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Abstract1

Using graph neural networks for large graphs is challenging since there is no clear2

way of constructing mini-batches. To solve this, previous methods have relied on3

sampling or graph clustering. While these approaches often lead to good training4

convergence, they introduce significant overhead due to expensive random data5

accesses and perform poorly during inference. In this work we instead focus on6

model behavior during inference. We theoretically model batch construction via7

maximizing the influence score of nodes on the outputs. This formulation leads to8

optimal approximation of the output when we do not have knowledge of the trained9

model. We call the resulting method influence-based mini-batching (IBMB). IBMB10

accelerates inference by up to 130x compared to previous methods that reach similar11

accuracy. Remarkably, with adaptive optimization and the right training schedule12

IBMB can also substantially accelerate training, thanks to precomputed batches and13

consecutive memory accesses. This results in up to 18x faster training per epoch14

and up to 17x faster convergence per runtime compared to previous methods.15

1 Introduction16

Creating mini-batches is highly non-trivial for connected data, since it requires selecting a meaningful17

subset despite the data’s connectedness. When the graph does not fit into memory, the mini-batching18

problem is equally relevant for both inference and training. However, mini-batching methods have19

so far mostly been focused on training, despite the major practical importance of inference. Once a20

model is put into production, it continuously runs inference to serve user queries. On AWS, more21

than 90 % of infrastructure cost is due to inference, and less than 10 % is due to training [24]. Even22

during training, inference is necessary for early stopping and performance monitoring. A training23

method thus has rather limited utility by itself.24

Selecting mini-batches for inference is distinctly different from training. Instead of averaging out25

stochastic sampling effects over many training steps, we need to ensure that every prediction is as26

accurate as possible. To achieve this, we propose a theoretical framework for creating mini-batches27

based on the expected influence of nodes on the outputs. Selecting nodes according to this formulation28

provably leads to an optimal approximation of the output. The resulting optimization problem shows29

that we need to distinguish between two classes of nodes: Output nodes and auxiliary nodes. Output30

nodes are those for which we compute a prediction in this batch, for example a set of validation31

nodes. Auxiliary nodes provide inputs and define the batch’s subgraph. This distinction allows us to32

choose a meaningful neighborhood for every prediction, while ignoring irrelevant parts of the graph.33

Note that output nodes in one batch can be auxiliary nodes in another batch.34

This distinction furthermore splits mini-batching into two problems: 1. How do we partition output35

nodes into efficient mini-batches? 2. How do we choose the auxiliary nodes for a given set of output36

nodes? Having split the problem like this, we see that most previous works either focus exclusively on37

the first question by only using graph partitions [7] or on the second question and choose a uniformly38

random subset of nodes as output nodes [21, 42]. Jointly considering both aspects with an overarching39

theoretical framework allows for substantial synergy effects. For example, batching nearby output40

nodes together allows one output node to leverage another one’s auxiliary nodes.41

We call this overall framework influence-based mini-batching (IBMB). On the practical side, we42

propose two instantiations of IBMB by approximating the influence between nodes via personalized43
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PageRank (PPR). We use fast approximations of PPR to select auxiliary nodes by their highest44

PPR scores. Accordingly, we partition output nodes using PPR-based node distances or via graph45

partitioning. We then use the subgraph induced by these nodes as a mini-batch. IBMB accelerates46

inference by up to 130x compared to previous methods that achieve similar accuracy.47

Remarkably, we found that IBMB also works well for training, despite being derived from inference.48

This is due to the computational advantage of precomputed mini-batches, which can be loaded from49

a cache to ensure efficient memory accesses. We counteract the negative effect of the resulting sparse50

mini-batch gradients via adaptive optimization and batch scheduling. Overall, IBMB achieves an up51

to 18x improvement in time per training epoch, with similar final accuracy. This fast runtime more52

than makes up for any slow-down in convergence per step. Its speed advantage grows even further53

for the common setting of low label ratios, since our method avoids computation on irrelevant parts54

of the graph. Our implementation is available online1. In summary, our core contributions are:55

• Influence-based mini-batching (IBMB): A theoretical framework for selecting mini-batches for56

GNN inference based on influence scores.57

• Practical instantiations of IBMB that work for a variety of GNNs and datasets. They substantially58

accelerate inference and training without sacrificing accuracy, especially for small label ratios.59

• Methods for mitigating the impact of fixed, local mini-batches and sparse gradients on training.60

2 Background and related work61

Graph neural networks. We consider a graph G = (V, E) with node set V and (possibly directed)62

edge set E . N = |V| denotes the number of nodes, E = |E| the number of edges, and A ∈ RN×N63

the adjacency matrix. GNNs use one embedding per node hu ∈ RH and edge e(uv) ∈ RHe of size H64

and He, and update them in each layer via message passing between neighboring nodes. We denote65

the embedding in layer l as h
(l)
u and its i’th entry as h

(l)
ui . Most GNNs can be expressed via the66

following equations:67

h(l+1)
u = fnode(h

(l)
u , Agg

v∈Nu

[fmsg(h
(l)
u ,h

(l)
v , e

(l)
(uv))]), (1)

e
(l+1)
(uv) = fedge(h

(l+1)
u ,h(l+1)

v , e
(l)
(uv)). (2)

The node and edge update functions fnode and fedge, and the message function fmsg can be imple-68

mented using e.g. linear layers, multi-layer perceptrons (MLPs), and skip connections. The node’s69

neighborhood Nu is usually defined directly by the graph G [27], but can be generalized to consider70

larger or even global neighborhoods [1, 16], or feature similarity [10]. The most common aggregation71

function Agg is summation, but multiple other alternatives have also been explored [9, 17]. Edge72

embeddings e(uv) are often not used in GNNs, but some variants rely on them exclusively [6].73

Scalable GNNs. Multiple works have proposed massively scalable GNNs that leverage the74

peculiarities of message passing to condense it into a single step, akin to label or feature propagation75

[4, 14]. Our work focuses on general, model-agnostic scalability methods.76

Scalable graph learning. Classical graph learning faced issues similar to GNNs when scaling to77

large graphs. Multiple frameworks for distributed graph computations were proposed to solve this78

without approximations or sampling [19, 28, 31, 32]. Other works scaled to large graphs via stochastic79

variational inference, e.g. by sampling nodes and node pairs [20]. Interestingly, this approach is quite80

similar to sampling-based mini-batching for GNNs.81

Mini batching for GNNs. Previous mini-batching methods can largely be divided into three82

categories: Node-wise sampling, layer-wise sampling, and subgraph-based sampling [29]. In node-83

wise sampling, we obtain a separate set of auxiliary nodes for every output node, which are sampled84

independently for each message passing step. Each output node is treated independently; if two output85

nodes sample the same auxiliary node, we compute its embedding twice [21, 30, 39]. Layer-wise86

sampling jointly considers all output nodes of a batch to compute a stochastic set of activations in87

each layer. Computations on auxiliary nodes are thus shared [5, 23, 42]. Subgraph-based sampling88

selects a meaningful subgraph and then runs the GNN on this subgraph as if it were the full graph.89

