochs, the lead that data parallelism had gained earlier
gradually became negligible, and eventually all methods achieved the same target validation accuracy,
68% Top-1 accuracy.

E FUTURE WORKS

There are a few possible improvements that can be implemented over DRL-PP in the future:

Heterogeneity. In the pipeline scheduler design, we assigned a learnable embedding for each
accelerator. We learn the heterogeneity of the cluster in these embeddings. For example, we can
represent the cluster structure as a graph, where the node features are the information of accelerators
and the edges are inter-connections. Learning with a graph neural network, we can easily obtain a
comprehensive embedding encoded with the heterogeneity of the accelerators, including computation
power, the bandwidth of inter-connection, and memory constrain. Thus, the DRL agent will be able
to place the partitions with the knowledge of the heterogeneity of the cluster like HetPipe (
).

Pre-train and Generalization. Suggested by Placeto (,), GDP (,

), and Mars (,), it’s possible to train a powerful DRL agent that can generate
high-quality placements for unseen DNNs with few-shot training. As PipeDream used a simulator to
estimate the placement quality in their optimizer, it’s also an excellent idea to pre-train the DRL agent
with a simulator and fine-tune it with real-world samples. With the pre-training and the generalization,
we can significantly reduce the training overhead of the DRL agent.

)

Memory Efficiency. PipeDream2BW (,) reduce the memory footprint by
using double-buffered weight update and flush mechanisms. This mechanism also can be applied to
DRL-PP, since we are using a similar weight updates scheme for pipeline parallelism.

F LIMITATION

As mentioned in Section B, both our framework DRL-PP and PipeDream require disable gradient
version check by modifying PyTorch source code. This may limit the usage of our framework, but it
is possible to be avoid by adopting double buffered weight update scheme proposed by PipeDream-
2BW (,). It also can be solved by re-implement DRL-PP with more advanced
distributed training frameworks, such as DeepSpeed.

13

