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Abstract
This paper studies federated linear contextual ban-
dits under the notion of user-level differential pri-
vacy (DP). We first introduce a unified federated
bandits framework that can accommodate vari-
ous definitions of DP in the sequential decision-
making setting. We then formally introduce user-
level central DP (CDP) and local DP (LDP) in
the federated bandits framework, and investigate
the fundamental trade-offs between the learning
regrets and the corresponding DP guarantees in
a federated linear contextual bandits model. For
CDP, we propose a federated algorithm termed as
ROBIN and show that it is near-optimal in terms
of the number of clients M and the privacy budget
ε by deriving nearly-matching upper and lower
regret bounds when user-level DP is satisfied. For
LDP, we obtain several lower bounds, indicating
that learning under user-level (ε, δ)-LDP must suf-
fer a regret blow-up factor at least min{1/ε,M}
or min{1/

√
ε,
√
M} under different conditions.

1. Introduction
Federated learning (FL) (McMahan et al., 2017a) has be-
come a trending distributed machine learning paradigm
where numerous clients collaboratively train a prediction
model under the coordination of a central server while keep-
ing the local training data at each client. FL is motivated by
various applications where real-world data are exogenously
generated at edge devices, and it is desirable to protect the
privacy of local data by only sharing model updates instead
of the raw data.

While the majority of FL studies focus on the supervised
learning setting, recently, a few researchers begin to ex-
tend FL to the multi-armed bandits (MAB) framework (Lai
& Robbins, 1985; Auer et al., 2002; Bubeck & Cesa-
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Bianchi, 2012; Agrawal & Goyal, 2012; 2013), and have
proposed several federated bandits models and learning al-
gorithms (Shi & Shen, 2021; Shi et al., 2021; Dubey &
Pentland, 2020; Huang et al., 2021; He et al., 2022a). Under
the classical MAB model, a player chooses to play one out
of a set of arms at each time slot. An arm, if played, will
generate a reward that is randomly drawn from a fixed but
unknown distribution. With all previous observations, the
player needs to decide which arm to pull in each time in
order to maximize the cumulative expected reward. MAB
thus represents an online learning model that naturally cap-
tures the intrinsic exploration-exploitation tradeoff in many
sequential decision-making problems. Under the new realm
of federated bandits, each client is facing a local bandits
model with shared parameters. While classical MAB al-
lows immediate access to the sequentially generated data
for decision-making, in federated bandits, local data streams
are generated and analyzed at the clients, with periodic infor-
mation exchange among clients. Such a model is naturally
motivated by a corpus of applications, such as recommender
systems, clinical trials, and cognitive radio, where the se-
quential decision-making involves multiple clients and is
distributed by nature.

Meanwhile, user-level differential privacy (DP) has emerged
as a stronger but more realistic notion of privacy, which
guarantees the privacy of a user’s entire contribution of data
instead of individual samples. Roughly speaking, user-level
DP requires that the output of an algorithm does not signif-
icantly change when a user’s entire contribution has been
changed. While user-level DP has been studied in applica-
tions involving static datasets, such as discrete distribution
estimation (Acharya et al., 2022; Cummings et al., 2021),
learning (Levy et al., 2021; Ghazi et al., 2021), and federated
learning (Girgis et al., 2022), to the best of our knowledge,
it has not been studied in the online setting, where data is
generated sequentially as decisions are made and outcomes
are observed.

In this work, we take an initial effort to incorporate user-
level DP into the framework of federated bandits, where M
clients work collaboratively to learn a shared bandits model
through a central server. We note that ensuring user-level
DP in federated bandits setting is extremely challenging,
mainly due to the following reasons. First, due to the inter-
active sequential decision-making nature of bandits, we do
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not have static datasets at clients. Rather, each local sample
is generated online accordingly to the federated learning
mechanism adopted by the system. As a result, its distribu-
tion depends on not only the historical data at the client, but
also the entire history across all clients and the server. Such
intricate dependency makes the definition of user-level DP
elusive in the federated bandits setting.

Second, due to the bandit feedback, only the reward of
the pulled arm is observed, where the arm-pulling decision
depends on history and the DP mechanism. Thus, the local
samples are non-independent and identically distributed
(non-IID), which is in stark contrast to the IID assumption
usually adopted in the literature of user-level DP.

Third, in the federated bandits setting, multiple clients
jointly learn the shared bandits parameter collaboratively. In
general, the number of data samples contributed by a single
client grows linearly in time horizon T , which is unbounded.
Thus, to achieve user-level DP, vanilla noise-adding DP
mechanisms may require the corresponding noise variance
scale in the same order. On the other hand, in order to obtain
sublinear learning regret, it requires that the estimation error
in the estimated model parameters decays fast in time. Thus,
it is unclear whether it is possible to still achieve sublinear
learning regret while guaranteeing user-level DP.

We tackle those aforementioned challenges explicitly in this
work. Specifically, our main contributions can be summa-
rized as follows.

First, we formally introduce a DP oriented federated ban-
dits framework, which provides a principled viewpoint to
capture and characterize potential privacy leakage in online
decision-making problems. Our general framework can ac-
commodate all previously introduced differential privacy
notions in the bandits settings, such as joint DP (Shariff &
Sheffet, 2018; Dubey & Pentland, 2020). We then specialize
the framework to capture user-level DP, and introduce both
central and local user-level DP.

Second, we investigate user-level central differential pri-
vacy (CDP), and study the fundamental trade-off between
learning regret and DP guarantee. Under standard mar-
gin condition and diversity condition studied in conven-
tional linear contextual bandits (Hao et al., 2020; Papini
et al., 2021), we propose a near-optimal algorithm termed as
ROBIN with user-level (ε, δ)-DP guarantee. ROBIN enjoys
a regret of Õ

(
max

{
1, d log T

Mε2

}
C0d log T

)
, where C0 is a

margin parameter, d is the dimension of the features, M
is the number of clients, and T is the time horizon. The
near optimality is established by obtaining a minimax lower
bound Ω

(
max

{
1, 1

Mε2

}
C0d log T

)
under the same CDP

constraint and the diversity and margin conditions. Fur-
thermore, we also investigate the lower bound without the
margin condition. Compared to the non-private counter-

part, our results indicate that when ε = O(1/
√
M), the

regret suffers a blow-up factor of at least min{M, 1
ε2M } or

min{
√
M, 1

ε
√
M
}, depending on whether the margin condi-

tion is imposed or not. When ε = Ω(1/
√
M), imposing the

user-level CDP constraint does not affect the hardness of
the federated linear contextual bandits problem, regardless
of whether the margin condition is satisfied.

Third, we study user-level local different privacy (LDP) un-
der several settings and conditions. When ε = O(1/M),
the minimax regret lower bound is either Ω(M log T ) un-
der the margin condition or Ω(M

√
T ) without the margin

condition, suggesting that the best policy is to have the
clients independently make arm-pulling decisions based on
their own local datasets without information sharing. When
ε = Ω(1/M), we obtain a minimax lower bound in the
order of Ω(C0d log T/ε) under the margin condition and
Ω(
√
dMT/ε) without the margin condition, indicating that

any federated linear contextual bandits algorithm satisfying
user-level LDP suffers a regret blow-up factor of at least
1/
√
ε without the margin condition, or 1/ε with the margin

condition. Thus, the user-level LDP constraint makes the
learning problem strictly harder than the non-private case.
Moreover, we also develop a tighter lower bound for pure
LDP, i.e. δ = 0, which can be obtained by replacing ε in
the CDP lower bound by ε/

√
M . A summary of our main

results is shown in Table 1.

2. The Private Federated Bandits Framework
2.1. Notations

For any M ∈ N, we denote [M ] := {1, . . . ,M}. For any
vector x and symmetric matrix V , we denote ∥x∥ as the ℓ2
norm of x, ∥x∥V :=

√
x⊤V x, and λmin(V ), λmax(V ) refer

to the minimum and maximum eigenvalues of V , respec-
tively. For any matrix X , we use ∥X∥ to denote its spectral
norm, and use X† to denote its pseudo-inverse. For any set
A, we denote An as its n-fold Cartesian product. For two
probability measures P,Q, we use dTV (P,Q) and KL(P,Q)
to denote their total variation distance and Kullback–Leibler
distance, respectively. We denote q≤t := {q1, . . . , qt}. We
use F(S1, S2) to denote the set of all possible measurable
functions from set S1 to another set S2. Õ(f) hides the
logarithm term of f , i.e. Õ(f) = O(f | log f |).

2.2. The Federated Bandits Framework

We consider a federated linear contextual bandits setting
captured by tuple ([M ],A, C, ϕ,P, d), where [M ] is the set
of clients, A is the set of arms, C is the set of contexts,
P := {ρi}i∈[M ] is a set of distributions over context set C,
and ϕ : C × A → Rd is the feature mapping.

At each time slot t, each client i observes a context ci,t ∈ C
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Table 1: Regret Bounds of Linear Contextual Bandits under Different (ε, δ)-DP Constraints.