This method thus computes the outputs and intermediate embeddings of all nodes in that subgraph90

1https://figshare.com/s/f615b330391677014bc5
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[7, 40]. Our method most closely resembles the subgraph-based sampling approach. However, IBMB91

considers both output and auxiliary nodes, resulting in better batches, and only computes the output92

of predetermined output nodes, similar to node-wise sampling. Note that mini-batch generation is an93

orthogonal problem to training frameworks such as GNNAutoScale [13]. We can also use IBMB to94

provide mini-batches as part of GNNAutoScale.95

3 Influence-based mini-batching96

Influence scores. To effectively create graph-based mini-batches we must first quantify how important97

one node is for another node’s prediction. As proposed by Xu et al. [38], we can do this via the98

influence score, which determines the local sensitivity of the output at node u on the input at node v as:99

I(v, u) =
∑
i

∑
j

∣∣∣∣∣∂h(L)
ui

∂Xvj

∣∣∣∣∣ , (3)

where h
(L)
ui is the i’th entry in the embedding of node u in the last layer L and Xvj is feature j of100

node v. Analyzing the expected influence score can provide a crisp understanding of how to select101

nodes for inference when we only have knowledge of the graph, not the model or the node features.102

To formally prove this connection, we consider a slightly limited class of GNNs and model our lack103

of knowledge via a randomization assumption of ReLU activations, similar to Choromanska et al.104

[8], and by assuming that all nodes have the same expected features, yielding (proof in App. A):105

Theorem 1. Given a GNN with linear, graph-dependent aggregation and ReLU activations. Assume106

that all paths in the model’s computation graph are activated with the same probability ρ and nodes107

have features with expected value E[Xv,i] = χi. If we restrict the model input features to a set of108

auxiliary nodes Saux ⊆ V , then the error109

∥h̃(L)
u − h(L)

u ∥1 (4)

between the approximate logits h̃(L)
u and the true logits h(L)

u is minimized, in expectation, by selecting110

the nodes v ∈ Saux with maximum influence score I(v, u).111

Formalizing mini-batching. We can leverage this insight by formalizing the mini-batching as the112

optimization problem113

max
Pout∈P(Vout)
|Pout|=b

∑
Sout∈Pout︸ ︷︷ ︸

Output node partitioning

max
Saux⊆V
|Saux|≤B

∑
u∈Sout

∑
v∈Saux︸ ︷︷ ︸

Auxiliary node selection

I(v, u),

︸ ︷︷ ︸
Influence score

(5)

where P(Vout) denotes the set of partitions of the output nodes Vout, b the number of batches, and B114

the maximum batch size. This optimization yields two results: The output node partition Pout and the115

auxiliary node set for each batch of output nodes, Saux. The hyperparameter B is determined by the116

available (GPU) memory, while b trades off runtime and approximation quality. This formulation117

optimizes the average approximation across all outputs. This might not be ideal since some nodes118

might already be approximated well with a lower number of auxiliary nodes. We can instead focus119

on the worst-case approximation by optimizing the minimum aggregate influence score as120

max
Pout∈P(Vout)
|Pout|=b

min
Sout∈Pout︸ ︷︷ ︸

Output node partitioning

max
Saux⊆V
|Saux|≤B

min
u∈Sout

∑
v∈Saux︸ ︷︷ ︸

Auxiliary node selection

I(v, u).

︸ ︷︷ ︸
Influence score

(6)

Both Eqs. (5) and (6) split the mini-batching problem into three parts: Output node partitioning,121

auxiliary node selection, and influence score computation. We call this approach influence-based122

mini-batching (IBMB).123

Computing influence scores. The model’s influence score depends on various model details,124

especially when considering exact, trained models. In many cases we can calculate the expected125

influence score by making simplifying assumptions, similar to Theorem 1. This allows tailoring the126

mini-batching method to the exact model of interest. For the remainder of this work we will focus127

our analysis on the broad class of models that use the average as an aggregation function, such as128
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graph convolutional networks (GCN) [27]. In this case, we can make similar assumptions on the129

GNN as in Theorem 1 to prove that the influence score is proportional to a slightly modified random130

walk with L steps [38]. To remove the influence score’s dependence on the number of layers L, we131

can furthermore take the limit L→ ∞. Unfortunately, this would result in a limit distribution that132

is independent of node v. To avoid this we add restarts to the random walk, as proposed by Gasteiger133

et al. [15]. The limit L→ ∞ then becomes equivalent to personalized PageRank (PPR), which we134

can thus use an approximation of the influence score. Notably, PPR even works well for models with135

more complex, data-dependent influence scores, such as GAT (see Sec. 5). The PPR matrix is given by136

Πppr = α(IN − (1− α)D−1A)−1, (7)

with the teleport probability α ∈ (0, 1] and the diagonal degree matrix Dii =
∑
kAik. The entry137

Πppr
uv then provides a measure for the influence of node v on u. Calculating the above inverse is138

obviously infeasible for large graphs. However, we can approximate Πppr with a sparse matrix Π̃ppr139

in time O( 1
εα ) per row, with error ε deg(v) [2]. Importantly, this approximation uses only the node’s140

local neighborhood, making its runtime independent of the overall graph size and thus massively141

scalable. Furthermore, the calculation is deterministic and model-independent, so we only need to142

perform this computation once during preprocessing.143

3.1 Auxiliary node selection144

Node-wise selection. Selecting auxiliary nodes on large graphs requires a method that efficiently145

yields nodes with highest expected influence. Fortunately, there is a well-developed literature of146

methods for finding the top-k PPR nodes. The classic approximate PPR method [2] is guaranteed147

to provide all nodes with a PPR value Πppr
uv > εdeg(v) w.r.t. the root (output) node u. Optimizing148

auxiliary nodes by the worst-case influence score (Eq. (6)) thus equates to separately running149

approximate PPR for each output node in a batch Sout, and then merging them.150

Batch-wise selection. Considering each output node separately does not take into account how one151

auxiliary node jointly affects multiple output nodes, as required for the average-case formulation152

in Eq. (5). Fortunately, PPR calculation can be adapted to use a set of root nodes. To do so, we153

use a set of nodes in the teleport vector t instead of a single node, e.g. by leveraging the underlying154

recursive equation for a PPR vector πppr(t) = (1− α)D−1Aπppr(t) + αt. t is a one-hot vector in155

the node-wise setting, while for batch-wise PPR it is 1/|Sout| for all nodes in Sout. This variant is156

also known as topic-sensitive PageRank. We found that batch-wise PPR is significantly faster than157

node-wise PPR. However, it can lead to cases where one outlier node receives almost no neighbors,158

while others have excessively many. Whether node-wise or batch-wise selection performs better thus159

often depends on the dataset and model.160

Subgraph generation. Creating mini-batches also requires selecting a subgraph of relevant edges.161