ALGORITHM ASM.3.2 MODEL CONSTRAINT REGRET

LOWER BOUND (HE ET AL., 2022B) ✗ SING ITEM-LEVEL JDP Ω
(√

dT + d/ε
)

FEDUCB (DUBEY & PENTLAND, 2020) ✗ FED ITEM-LEVEL JDP Õ
(
d3/4M3/4

√
T/ε

)†

P-FEDLINUCB (ZHOU & CHOWDHURY, 2023) ✗ FED ITEM-LEVEL CDP Õ
(
d3/4

√
MT/ε+ d

√
MT

)
ROBIN (THEOREM 3.3) ✓ FED USER-LEVEL CDP Õ

(
min

{
M,max

{
1, d log T

Mε2

}}
C0d log T

)
LOWER BOUND
(THEOREMS 4.5 AND 5.3)

✓ FED USER-LEVEL CDP Ω(min
{
M,max

{
1, 1

Mε2

}}
C0d log T )

✗ FED USER-LEVEL CDP Ω
(
min

{
M,max

{√
M, 1

ε

}}√
dT

)
✓ FED USER-LEVEL LDP∗ Ω(min {M, 1/ε}C0d log T )

✗ FED USER-LEVEL LDP∗ Ω
(
min

{
M,

√
M/ε

}√
dT

)
C0: parameter of Asm 3.2, d: dimension of model parameter, M : number of clients, T : time horizon. SING and Fed stand for single-client and multi-client settings,

respectively. JDP stands for jointly differential privacy. The standard non-private lower bounds are Ω(
√
dMT ) and Ω(C0d log T ), without or with Asm 3.2, respectively.

∗: The result for user-level (ε, 0)-LDP is presented in Corollary 5.5. †: We adopt the result in Zhou & Chowdhury (2023).

drawn according to distribution ρi ∈ P . Then, client i pulls
arm ai,t ∈ A and receives a reward ri,t = ϕ(ci,t, ai,t)

⊺θ∗ +
ηi,t, where θ∗ ∈ Rd is an unknown parameter vector shared
among clients, ηi,t is a random noise, and ϕ(ci,t, ai,t) ∈ Rd

is the feature vector associated with arm ai,t and context
ci,t. For simplicity, we denote ϕ(ci,t, a) as xi,t,a. We as-
sume ∥ϕ(c, a)∥2 ≤ 1, ∥θ∗∥2 ≤ 1, and ηi,t is an IID stan-
dard Gaussian random variable, i.e., ηi,t ∼ N(0, 1). Such
assumptions are standard in the linear contextual bandits
literature (Abbasi-Yadkori et al., 2011; Chu et al., 2011).

We assume there exists a central server in the system, and
similar to FL, the clients can communicate with the server
periodically with zero latency. Specifically, the clients can
send “local model updates” to the central server, which then
aggregates and broadcasts the updated “global model” to
the clients. (We will specify these components later.) We
also assume that clients and server are fully synchronized
(McMahan et al., 2017a).

For federated linear contextual bandits, the utility of primary
interest is the expected cumulative regret among all clients,
defined as:

Regret(M,T ) = E
[∑M

i=1

∑T
t=1

(
x⊺
i,t,a∗

i,t
θ∗ − x⊺

i,t,ai,t
θ∗
)]

,

where a∗i,t ∈ A is an optimal arm for client i given context
ci,t: ∀b ̸= a∗i,t, x

⊺
i,t,a∗

i,t
θ∗ − x⊺

i,t,bθ
∗ ≥ 0.

2.3. User-level Differential Privacy

In order to formally introduce user-level DP into the fed-
erated bandits framework, we consider a federated algo-
rithm that consists of 2M + 1 sub-algorithms denoted as
Alg := (R0, Alg1, R1, . . . , AlgM , RM ), where Algi is an
online decision-making algorithm adopted by client i, Ri
is a channel that shares the information from client i to

the central server, and R0 is a channel that broadcasts the
aggregated information from the server to all clients.

Mathematically, let Hi,t be the local historical observations
and actions of client i before it makes decision at time t, i.e.
Hi,t = {ci,τ , ai,τ , ri,τ}t−1

τ=1, and qi,t and qt be the outputs
of Ri and R0 at time t, respectively.

With a specified Alg, at each time step t, the learning pro-
cedure proceeds as follows. First, the server aggregates
up-to-date local updates from the clients and broadcasts the
aggregated information to all clients through channel R0, i.e.,
R0 : {qi,≤t}i 7→ qt. Upon receiving the broadcast informa-
tion, each client performs local online decision-making by
executing Algi : {ci,t} ∪Hi,t ∪ {q≤t} 7→ ai,t, and obtains
ri,t. Finally, each client generates a local update and uploads
it to the server through channel Ri : (Hi,t+1, q≤t) 7→ qi,t+1.

We note that the general federated bandits learning frame-
work can accommodate various bandits and communication
models. For example, depending on whether communica-
tion happens in a step t or not, we can let qi,t = 0 to indicate
that client i does not upload any information at time t, and
qt = 0 if the server does not broadcast at time t.

Based on the specified federated bandits learning frame-
work, we then introduce the user-level DP notions as
follows. Let Ht = {Hi,t}i∈[M ] be the entire his-
tory across all clients. Note that Ht is a streaming
dataset, i.e. Ht′ ⊆ Ht for any t′ ≤ t. Due to
the online setting, we follow the definition of differen-
tial privacy under continual observation (Dwork et al.,
2010a). For simplicity, we denote Ri({Hi,τ , qτ−1}τ≤t) :=
(Ri(Hi,1, q0), . . . , Ri(Hi,t, q≤t−1)),∀i ∈ [M ]. With a
little abuse of notation, we denote R0({Hτ}τ≤t) :=
(R0({qi,1}i∈[M ]), . . . , R0({qi,≤t}i∈[M ])) to indicate the end-
to-end relationship between the entire history {Hτ}τ≤t and
the global information {q1, . . . , qt} produced by R0. With-
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out loss of generality, we use Q to denote the range of
channel Ri for any i ∈ [M ] ∪ {0}.

Definition 2.1 (i-neighboring datasets). We say Ht =
{Hj,t}j∈[M ] is i-neighboring to H ′

t = {H ′
j,t}j∈[M ] if

Hj,t = H ′
j,t for all j ̸= i.

Definition 2.2 (User-level central DP). Consider a
time horizon T . A federated algorithm Alg =
(R0, Alg1, R1, . . . , AlgM , RM ) is (ε, δ)-central user-level
differentially private if for any i-neighboring streaming
datasets {Ht}t≤T and {H ′

t}t≤T , and any subset Q≤T :=
(Q1, . . . , QT ) ⊂ QT , we have

P[R0({Ht}t≤T ) ∈ Q≤T ] ≤ eεP[R0({H ′
t}t≤T ) ∈ Q≤T ]+δ.

Besides the user-level central DP and local DP (to be intro-
duced in Section 5), we note that the proposed federated
bandits framework can accommodate various DP notions,
as elaborated in Appendix A.

3. Algorithm Design and Analysis for CDP
In this section, we aim to design a collaborative learning
algorithm for the federated linear contextual bandits that
achieves sublinear learning regret under user-level CDP.

3.1. Challenges of Adopting Gram Matrix in Algorithms

To gain a better understanding of our algorithm design,
we first elaborate the difficulties encountered by prevalent
Gram-Matrix (GM)-based approaches in federated linear
contextual bandits when user-level CDP is taken into ac-
count. It is worth noting that all current privacy-preserving
algorithms utilized in federated linear contextual bandits
rely on GM-based approaches. Specifically, we focus on the
prominent challenges associated with the widely adopted
upper confidence bound (UCB) methods.

The fundamental task in the design of bandits algorithms
is to balance the exploration-exploitation trade-off. UCB-
type algorithms achieve this through constructing an upper
confidence bound of the estimated reward of each arm, and
then picking the arm with the highest UCB in each step t. In
the linear contextual bandits setting, such UCB is usually in
the form of x⊤θ̂ + α∥x∥V̄ −1

t
, where x is the feature vector

associated with individual arms and the incoming context,
θ̂ is the estimated model parameter, α is a constant, and
V̄t := Id +

∑
τ<t xτx

⊺
τ is the matrix defined by the encoun-

tered feature vectors that are used to estimate θ̂. Roughly
speaking, V̄t captures the uncertainty in the estimate θ̂, i.e.,
∥θ̂− θ∗∥V̄t

= Õ(
√
d). By selecting the arm associated with

the highest UCB, it ensures that the directions along which
V̄t has small eigenvalues can be sufficiently explored, thus
reducing the uncertainty in θ̂ efficiently.

In the federated setting, each client i collects

{(xi,τ,aτ
, ri,τ )}τ locally and exchanges information

with the server for expedited estimation of θ∗. Under
the UCB-based framework, in order to characterize
the estimation uncertainty and facilitate efficient explo-
ration in subsequent time steps, it in general requires
the server to collect and aggregate the Gram matrices
Vi,t :=

∑
τ∈T (t) xi,t,ai,t

x⊺
i,t,ai,t

, where T (t) is a subset of
[t] determined by the specific algorithm design, and then
broadcast the privatized aggregated Gram matrix Ṽ −1

t to all
clients, along with the privatized estimate θ̃.