We do so by using the subgraph induced by the selected output and auxiliary nodes in a batch. Note162

that the above node selection methods ignore how these changes to the graph affect the influence163

scores. This is a limitation of these methods. However, PPR is a local clustering method and we can164

thus expect auxiliary nodes to be well-connected.165

3.2 Output node partitioning166

Optimal partitioning. Finding the optimal node partition in Eqs. (5) and (6) would require trying out167

every possible partition since a change in Sout can unpredictably affect the optimal choice of auxiliary168

nodes. Doing so is clearly intractable since the number of partitions grows exponentially with N for169

a fixed batch size. We thus need to approximate the optimal partition via a scalable heuristic. The170

implicit goal of this step is finding output nodes that share a large number of auxiliary nodes. One171

good proxy for these overlaps is the proximity of nodes in the graph.172

Distance-based partitioning. We propose two methods that leverage graph locality as a heuristic.173

The first is based on node distances. In this approach we first compute the pairwise node distances174

between nodes that are close in the graph. We can use PPR for this as well, since it is also commonly175

used as a node distance. If we select auxiliary nodes with node-wise PPR, we thus only need to176

calculate PPR scores once for both steps.177

Next, we greedily construct the partition Pout from Π̃ppr. To do so, we start by putting every node u178

into a separate batch {u}. We then sort all elements in Π̃ppr by magnitude, independent of their row179
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Partition output nodes

Select auxiliary nodes

Subgraphs

Figure 1: Practical example of influence-based mini-batching (IBMB). The output nodes are indicated
by pentagons. These nodes are first partitioned into batches, e.g. by grouping nearby nodes together.
We then use influence scores to select the auxiliary nodes of each batch, e.g. neighbors with top-k
personalized PageRank (PPR) scores. Finally, we generate a batch using the induced subgraph of
all selected nodes, but only calculate the outputs of the output nodes we chose when partitioning.
Batches can overlap and do not need to cover the whole graph.

or column. We scan over these values in descending order, considering the value’s indices (u, v) and180

merging the batches containing the two nodes. Afterwards we randomly merge any small leftover181

batches. We stay within memory constraints by only merging batches that stay below the maximum182

batch size B. This method achieves well-overlapping batches and can efficiently add incrementally183

incoming out nodes, e.g. in a streaming setting. Our experiments show that this method achieves a184

good compromise between well-overlapping batches and good gradients for training (see Sec. 5).185

Note that the resulting partition is unbalanced, i.e. some sets will be larger than others.186

Graph partitioning. For our second method, we note that partitioning output nodes into overlapping187

mini-batches is closely related to partitioning graphs. We can thus leverage the extensive research on188

this topic by using the METIS graph partitioning algorithm [25] to find a partition of output nodes189

Pout. We found that graph partitioning yields roughly a two times higher overlap of auxiliary nodes190

than distance-based partitioning, thus leading to significantly more efficient batches. However, it also191

results in worse gradient samples, which we found to be detrimental for training (see Sec. 5). Note192

that Cluster-GCN also uses graph partitioning, and thus aligns somewhat with the IBMB framework193

[7]. However, IBMB additionally selects relevant auxiliary nodes and ignores irrelevant parts of the194

graph. This significantly accelerates training on small training sets and improves the accuracy of195

output nodes close to the partition boundary.196

Computational complexity. Since IBMB ignores irrelevant parts of the graph, inference and training197

scale linearly in the number of output nodes O(Nout). Preprocessing runs in O(Nout
ϵα ) for node-wise198

PPR-based steps, O( bϵα ) for batch-wise PPR, and in O(E) for graph partitioning. The runtime of199

IBMB is thus independent of the graph size if we use distance-based partitioning. Fig. 1 gives an200

overview of the full practical IBMB process.201

4 Training with IBMB202

Computational advantages. The above analysis focused on node outputs, not gradient estimation and203

training. However, IBMB also has inherent advantages for training, since we need to perform mini-204

batch generation only once during preprocessing. We can then cache each mini-batch in consecutive205

blocks of memory, thereby allowing the data to be stored where it is needed and circumventing206

expensive random data accesses. This significantly accelerates training, allows efficient distributed207

training, and enables more expensive node selection procedures. In contrast, most previous methods208

select both output and auxiliary nodes randomly in each epoch, which incurs significant overhead.209
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Our experiments show that IBMB’s more efficient memory accesses clearly outweigh the slightly210

worse gradient estimates (see Sec. 5). This seems counter-intuitive since the deterministic, fixed211

mini-batches in IBMB only provide sparse, fixed gradient samples. In this section we discuss these212

aspects and how adaptive optimization and batch scheduling counteract their effects.213

Sparse gradients. Partitioning output nodes based on proximity effectively correlates the gradients214

sampled in a batch. The model thus sees a sparse gradient sample, which does not cover all aspects of215

the dataset. Fortunately, adaptive optimization methods such as Adagrad and Adam were developed216

exactly for such sparse gradients [12, 26]. We furthermore ensure an unbiased training process by217

using every output (training) node exactly once per epoch.218

Fixed batches. Using a fixed set of batches can lead to problems with basic stochastic gradient219

descend (SGD) as well. Imagine training with two fixed batches whose loss functions have different220

minima. If training has “converged” to one of these minima, SGD would start to oscillate: It221

would take one step towards the other minimum, and then back, and so forth. To counteract this222

oscillation, we could add a “consensus constraint” to enforce a consensus between the weights223

after different batches, akin to distributed optimization [33]. We can solve this constraint using a224

primal-dual saddle-point algorithm with directed communication [18]. The resulting dynamics are225

ẋ(t) = −∇f̃ (t)(x(t))− αλẋ(t−1) − λ2ẋ(t−2), with the weights x(t) at time step t, the learning rate226