According to Definition 2.2, in order to achieve user-level
CDP, it is necessary to ensure that if Vi,t is replaced by
another Gram matrix V ′

i,t, the broadcast information would
remain similar. Standard additive noise mechanisms require
that the variance of the additive noise in each dimension
scales in sup ∥Vi,t − V ′

i,t∥, which, without any additional
assumption, scales in Ω(t) in general. If a noise with Ω(t)
variance is added, the corresponding UCB, denoted as x⊤θ̃+
α∥x∥Ṽ −1

t
, would be largely different from its non-privatized

counterpart, resulting in wrong arm-pulling at clients and
linear regret.

3.2. Additional Assumptions

The aforementioned challenges in balancing user-level CDP
and regret faced by UCB-type algorithms motivate us to
strive for a possible approach where local Gram matrices
are not required for collaborative parameter estimation in
the federated linear contextual bandits setting. Towards that,
we introduce the following two standard assumptions in the
literature of linear contextual bandits.

Assumption 3.1 (Context diversity (Hao et al., 2020)). For
any client i, let a∗ci = argmaxa ϕ(ci, a)

⊺θ∗ be the optimal
arm under context ci. Then,

λmin

(
Eci∼ρi

[
ϕ(ci, a

∗
ci)ϕ(ci, a

∗
ci)

⊺
])

≥ λ0 > 0.

Assumption 3.1 essentially indicates that the minimum
eigenvalue of the expected Gram matrix under the opti-
mal policy is bounded away from zero. Thus, it ensures
that with high probability, every possible direction in the
parameter space can be adequately explored under the op-
timal policy for each client i. Intuitively, if the optimal
policy were known beforehand, each client could collect
sufficient information in each dimension of the parameter
space and obtain an estimate of θ with favorable accuracy
guarantee in each dimension. Therefore, such estimates can
be directly aggregated at the server with certain accuracy
guarantee even without knowing the corresponding Gram
matrices. This could potentially avoid adding strong noises
to the Gram matrices and degrading the regret performance.
Besides, as we discuss in Appendix D, Assumption 3.1 is
actually necessary in order to achieve sublinear regret for a
broad class of algorithms in the federated linear contextual
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bandits setting.

We remark that Assumption 3.1 does not guarantee that the
distributions of local datasets collected by the client are
identical or even close in terms of total variation distance,
since the covariance matrices still depend on how the clients
are making decisions. Even if they focus on the optimal
arms, the matrix E[ϕ(ci,t, a∗ci,t)ϕ(ci,t, a

∗
ci,t)

⊺] can still vary
drastically across clients, as different clients can potentially
have very different context distributions. This fact is in stark
contrast to previous user-level DP works, e.g., Levy et al.
(2021), and makes our problem more challenging.

Assumption 3.2 (Margin condition (Rigollet & Zeevi, 2010;
Reeve et al., 2018)). Let a∗ci = argmaxa ϕ(ci, a)

⊺θ∗ be the
optimal arm under context ci. Then, there exists a constant
C0 such that, for any ϵ > 0 and any i ∈ [M ],

Pci∼ρi

[
∀a ̸= a∗ci , [ϕ(ci, a

∗
ci)− ϕ(ci, a)]

⊺θ∗ ≤ ϵ
]
≤ C0ϵ.

Roughly speaking, Assumption 3.2 ensures that for a ran-
domly generated context, the expected reward under the
corresponding optimal arm and that under any sub-optimal
arm are statistically well separated. This is a standard as-
sumption for instance-dependent analysis of linear contex-
tual bandits. Similar to the minimum reward gap between
the optimal arm and any sub-optimal arm in the stochastic
MAB setting, C0 controls the hardness of the problem: the
larger C0 is, the more challenging to distinguish the optimal
arm and the second sub-optimal arm under a given context.
In the following, we investigate upper bound with Assump-
tion 3.2 and lower bounds with and without Assumption 3.2.

3.3. The ROBIN Algorithm

In this section, we propose a gReedy explOitation Based
prIvatized averagiNg (ROBIN) Algorithm under the feder-
ated linear contextual bandits setting. Our objective is to
leverage Assumption 3.1 and Assumption 3.2 to achieve
sub-linear learning regret and guarantee user-level CDP at
the same time.

ROBIN works in phases. In total, it has P phases, and each
phse p ∈ [P ] contains 2p time indices. Denote Tp as the set
of time indices in phase p. Then, it proceeds as follows.

LinUCB-based Initialization: In the first U phases, each
client performs the classical LinUCB algorithm (Abbasi-
Yadkori et al., 2011) locally. Specifically, at the beginning,
client i initializes an all-zero matrix Vi,1 and an all-zero
vector Yi,1. Then, at each time t in phase p ∈ U , upon
observing a context ci,t and the corresponding decision set
Di,t = {ϕ(ci,t, a) : a ∈ A}, the client i chooses action
xi,t,ai,t

according to

xi,t,ai,t = arg max
x∈Di,t

x⊺θ̂i,t + α∥x∥(Id+Vi,t)−1 , (1)

where θ̂i,t = (Id + Vi,t)
−1Yi,t, and α is a parameter to be

specified later. After receiving a reward ri,t, each client
updates matrix Vi,t and vector Yi,t according to{

Vi,t+1 = Vi,t + xi,t,ai,tx
⊺
i,t,ai,t

,

Yi,t+1 = Yi,t + xi,t,ai,t
ri,t.

(2)

The benefit of such initialization is that the minimum eigen-
value of Vi,t can be guaranteed to grow linearly in t.

Local Greedy Exploitation: For any phase p > U after
the initialization phase, each client receives a private global
estimate θ̂p from the central server at the beginning of phase
p. We will specify how to construct such a global estimate in
the next several paragraphs. Meanwhile, each client resets
matrix Vi,t and vector Yi,t to be zero. Then, for all t ∈ Tp,
each client greedily takes actions with respect the global
estimate, i.e. ai,t = argmaxa ϕ(ci,t, a)

⊺θ̂p, and collects a
reward ri,t. Again, Vi,t and Yi,t are updated according to
Equation (2).

Upload Channel Ri: At the end of each phase p such
that p ≥ U , each client constructs a local estimator θ̃i,p =

Ṽ †
i,pỸi,p based on the ordinary least squares method, where

Ṽi,p and Ỹi,p are copies of statistics Vi,t and Yi,t at the end
of phase p. These local estimators are then sent to the central
server for privatized aggregation.

Privatized Aggregation R0 at the Server: Once the local
estimates {θ̃i,p}i∈[M ] are received at the end of phase p, the
server needs to aggregate those local estimates and obtain a
global estimate θ̂p+1, which will be broadcast to the clients
to facilitate their decision-making in phase p+ 1. There are
two objectives for this aggregation step: One one hand, due
to the user-level CDP constraint, the corresponding aggrega-
tion needs to ensure that θ̂p+1 does not change significantly
if θ̃i,p is replaced by another possible local estimate θ̃′i,p for
any i ∈ [M ]. On the other hand, in order to achieve low
learning regret, it requires that θ̂p+1 is sufficiently close to
the ground truth parameter θ∗. In particular, it is desirable
to have ∥θ̂p+1 − θ∗∥ scales in Õ

(
1/
√

M |Tp|
)

with high
probability as p increase.

However, in general, the sensitivity of 1
M

∑
i θ̃i,p scales

in O(1/M). This is because θ̃i,p is a random variable,
whose distribution expands the entire parameter space
{θ : ∥θ∥ ≤ 1}. Thus, if a vanilla additive noise mecha-
nism is adopted, the variance of the noise should scale in
Ω(1/M). As a result, ∥θ̂p+1 − θ∗∥ scales in Ω(1/

√
M),

which cannot provide the desired estimation accuracy in
order to achieve sublinear regret.

To overcome this challenge, we aim to leverage the concen-
tration property of θ̃i,p to have a more delicate analysis of
the sensitivity of 1

M

∑
i θ̃i,p. The intuition is, under assump-
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Algorithm 1 The ROBIN Algorithm

1: Input: P , β, c1, δ0 = δ/(2P ), ε0 = ε/
√

6P log(2/δ).
2: while not reaching the time horizon T do
3: if p ≤ U then
4: ▷ Initialization phases
5: Di,p = ∅
6: for each client i and t in Phase p do
7: Observe ci,t
8: Choose xi,t,ai,t according to Eqn. (1), and receive ri,t
9: Update Vi,t and Yi,t according to Eqn. (2)

10: end for
11: else
12: ▷ Greedy exploitation
13: for each client i do
14: Receive θ̂(p) from the server
15: Set Vi,t = 0, Yi,t = 0
16: for t ∈ Phase p do
17: Receive decision set Di,t = {xi,t,a}a∈A

18: Pull arm xi,t,at = argmaxx∈Di,t x
⊺θ̂(p)

19: Receive reward ri,t
20: Update Vi,t and Yi,t according to Eqn. (2)
21: end for
22: end for
23: end if
24: if p ≥ U then
25: for each client i do
26: ▷ Upload channel: Ri
27: θ̃i,p ← Ṽ †

i,pỸi,p

28: Send θ̃i,p to the server
29: end for
30: ▷ Privatized aggregation: R0

31: θ̂p+1 = WMHD

(
{θ̃i,p}i∈[M ],

c1√
|Tp|

, β
16P

, ε0, δ0

)
32: end if
33: p← p+ 1
34: end while

tion 3.1, θ̃i,p+1 will be concentrated in a ball centered at θ∗

with radius Õ(1/
√
|Tp|) with high probability. Therefore,

if we are able to leverage such concentration property and
reduce the sensitivity of 1

M

∑
i θ̃i,p, we will be able to adap-

tively reduce the variance of the additive noise in the DP
mechanism and achieve sublinear regret.

Motivated by this intuition, we adopt the WinsorizedMean-
HighD (WMHD) Algorithm from Levy et al. (2021) for the
private aggregation at the server. Roughly speaking, WMHD
projects local estimates {θ̃i,p}i∈[M ] into a privatized range
in the parameter space and then adds noise accordingly. By
properly choosing the size of the range and the noise level,
it outputs a privatized average of {θ̃i,p}i∈[M ] with sufficient
estimation accuracy and CDP guarantee. The details of
WMHD can be found in Algorithm 4 in Appendix B.

The ROBIN algorithm is summarized in Algorithm 1.

3.4. Regret Analysis

Theorem 3.3. Fix β ∈ (0, 1) and let c1 =
4
√

2d log(16d(M+1)P/β)

λ0
. Then, under Assumptions 3.1

and 3.2, when ε ≥ Ω(
√
d log1.5 T

M ), Algorithm 1 (i) satis-
fies user-level (ε, δ)-CDP, and (ii) with probability at least
1− β, achieves a regret upper bounded by

Õ

(
max

(
1,

d log T log( 1δ ) log
3( 1β )

Mε2

)
C0d log(

1
β ) log T

λ2
0

)
.

Proof of the user-level CDP guarantee: Since θ̂p is a
(ε0, δ0)-differentially private estimation (Theorem 2 in Levy
et al. (2021)), and there are total P phases, by the advanced
composition rule (Lemma G.1), we conclude that the entire
algorithm achieves user-level (ε0

√
6P log(1/δ′), δ′+δ0P )-

CDP for any δ′ > 0. The proof is finished by noting
that δ0 = δ/(2P ), ε0 = ε/

√
6P log(2/δ) and choosing

δ′ = δ/2.

Proof sketch of the regret upper bound. To upper bound
the regret, we need to characterize the estimation error of
the global estimator θ̂p for p > U . We inductively show
that the following two claims hold with high probability.

• Claim 1: λmin(Ṽi,p) ≥ Ω (|Tp|).

• Claim 2: ∥θ̂p+1 − θ∗∥ ≤ Õ

(
1

εM
√

|Tp|
+ 1√

M |Tp|

)
.

If Claim 1 holds, it is straightforward to conclude that each
local estimator is sufficiently accurate, i.e. ∥θ̃i,p − θ∗∥ ≤
Õ
(
1/
√

|Tp|
)
. Then, due to Theorem 2 in Levy et al.

(2021), WMHD guarantees that θ̂p+1 is “close” to the average
of local estimators {θ̃i,p}i∈[M ]. Specifically, we can show
that with high probability,∥∥∥θ̂p+1 − 1

M

∑
i∈[M ] θ̃i,p

∥∥∥ ≤ Õ

(
1

εM
√

|Tp|

)
.

Thus, Claim 2 follows by applying Claim 1 on the average
estimator, i.e. ∥ 1

M

∑
i θ̃i,p − θ∗∥ ≤ Õ

(
1/
√

M |Tp|
)
.

If Claim 2 holds, combining with Assumption 3.2, with high
probability, the covariance matrix

∑
t∈Tp

xi,t,ai,t
x⊺
i,t,ai,t

is
close to |Tp|Eci∼ρi

[
ϕ(ci, a

∗
ci)ϕ(ci, a

∗
ci)

⊺
]
. Hence, Claim 1

follows directly from Assumption 3.1.

Finally, the LinUCB algorithm in the first U phases guar-
antees that Claim 1 holds with high probability, and by
induction, both claims hold for all phases p ≥ U . Therefore,
the regret can be upper bounded by the product of estima-
tion error and the probability of playing sub-optimal arms.
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Due to Assumption 3.2, the probability is again controlled
by the estimation error, and thus the regret upper bound is
Õ
(
(1 + 1/(Mε2)) log T

)
.

The full proof can be found in Appendix C.
Remark 3.4. In general, the difficulty of deriving regret
upper bounds without Assumption 3.2 is due to the weak
diversity Assumption 3.1, where we only require the co-
variance matrix associated with the optimal arm to be suf-
ficiently diverse. Therefore, without Assumption 3.2, if
the sub-optimal gap is too small, it is highly likely that the
feature vector associated with the decision of the agent is
very different from the optimal feature vector, although the
corresponding reward (inner product of the feature vector
and θ) is close to the optimal reward. If this is the case, then
the agent cannot leverage Assumption 3.1 to construct an
accurate estimation of θ, as Assumption 3.1 only applies to
the feature vectors associated with the optimal arm.

4. Lower Bounds under CDP Constraint
In this section, we present regret lower bounds for any user-
level central differentially private federated algorithms. All
proofs in this section can be found in Appendix E..

To be more precise, we separate the federated algorithms
into two categories: almost-memoryless algorithms and
with-memory algorithms. Without additional assumptions,
the general framework defined in Section 2.3 is a with-
memory algorithm, where the decision-making algorithm
Algi depends on both the local history and the global infor-
mation q≤t. If the available information is restricted, we
define almost-memoryless algorithm as follows.

Definition 4.1 (Almost-memoryless algorithm). A feder-
ated algorithm (R0, Alg1, R1, . . . , RM ) is almost memory-
less if there exists a constant u = o(T ) such that for any
time step t ≥ u, the decision-making does not depend on
local history data, i.e. Algi(Hi,t, q≤t) = Algi(q≤t), for
any i ∈ [M ] and Hi,t.

We note that a typical memoryless algorithm is phased elimi-
nation type of algorithms (Shi & Shen, 2021; Shi et al., 2021;
Huang et al., 2021), where the policy in a single phase does
not change and only depends on the information broadcast
from the last communication round. Moreover, Algorithm 1
proposed in this work is also almost-memoryless.

Theorem 4.2. If ε < log 2, δ = Õ( 1
M

√
T
), then, there exists

a federated linear contextual bandits instance satisfying
Assumptions 3.1 and 3.2, such that any almost-memoryless
federated algorithm satisfying user-level (ε, δ)-CDP must
incur a regret lower bounded by

Ω
(
max

{
1, 1

Mε2

}
C0d log T + e−MεC0MT

)
.

Remark 4.3. First, we note that in the regime ε =

Ω
(√

d log1.5 T
M

)
considered in Theorem 3.3, the first term of

the lower bound dominates the other. Thus, the regret upper
bound under ROBIN nearly matches with the lower bound,
indicating that ROBIN is near-optimal in terms of M and ε

in this regime. On the other hand, when ε = Õ
(

log(MT )
M

)
,

the second term e−MεC0MT dominates the first term and
grows linearly in T . Thus, it is impossible to achieve sub-
linear regret for any almost-memoryless algorithm in this
regime. Since ROBIN is an almost-memoryless algorithm,
it arguably achieves the best we could hope for among all
almost-memoryless algorithms.

The lower bound also indicates the number of samples
contributed by each client (i.e., T ) cannot be arbitrarily
large (i.e., cannot scale faster than Õ(eMε/M)) in order to
achieve sublinear regret for any almost-memoryless algo-
rithm. A similar phenomenon in offline supervised learning
is also observed in Levy et al. (2021), which states that
learning with user-level DP cannot reach zero error when
the number of clients is fixed.

The proof of Theorem 4.4 is built upon a generic lower
bound developed by He et al. (2022b), as informally stated
in Theorem 4.4, and the fingerprinting lemma (Kamath et al.,
2019; Bun et al., 2017).

Theorem 4.4 (Informal). Let θ∗1 be uniformly sampled from
a two-dimensional sphere Θ = {x ∈ R2 : ∥x∥ = r}. Then,
there exists a federated linear contextual bandits model such
that the total regret is lower bounded by

Ω
(∑

i∈[M ],t∈[T ] infθi,t∈F(Ii,Θ)
1
rEv

[
∥θ∗1 − θi,t∥2

])
,

where Ii is a set of available information provided for client
i (e.g., (Hi,t, q≤t)).