λ and the dual variable α. These dynamics resemble SGD with momentum, and fit perfectly into227

the framework of adaptive optimization methods [34]. Indeed, momentum and adaptive methods228

suppress the oscillations in the above example with two minima. Accordingly, prior works have229

also found benefits in deterministically selecting fixed mini-batches [3, 37]. We further improve230

convergence by adaptively reducing the learning rate when the validation loss plateaus, which ensures231

that the step size decreases consistently.232

Batch scheduling. While Adam with learning rate scheduling consistently ensures convergence,233

we still observe downward spikes in accuracy during training. To illustrate this issue, consider a234

sequence of mini-batches. In regular training every mini-batch is similar and the order of these235

batches is irrelevant. In our case, however, some of the mini-batches might be very similar. If236

the optimizer sees a series of similar batches, it will take increasingly large steps in a suboptimal237

direction, which leads to the observed downward spikes in accuracy. We propose to prevent these238

suboptimal batch sequences by optimizing the order of batches. To quantify batch similarity we239

measure the symmetrized KL-divergence of the label distribution between batches. In particular, we240

use the normalized training label distribution pi = ci/
∑
j cj , where ci is the number of training241

nodes of class i. This results in the pairwise batch distance dab between batches a and b. We propose242

two ways to use this for improving the batch schedule: (i) Find the fixed batch cycle that maximizes243

the batch distances between consecutive batches. This is a traveling salesman problem for finding244

the maximum distance loop that visits all batches. It is therefore only feasible for a small number of245

batches. (ii) Sample the next batch weighted by the distance to the current batch. Both scheduling246

methods improve convergence and increase final accuracy, at almost no cost during training. Overall,247

our training scheme leads to consistent convergence. Even accumulating gradients over the whole248

epoch does not significantly change convergence or final accuracy (see Fig. 8).249

5 Experiments250

Experimental setup. We show results for two variants of our method: IBMB with PPR251

distance-based batches and node-wise PPR clustering (node-wise IBMB), and IBMB with graph252

partition-based batches and batch-wise PPR clustering (batch-wise IBMB). We also experimented253

with the two other combinations of the output node partitioning and auxiliary node selection variants,254

but found these two to work best. We compare them to four state-of-the-art mini-batching methods:255

Neighbor sampling [21], Layer-Dependent Importance Sampling (LADIES) [42], GraphSAINT-RW256

[40], shaDow [41], and Cluster-GCN [7]. We use four large node classification datasets for257

evaluation: ogbn-arxiv [22, 36, ODC-BY], ogbn-products [36, Amazon license], Reddit [21], and258

ogbn-papers100M [22, 36, ODC-BY]. While these datasets use the transductive setting, IBMB makes259

no assumptions about this and can equally be applied to the inductive setting. We skip the common,260

small datasets (Cora, Citeseer, PubMed) since they are ill-suited for evaluating scalability methods.261

We do not strive to set a new accuracy record but instead aim for a consistent, fair comparison based262

on three standard GNNs: GCN [27], graph attention networks (GAT) [35], and GraphSAGE [21]. We263

use the same training pipeline for all methods, giving them access to the same optimizations. Since264
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Figure 2: Test accuracy and log. inference time averaged over a fixed set of 10 pretrained GNNs.
IBMB provides the best accuracy versus time trade-off (top-left corner) in all settings.

full inference is too slow to execute every epoch we use the mini-batching method used for training265

to also approximate inference during training. We run each experiment 10 times and report the266

mean and standard deviation in all tables and the bootstrapped mean and 95 % confidence intervals267

in all figures. We fully pipeline data loading and batch creation by prefetching batches in parallel.268

We found that using more than one worker for this does not improve runtime, most likely because269

data loading is limited by the memory bandwidth, which is shared between workers. We keep GPU270

memory usage constant between methods, and tune all remaining hyperparameters for both IBMB271

and the baselines. See App. B for full experimental details.272

Inference. Fig. 2 compares inference accuracy and time of different batching methods, using the same273

pretrained model and varying computational budgets (number of auxiliary nodes/sampled nodes) at274

a fixed GPU memory budget. IBMB provides the best trade-off between accuracy and time in all set-275

tings. Node-wise IBMB performs better than graph partitioning, except on ogbn-products. IBMB pro-276

vides a significant speedup over chunking-based full-batch inference on GPU, being 10 to 900 times277

faster at comparable accuracy. All previous methods are either significantly slower or less accurate.278

Training. IBMB performs significantly better in training than previous methods, converging up to279

17x faster than all baselines (see Fig. 3). This is despite the fact that we always prefetch the next batch280

in parallel. Note that GAT is slower to compute than GCN and GraphSAGE, limiting the positive281

impact of a fast batching method. Compute-constrained models like GAT are less relevant in practice282

since data access is typically the bottleneck for GNNs on large, often even disk-based datasets [4].283

Table 7 in the appendix furthermore shows that IBMB’s time per epoch is significantly faster than284

all sampling-based methods. Cluster-GCN has a comparable runtime, which is expected due to its285

similarity with IBMB. However, it converges more slowly than IBMB and reaches substantially lower286

final accuracy. Neighbor sampling achieves good final accuracy, but is extremely slow. GraphSAINT-287

RW only achieves good final accuracy with prohibitively expensive full-batch inference. Node-wise288

IBMB achieves the best final accuracy with a scalable inference method in 7 out of 10 settings. On289

ogbn-papers100M, IBMB has a substantially faster time per epoch and lower memory consumption290

than previous methods demonstrating IBMB’s favorable scaling with dataset size. It even performs291

as well as SIGN-XL ((66.1±0.2) %) [14], while using 30x fewer parameters and no hyperparameter292

tuning. Notably, we were unable to evaluate GraphSAINT-RW and Cluster-GCN on this dataset,293

since they use more than 256 GB of main memory.294
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Figure 3: Training convergence of validation accuracy in log. time. Average and 95 % confidence
interval of 10 runs. GraphSAINT-RW does not reach the shown accuracy range in some settings due
to its bad validation performance. IBMB converges the fastest in 9 out of 10 settings.

Preprocessing. IBMB requires more preprocessing than previous methods. However, since IBMB295

is rather insensitive to hyperparameter choices (see Fig. 5, Table 5), preprocessing rarely needs to296

be re-run. Instead, its result can be saved to disk and re-used for training different models. Just297

considering our 10 training seeds, preprocessing of node-wise IBMB only took 1.3 % of the training298

time for GCN and 0.25 % for GAT on ogbn-arxiv.299

Training set size. The ogbn-arxiv and ogbn-products datasets both contain a large number of300

training nodes (91k and 197k, respectively). However, labeling training samples is often an expensive301

endeavor, and models are commonly trained with only a few hundred or thousand training samples.302

GraphSAINT-RW and Cluster-GCN are global training methods, i.e. they always use the whole graph303

for training. They are thus ill-suited for the common setting of a large overall graph containing a304

small number of training nodes (resulting in a small label rate). In contrast, the training time of305