Proof sketch of Theorem 4.2. Theorem 4.4 states that the
regret is lower bounded by the performance of estimat-
ing the “direction” of the true parameter θ∗. Note that
in general, the error of estimating direction cannot be di-
rectly lower bounded by the standard estimation error, es-
pecially when the norm of parameters are Ω(1). How-
ever, under the margin condition in Assumption 3.2, the
norm of θ∗ is in general O(1). Hence, to lower bound
the estimation error of the direction, we follow an alter-
native approach that re-parameterizes θ∗s by its angle γ∗

s

and provide an upper bound of the expected inner product
Ev[θ

⊺
i,t,sθ

∗
s ]. By leveraging the fingerprinting lemma, we

show that if θi,t,s is a private estimator, then, Ev[θ
⊺
i,t,sθ

∗
s ] ≤

O(εM
√
(t− 1)Ev[∥θ∗s − θi,t,s∥2]). Combining with the

fact that Ev[∥θ∗s − θi,t,s∥2] = 2 − 2Ev[θ
⊺
i,t,sθ

∗
s ], we con-

clude that Ev[∥θ∗s − θi,t,s∥2] ≥ Ω(1/(ε2M2(t − 1) + 1)).
Taking the summation over t and i, and by Theorem 4.4, we
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obtain a lower bound Ω(log T/(Mε2)). The second term
e−MεC0MT can be derived by calculating the estimation
error under the case when all clients collect dummy infor-
mation (e.g. xi,t,at

= 0). The final result then follows
by taking the non-private regret lower bound Ω(log T ) into
consideration.

Our results can be generalized to obtain minimax lower
bounds for the with-memory algorithms by optimizing the
norm r of the true parameter or separately analyze the infor-
mation contained in local datasets. The results are summa-
rized as follows.

Theorem 4.5. Fix any ε ∈ (0, log 2), δ = Õ
(

1
M

√
T

)
,

T ≥ d2. Then, there exists a federated linear contextual
bandits instance satisfying Assumptions 3.1 and 3.2 such
that any with-memory federated algorithm satisfying user-
level (ε, δ)-CDP must incur a regret lower bounded by

Ω

(
min

{
M,max

{
1,

1

Mε2

}}
C0d log T

)
.

If Assumption 3.2 is not satisfied, then the minimax regret
lower bound becomes

Ω
(
min

{
M,max

{√
M, 1

ε

}}√
dT
)
.

Remark 4.6. Since with-memory algorithms encompass
almost-memoryless algorithms as special cases, the first part
of Theorem 4.5 verifies that ROBIN is nearly optimal com-
pared to any algorithms when ε = Ω

(√
d log1.5 T

M

)
. In fact,

ROBIN can be easily adapted to a with-memory algorithm
to remove the constraint on the parameters. Specifically,
if at the beginning of the entire algorithm, ROBIN is al-
lowed to adaptively decides that clients follow Algorithm 1
when ε = Ω(

√
d log1.5 T

M ), or independently adopt LinUCB

without sharing any information when ε = O(
√
d log1.5 T

M ),
then, the algorithm achieves an upper bound that nearly
matches with the lower bound in terms of M and ε for
any ε ∈ (0, log 2). In addition, this adaptation preserves the
user-level CDP guarantee, since performing LinUCB locally
without information exchange guarantees zero information
leakage.

Theorem 4.5 also indicates that, when ε = Ω( 1√
M
), the

lower bound reduces to Ω(C0d log T ) with Assumption 3.2
and Ω(

√
dMT ) without Assumption 3.2. This suggests that

imposing user-level (ε, δ)-CDP constraint does not increase
the hardness of learning compared with its non-private
counterpart for the general with-memory algorithms in this
regime. However, when ε = O( 1√

M
), imposing the CDP

constraint incurs a blow-up factor at least min{M, 1
ε2M }

with Assumption 3.1 or min{
√
M, 1

ε
√
M
} without Assump-

tion 3.1, indicating the hardness of learning strictly in-
creases.

5. Lower Bounds under LDP Constraint
In this section, we present regret lower bounds under the
non-interactive local differential privacy constraint, which
provides an initial view of this more challenging problem.
The full proofs in this section can be found in Appendix F.
Definition 5.1 (Non-interactive upload channel). The
upload channels Ri of a federated algorithm Alg =
(R0, Alg1, R1, . . . , AlgM , RM ) is non-interactive if Ri does
not depend on global information q≤t−1 conditioned on the
local history Hi,t, i.e. Ri(Hi,t, q≤t−1) = Ri(Hi,t).

We note that existing phased elimination-based federated
bandits algorithms are non-interactive (Shi & Shen, 2021;
Shi et al., 2021; Huang et al., 2021). In contrary, UCB-
type algorithms are interactive and with-memory (Dubey &
Pentland, 2020; Li & Wang, 2022b; Li et al., 2020).
Definition 5.2 (Non-interactive user-level local DP). Con-
sider a time horizon T . A federated algorithm Alg =
(R0, Alg1, R1, . . . , AlgM , RM ) is user-level (ε, δ)-locally
differentially private if for any i-neighboring streaming
datasets {Ht}t≤T and {H ′

t}t≤T (see Definition 2.1), and
any subset Qi,≤T = (Qi,1, . . . , Qi,T ) ⊂ QT , we have

P[Ri({Hi,t}t≤T ) ∈ Qi,≤T ]

≤ eεP[Ri({H ′
i,t}t≤T ) ∈ Qi,≤T ] + δ.

We focus on the with-memory setting, since any lower
bound of with-memory algorithms must be a lower bound
of memoryless algorithms.
Theorem 5.3. If ε ∈ (0, log 2), δ = Õ(1/M

√
T ), there

exists a federated linear contextual bandits instance satisfy-
ing Assumptions 3.1 and 3.2 such that any with-memory
federated algorithm satisfying user-level (ε, δ)-LDP must
incur a regret lower bounded by

Ω (min {1/ε,M}C0d log T ) .

If Assumption 3.2 is not satisfied, then the minimax regret
lower bound becomes

Ω
(
min

{√
M/ε,M

}√
dT
)
.

Remark 5.4. We note that when ε = O(1/M), the regret
lower bound is either Ω(M log T ) under Assumption 3.2 or
Ω(M

√
T ) without Assumption 3.2, suggesting that the best

policy is to have clients independently make arm-pulling de-
cisions without information exchange. When ε = Ω(1/M),
the lower bound becomes Ω(C0d log T/ε) under Assump-
tion 3.2, or Ω(

√
dMT/ε) without Assumption 3.2. This

indicates that under the (ε, δ)-LDP constraint, as long as
ε ∈ (0, log 2), the regret of any federated algorithm must
suffer a blow-up factor at least min{1/

√
ε,
√
M} without

Assumption 3.2, or min{1/ε,M} with Assumption 3.2,
compared with the optimal regrets in the non-private set-
ting.
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For completeness, we also investigate the regret lower bound
under user-level pure LDP constraint, i.e. δ = 0.

Corollary 5.5. For any ε ∈ (0, log 2), there exists a feder-
ated linear contextual bandits instance satisfying Assump-
tions 3.1 and 3.2 such that any with-memory federated al-
gorithm satisfying ε-LDP must incur a regret lower bounded
by

Ω
(
min

{
M, 1/ε2

}
C0d log T

)
.

If Assumption 3.2 is not satisfied, then the minimax regret
lower bound becomes

Ω
(
min

{
M,

√
M/ε

}√
dT
)
.

Compared with the results in Theorem 4.5, we note that the
regret lower bound under pure LDP constraint is generally
higher than that under CDP constraint. Specifically, the
results in Corollary 5.5 can be obtained by replacing ε in
Theorem 4.5 by ε/

√
M 1.

6. Related Work
Differential Privacy in Bandits. There is a line of research
focusing on differentially private multi-armed bandits (DP-
MAB). Mishra & Thakurta (2015) first introduce the prob-
lem of DP-MAB with algorithms that achieve sublinear
regret. Later, Tossou & Dimitrakakis (2016); Sajed & Shef-
fet (2019); Azize & Basu (2022) improve the analysis and
propose several different algorithms that enjoy the optimal
regret. In addition, Hu & Hegde (2022) achieve similar
near-optimal regret based on a Thompson-sampling based
approach, Tao et al. (2022) consider heavy-tailed rewards
case, and Chowdhury & Zhou (2022a) provide an optimal
regret in distributed DP-MAB. Local DP constraint is also
studied by Ren et al. (2020) in MAB and by Zheng et al.
(2020) in both MAB and linear contextual bandits. Shariff
& Sheffet (2018) propose LinUCB with changing perturba-
tion to satisfy jointly differential privacy. Later, Wang et al.
(2020a) consider pure DP in both global and local setting.
Wang et al. (2022b) propose an algorithm with dynamic
global sensitivity. Other models including linear and gen-
eralized linear bandits under DP constraints are studied by
Hanna et al. (2022) and Han et al. (2021). The shuffle model
has also been addressed by Chen et al. (2020); Chowdhury
& Zhou (2022b); Garcelon et al. (2022); Tenenbaum et al.
(2021).

Federated Bandits. There is a growing body of research
studying item-level DP based local data privacy protection
in federated bandits. Li et al. (2020); Zhu et al. (2021) study

1Another lens to see this phenomenon is the privacy amplifi-
cation by shuffling (Feldman et al., 2022). Loosely speaking, an
(ε/
√
M, δ)-CDP lower bound leads to an (ε, δ)-LDP lower bound,

when ε is sufficiently small (Acharya et al., 2022).

federated bandits with DP guarantee. Dubey & Pentland
(2022) consider private and byzantine-proof cooperative
decision making in multi-armed bandits. Dubey & Pent-
land (2020); Zhou & Chowdhury (2023) consider the linear
contextual bandit model with joint DP guarantee. Li et al.
(2022a) study private distributed bandits with partial feed-
back.

Federated bandits without explicit DP constraints have also
been studied by Wang et al. (2020b); Li & Wang (2022a);
Shi & Shen (2021); Shi et al. (2021); Huang et al. (2021);
Wang et al. (2022a); He et al. (2022a); Li et al. (2022b).

User-level DP. First introduced by Dwork et al. (2010b),
user-level DP has attracted increased attention re-
cently (McMahan et al., 2017b; Wang et al., 2019). Liu
et al. (2020); Acharya et al. (2022) study discrete distri-
bution estimation under user-level DP. Ghazi et al. (2021)
investigate the number of users required for learning under
user-level DP constraint. Amin et al. (2019); Epasto et al.
(2020) study approaches to bound individual users’ contri-
butions in order to achieve good trade-off between utility
and user-level privacy guarantee. Levy et al. (2021) con-
sider various learning tasks, such as mean estimation, under
user-level DP constraint. To the best of our knowledge, user-
level DP has not been studied in the online learning setting
before.

7. Conclusions
In this paper, we investigated federated linear contextual ban-
dits under user-level differential privacy constraints. We first
introduced a general federated sequential decision-making
framework that can accommodate various notations of DP in
the bandits setting. We then proposed an algorithm termed
as ROBIN and showed that it is near-optimal under the user-
level CDP constraint. We further provided various lower
bounds for federated algorithms under user-level LDP con-
straint, which imply that learning under LDP constraint is
strictly harder than the non-private case. Designing feder-
ated algorithms to approach such lower bounds under LDP
constraint would be an interesting direction to pursue in the
future.
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A. Relationship with other DP Notions in Bandits
We use Figure 1 to demonstrate all existing DP channels in the bandits literature.

t
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Figure 1: Graphical structure of all possible private channels in a bandits model. We assume that Algi produces some
intermediate random variable Ai which determines the action.

Recall that Hi,t = {ci,τ , ai,τ , ri,τ}t−1
τ=1. We separately discuss different DP mechanisms in single-client and multi-client

settings.

Single-client. In this case, the federated bandits framework defined in Section 2.3 reduces to the upper half of Figure 1.

• A single-client bandits algorithm is called locally differentially private (Ren et al., 2020; Zheng et al., 2020), if the
red arrow from r1,t to the dataset H1,t+1 is a DP channel. Mathematically, for any two rewards r1,t and r′1,t, and any
measurable set S containing H1,t+1, we have

P(H1,t+1 ∈ S|r1,t) ≤ eεP(H1,t+1 ∈ S|r′1,t) + δ.

• A single-client stochastic multi-armed bandits algorithm is called globally differentially private (Tossou & Dimi-
trakakis, 2016; Azize & Basu, 2022), if the red arrow from H1,t to A1 is a DP channel with respect to rewards. More
precisely, for any t′-neighboring dataset H1,t and H ′

1,t satisfying r1,t0 = r′1,t0 for all t0 ≤ t except at t0 = t′, and any
measurable set S containing A1, we have

P(A1 ∈ S|H1,t) ≤ eεP(A1 ∈ S|H ′
1,t) + δ.

• A single-client linear contextual bandits algorithm is called jointly differentially private (Shariff & Sheffet, 2018), if
the red arrow from H1,t to A1 is a DP channel with respect to one datum. More precisely, for any t′-neighboring dataset
H1,t and H ′

1,t satisfying (ci,t0 , ai,t0 , r1,t0) = (c′i,t0 , a
′
i,t0

, r′1,t0) for all t0 ≤ t except at t0 = t′, and any measurable
set S containing A1, we have

P(A1 ∈ S|H1,t, ci,t) ≤ eεP(A1 ∈ S|H ′
1,t, ci,t) + δ.

Multi-clients. In this case, we focus on the red arrows between clients and the server, i.e. Ri and R0.

• A multi-client bandits algorithm is called item-level locally (jointly) differentially private (Dubey & Pentland,
2020), if the red arrow Ri from Hi,t to qi,≤t is a DP channel, and each client can fully rely on its own local dataset
(with-memory setting). More precisely, if for any client i and t′, Hi,t and H ′

i,t only differ in one datum at time t′, i.e.
(ci,t0 , ai,t0 , ri,t0) = (c′i,t0 , a

′
i,t0

, r′i,t0) for all t0 ≤ t except at t0 = t′, and for any measurable set containing qi,t, we
have

P(qi,t ∈ S|Hi,t) ≤ eεP(qi,t ∈ S|H ′
i,t) + δ.

We close this section by noting that there are many other types of DP that can be deduced from Figure 1. We list several key
ingredients that form a DP type, such as whether it is item-level, whether it is locally differentially private, whether it is
jointly differentially private, and whether it is memoryless.
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B. DP Algorithms
In this section, we list all the differentially private mechanisms that are used in Algorithm 1 and provide their guarantees.
First, we introduce the formal definition of (r, β)-concentration.

Definition B.1 ((r, β)-concentration). {xi}i ⊂ Rd is (r, β) concentrated if there exists µ ∈ Rd such that P(∀i, ∥xi−µ∥ ≥
r) ≤ β.

The PrivateRange algorithm outputs a private interval with length 4r if the input dataset is (r, β)-concentration such that the
dataset falls into this interval with high probability.

Algorithm 2 PrivateRange({xi}i∈[M ], ε, r, B) (Feldman & Steinke, 2017)

1: Input: {xi}i∈[M ] ∈ [−B,B]M , r: concentration radius, ε: privacy parameter.
2: Divide interval [−B,B] into ℓ = B/r disjoint bins, each with length 2r. Let S be the set of middle points of those bins.
3: For i ∈ [M ], let x′

i = argminx∈S |x− xi| be the point in S closest to xi.
4: For any x ∈ S, define cost function

c(x) = max
{∣∣i ∈ [M ] : x′

i < x
∣∣, ∣∣i ∈ [M ] : x′

i > x
∣∣} .

5: Sample x̄ ∈ S from the distribution:

P(x̄ = x) =
exp(−εc(x)/2)∑

x′∈S exp(−εc(x′)/2)
.

6: Return [x̄− 2r, x̄+ 2r].

Lemma B.2. PrivateRange({xi}i∈[M ], ε, r, B) is (ε, 0) differentially private.

Algorithm 3 WinsorizedMean1D({xi}i∈[M ], r, β, ε, B) (Levy et al., 2021)

1: Input: {xi}i∈[M ] ∈ [−B,B]M , r: concentration radius, γ: concentration error probability, ε, δ: privacy parameter.
2: [a, b] = PrivateRange({xi}i, ε/2, r, B), where b− a = 4r.
3: Sample ξ ∼ Lap(0, 8r/(Mε)) and return

x̄ = ξ +
1

M

M∑
i=1

max {a,min{b, xi}} .

Lemma B.3 (Theorem 1 in Levy et al. (2021)). WinsorizedMean1D is (ε, 0)-differentially private.

We slightly modify a constant in the following WinsorizedMeanHighD (WMHD) algorithm. Compared to the original version,
this modification is due to a tighter parameter choice in the advanced composition rule G.2.

Algorithm 4 WinsorizedMeanHighD({xi}i∈[M ], r, β, ε, δ) (Levy et al., 2021)

1: Input: {xi}i∈[M ] ⊂ S1 ⊂ Rd, r: concentration radius, γ: concentration error probability, ε, δ: privacy parameter.
2: Let D = diag(w1, . . . , wd), where ws are sampled independently and uniformly from {1,−1} for all s ∈ [d].
3: Set U = 1√

d
HD, where H is a d-dimensional Hadamard matrix.

4: For all i ∈ [M ], s ∈ [d], compute
yi,s = e⊤s UXi.

5: Let ε′ = ε√
6d log(1/δ)

, r′ = 10r
√

log(dM/β)
d

.

6: For all s ∈ [d], compute
Ys = WinsorizedMean1D({yi,s}i∈[M ], r

′, β, ε′, B
√
d).

7: Let Ȳ = (Y1, . . . , Yd)
⊺ and return

X̄ = U−1Ȳ .

14



Federated Linear Contextual Bandits with User-level Differential Privacy

Theorem B.4 (Theorem 2 in Levy et al. (2021)). If θ̂ ∈ Rd is the output of WinsorizedMeanHighD({θi}i, r, β, ε, δ, B), then
θ̂ is (ε, δ)-differentially private. Moreover, let each coordinate of ξ ∈ Rd be independently sampled from Lap(8r′/(Mε′))
and θ̄ =

∑
i θi/M be the sample mean, where ε′ = ε√

6d log(1/δ)
and r′ = 10r

√
(log(dM/β))/d. Then, we have

dTV

(
P
(
∥θ̂ − θ̄∥

∣∣{θi}i) ,P (∥ξ∥∣∣{θi}i)) ≤ β +
d2B

10r
√

(log(dM/β))
exp

(
− Mε

8
√

6d log(1/δ)

)
.