IBMB purely scales with the number of training nodes. To demonstrate this, we reduce the label rate306

by sub-sampling the training nodes of ogbn-products and compare the convergence in Fig. 4. As307

expected, the gap in convergence speed between IBMB and both Cluster-GCN and GraphSAINT-RW308

grows even larger for smaller training sets.309

Ablation studies. We ablate our output node partitioning schemes by instead batching together310

random sets of nodes. We use fixed batches since we found that resampling incurs significant311

overhead without benefits – which is consistent with our considerations on gradient samples and312

contiguous memory accesses. Fig. 6 shows that this method (“Fixed random”) converges more313

slowly and does not reach the same level of accuracy as our partition schemes. Node-wise IBMB314

converges the fastest, which suggests a trade-off between full gradient samples (random batching)315

and maximum batch overlap (graph partitioning). Fig. 2 shows that random batching (“IBMB, rand316

batch.”) is also substantially slower and often less accurate for inference. This is due to the synergy317

effects of output node partitioning: If output nodes have similar auxiliary nodes, they benefit from318

each other’s neighborhood. We ablate auxiliary node selection by comparing IBMB to Cluster-GCN,319

since it just uses the graph partition as a batch instead of smartly selecting auxiliary nodes. We use320

the graph partition size as the number of auxiliary nodes for batch-wise IBMB to allow for a direct321

comparison. As discussed above, Cluster-GCN consistently performs worse, especially in terms of322
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Figure 4: Training convergence in log. time for GCN on ogbn-
products with smaller training sets. The gap in convergence speed
between IBMB and the baselines grows larger for small training
sets, since IBMB scales with training set size and not with overall
graph size.
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for training GCN on ogbn-arxiv.
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IBMB lead to faster convergence
than fixed random batches.
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Figure 7: Batch scheduling for
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Figure 8: Gradient accumula-
tion for batch-wise IBMB on
GCN, ogbn-arxiv. The difference
is minor, even when accumulat-
ing over the full epoch.

final accuracy, for inference, and for small label rates. Finally, Fig. 7 compares the proposed batch323

scheduling methods. Optimal and weighted sampling-based scheduling improve convergence and324

prevent or reduce downward spikes in accuracy.325

Sensitivity analysis. Different IBMB is largely insensitive to different local clustering methods and326

hyperparameters for selecting auxiliary nodes (see Table 5). Even increasing the number of output327

nodes per batch with a fixed number of auxiliary nodes per output node only has a minor impact on328

accuracy, especially above 1000 output nodes per batch, as shown by Fig. 5. IBMB performs well even329

in extremely constrained settings with small batches of 100 output nodes per batch. In practice, IBMB330

only has one free hyperparameter: The number of auxiliary nodes per output node, which allows331

optimizing for accuracy or speed. The number of output nodes per batch is then given by the available332

GPU memory, while the local clustering method and other hyperparameters are not important.333

Gradient accumulation. Accumulating gradients across multiple batches is a method for smoothing334

batches if gradient noise is too high. We might expect this to happen in IBMB due to the sparse335

gradients caused by primary node partitioning. However, Fig. 8 shows that gradient accumulation in336

fact only has an insignificant effect on IBMB, demonstrating its stability during training.337

6 Conclusion338

We propose influence-based mini-batching (IBMB), a method for extracting batches for GNNs.339

IBMB formalizes creating batches for inference by maximizing the influence score on the output340

nodes. Remarkably, with an adaptive optimizer and batch scheduling IBMB even performs well341

during training. It improves training convergence by up to 17x and inference time by up to 130x342

compared to previous methods that reach similar accuracy. IBMB performs especially well for sparse343

labels, large datasets, and when the pipeline is constrained by data access speed.344
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A Proof of Theorem 1443

Path-based view of neural networks. We can view a neural network with ReLUs as a directed444

acyclic computational graph and express the i’th output logit via paths through this graph as445

h
(L)
i =

1

λ(H−1)/2

ϕ∑
q=1

Zi,qXi,q

L∏
l=1

w
(l)
i,q, (8)

where λ is a constant related to the size of the network [8] and ϕ is the total number of paths.446

Furthermore, Z(i,q) ∈ {0, 1} denotes whether the path q is active or inactive when any ReLU is447

deactivated. X(i,q) represents the input feature used in the q-th path of logit i, and w(l)
(i,q) the used448

entry of the weight matrix Wl in layer l.449

Path-based view of GNNs. We can extend this framework to graph neural networks by additionally450

introducing paths p through the (data-based) graph, starting from the auxiliary node v and ending at451

the output node u, as452

h
(L)
u,i =

1

λ(H−1)/2

∑
v∈V

ψ∑
p=1

ϕ∑
q=1

Zv,p,i,qXv,p,i,q

L∏
l=1

a(l)v,pw
(l)
i,q, (9)

where ψ is the total number of graph-based paths and a(l)v,p denotes the graph-dependent but feature-453

independent aggregation weights. Note that a(l)v,p depends on the whole path (v, p) and can thus be a454

function of any node and edge on this path, including the current and next layer’s nodes.455

Expected influence score. To obtain the influence score, we calculate the derivative456

∂h
(L)
u,i

∂Xv,j
=

1

λ(H−1)/2

ψ∑
p=1

ϕ′∑
q=1

Zv,p,i,q

L∏
l=1

a(l)v,pw
(l)
i,q, (10)

with Xv,j denoting input feature j at node v and ϕ′ denoting the number of computational paths457

with input feature j. To simplify this expression, we use the assumption that all paths (v, p, i, q) are458

activated with the same probability ρ, i.e. E[Zv,p,i,q] = ρ, and compute the expectation:459

E

[
∂h

(L)
u,i

∂Xv,j

]
=

1

λ(H−1)/2

ψ∑
p=1

ϕ′∑
q=1

ρ

L∏
l=1

a(l)v,pw
(l)
i,q

=
ρ

λ(H−1)/2

(
ψ∑
p=1

L∏
l=1

a(l)v,p

) ϕ′∑
q=1

L∏
l=1

w
(l)
i,q

 .

(11)

The only node-dependent term in the expected influence score E[I(v, u)] =
∑
i

∑
j E
[∣∣∣∣ ∂h(L)

u,i

∂Xv,j

∣∣∣∣] is460

thus
∣∣∣∑ψ

p=1

∏L
l=1 a

(l)
v,p

∣∣∣.461

Expected output. We similarly obtain the expected output by additionally using the assumption that462

features have a node-independent expected value E[Xv,p,i,q] = χi,q , yielding463

E[h(L)
u,i ] =

1

λ(H−1)/2

∑
v∈V

ψ∑
p=1

ϕ∑
q=1

ρχi,q

L∏
l=1

a(l)v,pw
(l)
i,q

=
ρ

λ(H−1)/2

∑
v∈V

(
ψ∑
p=1

L∏
l=1

a(l)v,p

)(
ϕ∑
q=1

χi,q

L∏
l=1

w
(l)
i,q

)
.