Corollary B.5. Under the same setting as in Theorem B.4, we have

P

(
∥θ̂ − θ̄∥ ≥

80r log(d/β)
√

6d log(dM/β) log(1/δ)

Mε

)
≤ 3β +

d2B

10r
√
(log(dM/β))

exp

(
− Mε

8
√

6d log(1/δ)

)
.

Proof. By the definition of (r, β)-concentration, we have

P
(
{θi}i is not (r, 0)-concentrated

)
≤ β.

Therefore,

P

(
∥θ̂ − θ̄∥ ≥

80r log(d/β)
√

6d log(dM/β) log(1/δ)

Mε

)

≤ P

(
∥θ̂ − θ̄∥ ≥

80r log(d/β)
√
6d log(dM/β) log(1/δ)

Mε

∣∣∣∣{θi}i is (r, 0)-concentrated

)
P ({θi}i is (r, 0)-concentrated)

+ P ({θi}i is not (r, 0)-concentrated)

(a)

≤ 2β +
d2B

10r
√
(log(dM/β))

exp

(
− Mε

8
√
6d log(1/δ)

)
+ P

(
∥ξ∥ ≥

80r log(d/β)
√
6d log(dM/β) log(1/δ)

Mε

)

= 2β +
d2B

10r
√

(log(dM/β))
exp

(
− Mε

8
√
6d log(1/δ)

)
+ P

(
∥ξ∥ ≥ 8r′

√
d

Mε′
log(d/β)

)
(b)

≤ 3β +
d2B

10r
√
(log(dM/β))

exp

(
− Mε

8
√
6d log(1/δ)

)
,

where (a) is due to Theorem B.4, and (b) follows from the tail bound for Laplace random vectors developed in Lemma G.3.

C. Proof of the Regret Upper Bound of ROBIN
In this section, we provide the analysis for the upper bound of the regret of Algorithm 1. The key idea is to show that the
global estimator is sufficiently accurate.

Outline of this section: In Step 1, we first develop Lemma C.2 aided by Lemma C.1, and show the minimum eigenvalue of
the Gram matrix Vi,U at the end of the initialization phase U scales linearly in |TU |. Then, in Step 2, Proposition C.3 shows
that linearly growing minimum eigenvalues implies accurate global estimators and vice versa, which inductively verifies that
the estimation error of θ̂p+1 decays in the order of O(1/

√
M |Tp|). Finally, with the accurate global estimator, Theorem C.6

in Step 3 presents the regret upper bound.

Recall that the Gram matrix of client i at the end of phase p is

Ṽi,p =
∑
τ∈Tp

xi,τ,ai,τ
x⊺
i,τ,ai,τ

.

Step 1: Bound the Minimum Eigenvalue in the Initialization Phase.
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This step is akin to Lemma 12 and Lemma 13 in Papini et al. (2021) and consists of two parts. The first part states that when
the sub-optimal gap is larger that ∆, the number of times that LinUCB does not choose the optimal arm is upper bounded by
Õ(1/∆).

Lemma C.1. Given any β ∈ (0, 1), with probability at least 1− β, and for any ∆ > 0, the following inequality holds for
any client i.

E

[∑
τ∈TU

1

{
ai,τ ̸= ac∗i,τ ,∀b ̸= a∗ci,τ , (ϕ(ci,τ , a

∗
ci,τ )− ϕ(ci,τ , b))

⊺θ∗ ≥ ∆
}]

≤
2α
√
d|TU | log |TU |

∆
, (3)

where α = 1 +
√
2 log(M/β) + d log |TU |.

Proof. By Theorem 20.5 in Lattimore & Szepesvári (2020), if θ̂i,t is the local estimator in the initialization phase (t ∈ TU ),
we have for each client i, and any β > 0,

P
(
∀t ∈ TU , ∥θ̂i,t − θ∗∥I+Vi,t

≤ 1 +
√
2 log(1/β) + d log |TU |

)
≥ 1− β.

By rescaling β to β/M and taking the union bound, we have

P
(
∀i ∈ [M ], t ∈ TU , ∥θ̂i,t − θ∗∥I+Vi,t

≤ 1 +
√
2 log(M/β) + d log |TU |

)
≥ 1− β,

where β is any positive number.

Let α = 1 +
√
2 log(M/β) + d log |TU |. Hence, the instantaneous regret can be upper bounded by

(ϕ(ci,τ , a
∗
ci,τ )− ϕ(ci,τ , ai,τ ))

⊺θ∗

= ϕ(ci,τ , a
∗
ci,τ )

⊺(θ∗ − θ̂i,τ )− ϕ(ci,τ , ai,τ )
⊺(θ∗ − θ̂i,τ ) + ϕ(ci,τ , a

∗
ci,τ )

⊺θ̂i,τ − ϕ(ci,τ , ai,τ )
⊺θ̂i,τ

≤ ∥ϕ(ci,τ , a∗ci,τ )∥(I+Vi,τ )−1∥θ∗ − θ̂i,τ∥I+Vi,τ
+ ∥ϕ(ci,τ , ai,τ )∥(I+Vi,τ )−1∥θ∗ − θ̂i,τ∥I+Vi,τ

+ ϕ(ci,τ , a
∗
ci,τ )

⊺θ̂i,τ − ϕ(ci,τ , ai,τ )
⊺θ̂i,τ

≤ α∥ϕ(ci,τ , a∗ci,τ )∥(I+Vi,τ )−1 + α∥ϕ(ci,τ , ai,τ )∥(I+Vi,τ )−1 + ϕ(ci,τ , a
∗
ci,τ )

⊺θ̂i,τ − ϕ(ci,τ , ai,τ )
⊺θ̂i,τ

≤ 2α∥ϕ(ci,τ , ai,τ )∥(I+Vi,τ )−1 .

Due the boundness assumption, we can conclude that

(ϕ(ci,τ , a
∗
ci,τ )− ϕ(ci,τ , ai,τ ))

⊺θ∗ ≤ 2min
{
α∥ϕ(ci,τ , ai,τ )∥(I+Vi,τ )−1 , 1

}
.

Therefore, we can bound Equation (3) as follows:

E

[∑
τ∈TU

1

{
ai,τ ̸= ac∗i,τ ,∀b ̸= a∗ci,τ , (ϕ(ci,τ , a

∗
ci,τ )− ϕ(ci,τ , b))

⊺θ∗ ≥ ∆
}]

≤ E

[∑
τ∈TU

1

{
ai,τ ̸= ac∗i,τ ,∀b ̸= a∗ci,τ , (ϕ(ci,τ , a

∗
ci,τ )− ϕ(ci,τ , b))

⊺θ∗ ≥ ∆
} (ϕ(ci,τ , a

∗
ci,τ )− ϕ(ci,τ , ai,τ ))

⊺θ∗

∆

]

≤ E

[∑
τ∈TU

1

{
ai,τ ̸= ac∗i,τ ,∀b ̸= a∗ci,τ , (ϕ(ci,τ , a

∗
ci,τ )− ϕ(ci,τ , b))

⊺θ∗ ≥ ∆
} 2min{α∥xi,τ,ai,τ ∥(I+Vi,τ )−1 , 1}

∆

]

≤ E

[∑
τ∈TU

2min{α∥xi,τ,ai,τ
∥(I+Vi,τ )−1 , 1}

∆

]
(a)

≤
2α
√

d|TU | log |TU |
∆

,

where (a) follows from the elliptical potential lemma in Lemma G.5.
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Based on Lemma C.1, we prove the second part that the minimum eigenvalue of the Gram matrix Ṽi,U scales linearly in
|TU | with high probability.

Lemma C.2 (Guarantee in the first U phases). If U satisfies

12(dC0 + λ0)
√
|TU | log(2dM/β) log |TU |

λ0
≤ λ0

4
|TU |,

then, for any β ∈ (0, 1), with probability at least 1− β, the Gram matrix of any client i at the end of phase U has full rank,
and

∀i ∈ [M ], λmin

(
Ṽi,U

)
≥ λ0

4
|TU |.

Proof. We analyze the expectation of the Gram matrix Ṽi,U as follows.