(12)

Again, the only node-dependent term in the expected output is
∑ψ
p=1

∏L
l=1 a

(l)
v,p. Adding any input464

node thus changes node u’s output in absolute terms by465 ∣∣∣∣∣
ψ∑
p=1

L∏
l=1

a(l)v,p

∣∣∣∣∣C = E[I(v, u)]C ′, (13)

with C and C ′ denoting all node-independent terms. Selecting the input nodes with maximum466

influence score I(v, u) thus minimizes the L1 norm of the approximation error. Note that this choice467

only considers the effect of selecting input nodes. It does not model the effect of changing the graph.468
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B Model and training details469

Hardware. All experiments are run on an NVIDIA GeForce GTX 1080Ti. The experiments on ogbn-470

arxiv and ogbn-products use up to 64 GB of main memory. The experiments on ogbn-papers100M471

use up to 256 GB.472

Packages. Our experiments are based on the following packages and versions:473

• torch-geometric 1.7.0474

– torch-cluster 1.5.9475

– torch-scatter 2.0.6476

– torch-sparse 0.6.9477

• python 3.7.10478

• ogb 1.3.1479

• torch 1.8.1480

• cudatoolkit 10.2.89481

• numba 0.53.1482

• python-tsp 0.2.0483

Preprocessing. Before training, we first make the graph undirected, and add self-loops. The adjacency484

matrix is symmetrically normalized. We cache the symmetric adjacency matrix for graph partitioning485

and mini-batching. Instead of re-calculating the adjacency matrix normalization factors for GCN486

for each mini-batch, we re-use the global normalization factors. We found this to achieve similar487

accuracy at lower computational cost.488

Models. We use three models for all the experiments: GCN (3 layers, hidden size 256 for the ogbn489

datasets and 2 layers, hidden size 512 for Reddit), GAT (3 layers, hidden size 128, 4 heads for the490

ogbn datasets and 2 layers, hidden size 64, 4 heads for Reddit), and GraphSAGE (3 layers, hidden size491

256). All models use layer normalization, ReLU activation functions, and dropout. We performed a492

grid search on ogbn-arxiv, ogbn-products, and Reddit to obtain the optimal model hyperparameters493

based on final validation accuracy. For ogbn-papers100M we use the same hyperparameters as for494

GCN on ogbn-arxiv, but with 32 auxiliary nodes per output node.495

Training. We use the Adam optimizer for all experiments, with a starting learning rate of 10−3. We496

use an L2 regularization of 10−4 for GCN on ogbn-arxiv and ogbn-products, and no L2 regularization497

in all other settings. We use a ReduceLROnPlateau scheduler for the optimizer, with the decay factor498

0.33, patience 30, minimum learning rate 10−4, and cooldown of 10, based on validation loss. We499

train for 300 to 800 epochs and stop early with a patience of 100 epochs, based on validation loss.500

We determine the optimal batch order for IBMB via simulated annealing [11].501

Training for inference. For comparing inference performance in Fig. 2 we trained 10 separate502

models per setting with node-wise IBMB. We then used the same 10 models to evaluate every method.503

Fig. 9 shows that the choice of training method does not impact our findings. The reasons for this are504

that the training method (1) does not influence inference time and (2) is not able to bridge the large505

accuracy disadvantages that some methods have.506

Batch-wise IBMB. We tune the number of batches and thus the size of batches using a grid search507

(see Table 1). Generally, final accuracy increases with larger batch sizes, but this can lead to excessive508

memory usage and slower convergence speed. The resulting partitions then define the output nodes in509

each batch. We use as many auxiliary nodes as the size of each partition. However, the auxiliary nodes510

will be different than the partition since they are selected based on the output nodes via batch-wise511

clustering. Note that the inference batch size is double the sizes of training batches since in this case512

we do not need to store any gradients.513

Node-wise IBMB. For node-wise batching we first calculate the PPR scores for each output node, and514

then pick the top-k nodes as its auxiliary nodes. Generally we use the same batch size, i.e. number515

of nodes in a batch, as in batch-wise IBMB, to keep the GPU memory usage similar. However, if516

the graph is too dense, we might have to increase the batch size of node-wise IBMB, because it517

tends to create sparser batches. We tune the number of auxiliary nodes per output node using a518

logarithmic grid search using factors of 2. Based on this we use 16 neighbors for ogbn-arxiv, 64 for519

ogbn-products, 8 for Reddit, and 96 for ogbn-papers100M. Note that the number of auxiliary nodes is520

the main degree of freedom in IBMB. It influences preprocessing time, runtime, memory usage, and521

accuracy. The number of output nodes per batch is then determined by the available GPU memory.522
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Table 1: Number of batches for batch-wise IBMB.
Number of batches

Model Dataset Train Validation Test
GCN ogbn-arxiv 4 2 2
GCN ogbn-products 16 8 8
GCN Reddit 8 4 4
GAT ogbn-arxiv 8 4 4
GAT ogbn-products 1024 512 512
GAT Reddit 400 200 200
GCN ogbn-papers100M 256 32 48

Table 2: Hyperparameters for LADIES
Nodes per layer

Model Dataset Train Validation
GCN ogbn-arxiv 42 336 84 672
GCN ogbn-products 204 085 306 128
GCN Reddit 90 000 150 000

Approximate PPR. Calculating the full personalized PageRank (PPR) matrix is prohibitively expen-523

sive for large graphs. To enable fast preprocessing times, we approximate node-wise PPR using a524

push-flow algorithm [2] with a fixed number of iterations and approximate batch-wise PPR using525

power iterations. Both variants are based on parallel sparse matrix operations on GPU. We choose526

their hyperparameters so they do not impede accuracy while still having a reasonable preprocessing527

time. We use 50 power iterations for batch-wise PPR. For node-wise PPR we use three iterations,528

ϵ = 0.0002 for ogbn-arxiv, ϵ = 0.0005 for ogbn-products, and ϵ = 0.000 02 for Reddit and ogbn-529

papers100M. For node-wise PPR we additionally downsample the unusually dense Reddit adjacency530

matrix to an average of 8 neighbors per node.531

Random batching. Random batching is similar to node-wise IBMB except that the auxiliary nodes532

are batched randomly. We first calculate the PPR scores and pick the top-k neighbors as the auxiliary533

nodes for a output node. We choose the same number of neighbors as with node-wise IBMB. We534

investigate 2 variants of random batching: Resampling the batches in every epoch, and sampling535

them once during preprocessing and then fixing the batches. We only show the results for the second536

method, since we found it to be significantly faster, albeit requiring significantly more main memory.537

Hyperparameter tuning. The priorities for tuning the hyperparameters are as follows: 1. To keep538

methods comparable in a realistic setup, we keep the GPU memory usage constant between methods.539

2. When there are semantic hyperparameters that do not influence performance (such as the number of540

steps per epoch in GraphSAINT-RW, which only changes how an epoch is defined), we choose them541

to be comparable to other methods. 3. We choose all relevant hyperparameters based on validation542

accuracy. If a hyperparameter is not critical to memory usage we tune it per dataset and not per model.543

We use this process for both IBMB and the baselines.544

Baseline hyperparameters. For Cluster-GCN the number of batches are the same as for batch-wise545

IBMB. Table 2 shows the hyperparameters for LADIES, Table 3 for neighbor sampling, and Table 4546

Table 3: Hyperparameters for neighbor sampling
Number of batches

Model Dataset Train Validation Test Number of nodes
GCN ogbn-arxiv 12 8 8 6, 5, 5
GCN ogbn-products 20 4 200 5, 5, 5
GCN Reddit 8 4 4 12, 12
GAT ogbn-arxiv 8 4 4 8, 7, 5
GAT ogbn-products 1000 150 8000 15, 10, 10
GAT Reddit 400 400 400 20, 20
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Table 4: Hyperparameters for GraphSAINT-RW

Batch size
Model Dataset Walk length Sample coverage Number of steps Train Val/Test
GCN ogbn-arxiv 2 100 4 25 000 10 000
GCN ogbn-products 2 100 16 80 000 5000
GCN Reddit 2 100 8 23 000 6000
GAT ogbn-arxiv 2 100 8 17 500 10 000
GAT ogbn-products 2 100 1024 14 000 100
GAT Reddit 2 100 400 1600 60

Table 5: Methods and hyperparameters for selecting auxiliary nodes for GCN on ogbn-products with
batch-wise IBMB. IBMB is very robust to this choice. We did observe a slightly lower validation
accuracy for low alpha (0.05). We always use 0.25.

Time (s) Test accuracy (%)
Method α, t per epoch IBMB inference Full-batch
PPR 0.05 3.5 76.8±0.3 77.1±0.3
PPR 0.15 3.6 76.6±0.4 76.9±0.4
PPR 0.25 3.5 76.8±0.2 77.2±0.3
PPR 0.35 3.5 76.9±0.5 77.2±0.5
Heat kernel 0.1 3.5 76.5±0.4 76.8±0.3
Heat kernel 1 3.5 76.6±0.5 76.9±0.5
Heat kernel 3 3.5 76.8±0.2 77.1±0.2
Heat kernel 5 3.5 76.7±0.5 77.0±0.5
Heat kernel 7 3.5 76.6±0.4 76.8±0.4

for GraphSAINT-RW. To ensure that every node is visited exactly once during GraphSAINT-RW547

inference we use the validation/test nodes only as root nodes of the random walks.548

Full-batch inference. We chunk the adjacency matrix and feature matrix for full-batch inference to549

allow using the GPU even for larger datasets. The only hyperparameter is the number of chunks. We550

limit the chunk size to ensure that full-batch inference does not exceed the amount of GPU memory551

used during training.552

Experimental limitations. We only tested our method on homophilic node classification datasets.553

While proximity is a central inductive bias in all GNNs, we did not explicitly test this on a more554

general variety of graphs. However, note that IBMB does not require homophily. The underlying555

assumption is merely that nearby nodes are the most important, not that they are similar. Finally, we556

expect our method to perform even better in the context of billion-node graphs, but our benchmark557

datasets still fit into main memory.558

C Ethical considerations559

Scalable graph-based methods can enable the fast analysis of huge datasets with billions of nodes.560

While this has many positive use cases, it also has obvious negative repercussions. It can enable561

mass surveillance and the real-time analysis of whole populations and their social networks. This can562

potentially be used to detect emerging resistance networks in totalitarian regimes, thus suppressing563

chances for positive change. Voting behavior is another typical application of network analysis:564

Voters of the same party are likely to be connected to one another. Scalable GNNs can thus influence565

voting outcomes if they are leveraged for targeted advertising.566

The ability of analyzing whole populations can also have negative personal effects in fully democratic567

countries. If companies determine credit ratings or college admission based on connected personal568

data, a person will be even more determined by their environment than they already are. Companies569

might even leverage the obscurity of complex GNNs to escape accountability: It might be easy to570

reveal the societal effects of your housing district, but unraveling the combined effects of your social571

networks and digitally connected behavior seems almost impossible. Scalable GNNs might thus572

make it even more difficult for individuals to escape the attractive forces of the status quo.573
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Figure 9: Test accuracy and log. inference time on ogbn-arxiv for 10 GCNs trained with GraphSAINT-
RW. The pretraining method does have an impact on the accuracy of some methods, but not enough
to change any experimental findings.

Table 6: Main memory usage (GiB). In some settings, IBMB uses more main memory than previous
methods due to overlapping batches (e.g. on ogbn-products). However, it can also reduce memory
requirements because it ignores irrelevant parts of the graph (e.g. on Reddit). Note that our hyperpa-
rameters keep GPU memory usage consistent between methods, as opposed to main memory usage.

ogbn-arxiv ogbn-products Reddit
GCN GAT GraphSAGE GCN GAT GraphSAGE GCN GAT GraphSAGE

Neighbor sampling 3.0 3.6 3.1 8.7 7.9 8.5 7.4 7.5 7.1
LADIES 3.0 - - 6.0 - - 4.8 - -
GraphSAINT-RW 3.5 3.6 3.5 9.6 9.6 9.6 8.4 8.5 8.4
Cluster-GCN 3.5 3.4 3.5 7.8 6.0 7.3 6.1 4.2 6.5
Batch-wise IBMB 3.5 3.6 3.5 7.9 7.0 7.8 6.3 4.9 6.3
Node-wise IBMB 3.8 3.8 4.2 13.0 12.3 13.2 4.5 5.3 5.1

D Additional results574

Main memory usage. IBMB’s main memory usage depends on three aspects: 1. How large is the575

training/validation set compared to the full graph? 2. How many auxiliary nodes per output node576

are we using? 3. How well are the auxiliary nodes overlapping per batch? As shown in Table 6,577

IBMB increases main memory usage in some settings, which is due to the overlap between batches.578

However, in other settings it reduces memory requirements because it ignores irrelevant parts of the579

graph and removes the dataset from memory after preprocessing. Note that our hyperparameters keep580

GPU memory usage consistent between methods.581
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Table 7: Final accuracy and runtime averaged over 10 runs, with standard deviation. “Same method”
refers to using the training method for inference, while “full-batch” uses the whole graph for inference.
IBMB achieves similar accuracy as previous methods when used for training, while using significantly
less time per epoch and without requiring full-batch inference. IBMB is up to 900x faster (ogbn-
papers100M) than using full-batch inference, at comparable accuracy. Other inference methods are
substantially slower or less accurate. Note that LADIES is incompatible with the self loops in GAT
and GraphSAGE.

Time (s) Test accuracy (%)
Setting Training method Preprocess Per epoch Inference Same method Full-batch

og
bn

-a
rx

iv
,

G
C

N

Full-batch - - 2.8 - -
Neighbor sampling 0.3 4.7 2.5 70.7±0.2 71.3±0.4

LADIES 0.3 0.62 0.69 71.7±0.2 71.4±0.3
GraphSAINT-RW 0.4 0.42 0.34 68.1±0.2 72.3±0.2

ShaDow (PPR) 8.3 2.69 1.40 70.9±0.2 72.0±0.1
Cluster-GCN 8.7 0.14 0.14 72.0±0.1 72.2±0.1

Batch-wise IBMB 14.1 0.14 0.13 72.2±0.2 72.2±0.2
Node-wise IBMB 17.5 0.27 0.16 72.6±0.1 72.6±0.1

og
bn

-a
rx

iv
,

G
A

T

Full-batch - - 9.4 - -
Neighbor sampling 0.3 4.1 1.97 70.9±0.1 72.1±0.1
GraphSAINT-RW 0.4 1.2 0.38 68.7±0.2 72.6±0.1

ShaDow (PPR) 8.4 2.98 1.30 70.3±0.2 71.8±0.1
Cluster-GCN 7.6 0.69 0.28 69.7±0.3 71.6±0.2

Batch-wise IBMB 7.7 0.68 0.31 71.0±0.3 71.8±0.3
Node-wise IBMB 17.6 1.52 0.93 72.0±0.2 72.2±0.2

og
bn

-a
rx

iv
,

G
ra

ph
SA

G
E Full-batch - - 2.37 - -

Neighbor sampling 0.3 3.44 1.67 71.1±0.1 72.0±0.1
GraphSAINT-RW 0.3 0.41 0.35 69.0±0.1 72.2±0.1

ShaDow (PPR) 7.7 2.68 1.38 70.9±0.2 71.9±0.2
Cluster-GCN 8.8 0.15 0.14 71.7±0.1 72.1±0.1

Batch-wise IBMB 7.2 0.15 0.13 72.0±0.2 72.1±0.1
Node-wise IBMB 17.5 0.31 0.16 72.4±0.2 72.4±0.1

og
bn

-p
ro

du
ct

s,
G

C
N

Full-batch - - 130 - -
Neighbor sampling 32 42 433 78.2±0.2 78.0±0.2

LADIES 33 25 22.5 75.9±0.3 79.0±0.4
GraphSAINT-RW 35 11 20.4 53.6±0.6 79.9±0.2

ShaDow (PPR) 299 28.5 1242 77.5±0.3 77.4±0.4
Cluster-GCN 302 3.7 3.4 76.2±0.3 76.5±0.2

Batch-wise IBMB 306 3.5 3.1 76.8±0.2 77.2±0.3
Node-wise IBMB 382 5.4 13.8 77.3±0.3 77.3±0.3

og
bn

-p
ro

du
ct

s,
G

A
T

Full-batch - - 1700 - -
Neighbor sampling 33 450 3450 79.1±0.3 77.2±0.5
GraphSAINT-RW 35 140 102 69.5±0.1 80.8±0.2

ShaDow (PPR) 298 66 1461 77.3±0.3 79.2±0.4
Cluster-GCN 626 24 10.6 76.6±0.4 78.1±0.5

Batch-wise IBMB 767 25 10.0 77.0±0.4 78.9±0.6
Node-wise IBMB 378 42 97 78.9±0.3 79.0±0.3

og
bn

-p
ro

du
ct

s,
G

ra
ph

SA
G

E Full-batch - - 88.0 - -
Neighbor sampling 31.4 52.0 530 81.0±0.2 81.4±0.2
GraphSAINT-RW 35.8 10.6 20.0 69.4±0.2 81.3±0.2

ShaDow (PPR) 298 28.3 1169 80.0±0.3 80.8±0.3
Cluster-GCN 313 3.1 3.4 79.5±0.4 79.7±0.4

Batch-wise IBMB 319 2.9 3.1 79.2±0.3 79.5±0.3
Node-wise IBMB 374 5.1 13.3 80.6±0.3 80.8±0.3

Continued on the next page.
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Final accuracy and runtime averaged over 10 runs, continued.
Time (s) Test accuracy (%)

Setting Training method Preprocess Per epoch Inference Same method Full-batch

R
ed

di
t,

G
C

N

Full-batch - - 14.8 - -
Neighbor sampling 14.4 7.3 3.3 93.5±0.1 94.8±0.1

LADIES 15.4 11.4 11.4 95.5±0.0 95.3±0.0
GraphSAINT-RW 17.1 14.6 2.9 93.2±0.1 95.6±0.0

ShaDow (PPR) 54.0 7.4 2.2 95.2±0.1 95.0±0.0
Cluster-GCN 175 1.8 1.6 93.7±0.2 94.8±0.1

Batch-wise IBMB 175 1.6 1.4 93.5±0.4 94.7±0.1
Node-wise IBMB 64.8 0.74 0.59 95.7±0.1 95.2±0.1

R
ed

di
t,

G
A

T Full-batch - - 76.9 - -
Neighbor sampling 14.8 70 32.5 94.3±0.1 95.1±0.1
GraphSAINT-RW 17.9 21 3.2 79.4±0.2 95.4±0.1

ShaDow (PPR) 56.5 7.0 1.7 94.6±0.1 94.1±0.2
Cluster-GCN 366 4.7 1.4 91.4±0.1 93.5±0.7

Batch-wise IBMB 396 4.3 1.2 91.6±0.1 92.8±1.1
Node-wise IBMB 65.3 1.1 0.25 94.2±0.1 94.1±0.3

R
ed

di
t,

G
ra

ph
SA

G
E Full-batch - - 17.3 - -

Neighbor sampling 16.1 7.5 3.5 96.2±0.0 96.8±0.0
GraphSAINT-RW 18.2 14.6 3.6 95.9±0.0 96.8±0.0

ShaDow (PPR) 56.5 7.3 2.4 96.8±0.0 96.4±0.0
Cluster-GCN 173 1.7 1.8 95.5±0.2 96.0±0.1

Batch-wise IBMB 175 1.6 1.7 95.6±0.2 96.1±0.1
Node-wise IBMB 66.0 0.78 0.65 96.8±0.0 96.5±0.0

pa
pe

rs
10

0M
,

G
C

N

Full-batch - - 5700 - -
Neighbor sampling 739 900 159 64.3±0.2 61.8±0.2

LADIES 735 2830 672 65.4±0.2 62.4±0.4
Node-wise IBMB 2290 51 6.2 66.1±0.1 66.0±0.1
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