E[Ṽi,U ] = E

[∑
τ∈TU

xi,τ,ai,τx
⊺
i,τ,ai,τ

]

≥ E

[∑
τ∈TU

ϕ(ci,τ , ai,τ )ϕ(ci,τ , ai,τ )
⊺
1{ai,τ = ac∗i,τ ,∀b ̸= a∗ci,τ , (ϕ(ci,τ , a

∗
ci,τ )− ϕ(ci,τ , b))

⊺θ∗ ≥ ∆}

]

= E

[∑
τ∈TU

ϕ(ci,τ , a
∗
ci,τ )ϕ(ci,τ , a

∗
ci,τ )

⊺
1{ai,τ = ac∗i,τ ,∀b ̸= a∗ci,τ , (ϕ(ci,τ , a

∗
ci,τ )− ϕ(ci,τ , b))

⊺θ∗ ≥ ∆}

]

= E

[∑
τ∈TU

ϕ(ci,τ , a
∗
ci,τ )ϕ(ci,τ , a

∗
ci,τ )

⊺

]

− E

[∑
τ∈TU

ϕ(ci,τ , a
∗
ci,τ )ϕ(ci,τ , a

∗
ci,τ )

⊺
1{∃b ̸= a∗ci,τ , (ϕ(ci,τ , a

∗
ci,τ )− ϕ(ci,τ , b))

⊺θ∗ < ∆}

]

− E

[∑
τ∈TU

ϕ(ci,τ , a
∗
ci,τ )ϕ(ci,τ , a

∗
ci,τ )

⊺
1{ai,τ ̸= ac∗i,τ ,∀b ̸= a∗ci,τ , (ϕ(ci,τ , a

∗
ci,τ )− ϕ(ci,τ , b))

⊺θ∗ ≥ ∆}

]
(a)

≥ (λ0 − C0∆)|TU |Id − IdE

[∑
τ∈TU

1{ai,τ ̸= ac∗i,τ ,∀b ̸= a∗ci,τ , (ϕ(ci,τ , a
∗
ci,τ )− ϕ(ci,τ , b))

⊺θ∗ ≥ ∆}

]
(b)

≥ (λ0 − C0∆)|TU |Id −
2α
√

d|TU | log |TU |
∆

Id, with probability at least 1− β0,

where α = 1+
√
2 log(M/β0) + d log |TU |, (a) is due to the diversity condition in Assumption 3.1 and the margin condition

in Assumption 3.2, and (b) follows from Lemma C.1.

Now choose ∆ = λ0

2C0
. We have, with probability at least 1− β0,

E[Ṽi,U ] ≥

(
λ0|TU |

2
−

4αC0

√
d|TU | log |TU |
λ0

)
Id.

Consider the difference Ṽi,U−E[Ṽi,U ], which is a summation of zero-mean matrices. Thus, we can apply matrix concentration
inequality in Lemma G.4 to obtain that, for any β1 > 0, with probability at least 1− β1 − β0, we have

λmin(Ṽi,U ) = λmin

(
Ṽi,U − E[Ṽi,U ] + E[Ṽi,U ]

)
≥ λmin

(
E[Ṽi,U ])− λmax(Ṽi,U − E[Ṽi,U ]

)
≥ λ0|TU |

2
−

4αC0

√
d|TU | log |TU |
λ0

−
√
2|TU | log(d/β1)− 2/3.
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Choosing β1 = 1/(Mβ0) and taking the union bound, we have, with probability at least 1− 2β0,

λmin(Ṽi,U ) ≥
λ0|TU |

2
−

12(dC0 + λ0)
√
|TU | log(dM/β0) log |TU |

λ0
.

We finish the proof by choosing β0 = β/2 and noting that

12(dC0 + λ0)
√
|TU | log(2dM/β) log |TU |

λ0
≤ λ0

4
|TU |.

Step 2: Inductively Bound the Minimum Eigenvalue and Global Estimation Error after Initialization.

Proposition C.3. Fix β > 0, ε0, δ0, and c1 =
4
√

2d log(16d(M+1)P/β)

λ0
as defined in Algorithm 1. If there are total P phases,

consider the following events:

EV =

{
∀i ∈ [M ], p ∈ [U : P ], Ṽi,p ≥ λ0|Tp|

4
Id

}
,

Eθ =

{
∀p ∈ [U + 1 : P ], ∥θ̂p − θ∗∥ ≤ c2√

M |Tp|

}
,

where the parameters are set as

|Tp| = 2p,∀p ∈ [P ],

U =

⌈
max

{
log2

(
64 log(2dMP/β)

λ2
0

)
, log2

(
144dU2(C0 + λ0)

2 log(2dMP/β) log 2

λ4
0

)}⌉
c2 =

4
√
2d log(16d(M + 1)P/β)

λ0

(
80 log(16dP/β)

√
6d log(16dMP/β) log(1/δ0)√

Mε0
+ 1

)
,

M ≥ max

{
8
√
6d log(1/δ0)

ε0
log

(
4d2P

√
|TP |

10βc1
√
log(16dMP/β)

)
,
32C2

0c
2
2

λ2
0|TU |

}
.

Then, Algorithm 1 guarantees that

P (EV Eθ) ≥ 1− β.

Proof. Let us divide EV and Eθ into disjoint sub-events:

EV,p =

{
∀i ∈ [M ], Ṽi,p ≥ λ0|Tp|

4
Id

}
,

Eθ,p =

{
∀i ∈ [M ], ∥θ̂p+1 − θ∗∥ ≤ c2√

M |Tp|

}
,

such that EV = ∩p≥UEV,p and Eθ = ∩p≥UEθ,p. We aim to verify the following two claims.

Claim C.4. Under event EV,p, for any β > 0, we have P(Eθ,p) ≥ 1− β/(2P ).

Claim C.5. Under event Eθ,p, for any β > 0, we have P(EV,p+1) ≥ 1− β/(2P ).

Proof of Claim C.4:
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We recall the definition of local estimators θ̃i,p:

θ̃i,p = Ṽ †
i,p

∑
τ∈Tp

xi,τ,ai,τ ri,τ

 = Ṽ †
i,p

∑
τ∈Tp

xi,τ,ai,τ

(
ηi,τ + x⊺

i,τ,ai,τ
θ∗
) ,

where ηi,τ = ri,τ − x⊺
i,τ,ai,τ

θ∗ is the IID Gaussian noise. Since EV,p asserts that the covariance matrix Ṽi,p is full rank, we
have

θ̃i,p − θ∗ = Ṽ −1
i,p

∑
τ∈Tp

xi,τ,ai,τ
ηi,τ

 ,

which is a summation of independent σ2
i,τ -sub-Gaussian random variables conditioned on Ṽi,p, and

σ2
i,τ ≤ ∥Ṽ −1

i,p xi,τ,ai,τ ∥2 ≤ 1

λmin(Ṽi,p)2
≤ 16

λ2
0|Tp|2

.

Due to the independence of {ηi,τ}τ conditioned on {xi,τ}, we have that θ̃i,p − θ∗ is a σ2-sub-Gaussian random vector with
σ2 = 16

λ2
0|Tp| . Thus, for any β1 > 0, we have with probability at least 1− β1,

∥θ̃i,p − θ∗∥ ≤
4
√
2d log(2d/β1)

λ0

√
|Tp|

.

In addition, note that

1

M

∑
i

(
θ̃i,p − θ∗

)
=

1

M

∑
i,τ

Ṽ −1
i,p

(
xi,τ,ai,τ

ηi,τ
)
,

which is a sub-Gaussian random vector conditioned on covariance matrices {Ṽi,p}i. Following the same argument, we have

P

(∥∥∥∥∥ 1

M

∑
i

(
θ̃i,p − θ∗

)∥∥∥∥∥ ≤
4
√

2d log(2d/β1)

λ0

√
M |Tp|

)
≥ 1− β1,∀β1 > 0.

So far, by rescaling β1 to β1/(M + 1), we have verified that for any β1 > 0, under event EV,p = {∀i, λmin(Ṽi,p) ≥
λ0|Tp|/4},

P

(
∀i, ∥θ̃i,p − θ∗∥ ≤

4
√

2d log(2d(M + 1)/β1)

λ0

√
|Tp|

, and

∥∥∥∥∥ 1

M

∑
i

(
θ̃i,p − θ∗

)∥∥∥∥∥ ≤
4
√
2d log(2d(M + 1)/β1)

λ0

√
M |Tp|

)
≥ 1− β1.

(4)

Let c1 = 4
√

2d log(2d(M + 1)/β1)/λ0. Then, {θ̃i,p}i∈[M ] are (c1/
√

|Tp|, β1)-concentrated. By the design of Algorithm 1
and Corollary B.5, we have

P

(
∥θ̂p+1 − 1

M

∑
i

θ̃i,p∥ ≥
80c1 log(d/β1)

√
6d log(dM/β1) log(1/δ0)

Mε0
√
|Tp|

)

≤ 3β1 +
d2
√
|Tp|

10c1
√
(log(dM/β1))

exp

(
− Mε0

8
√

6d log(1/δ0)

)
.

Combining with Equation (4), we conclude that, under event EV,p,

P

(
∥(θ̂p+1 − θ∗∥ ≥

80c1 log(d/β1)
√
6d log(dM/(β1)) log(1/δ0)√
|Tp|Mε0

+
c1√
M |Tp|

)
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≤ 4β1 +
d2
√
|Tp|

10c1
√

(log(dM/β1))
exp

(
− Mε0

8
√

6d log(1/δ0)

)
,

where c1 =
4
√

2d log(d(M+1)/β1)

λ0
, and β1 is an arbitrary positive number.

Let

β1 = β/(16P ),

c1 =
4
√
2d log(16d(M + 1)P/β)

λ0
,

c2 = c1

(
80 log(d/β1)

√
6d log(16dMP/β) log(1/δ0)√

Mε0
+ 1

)
.

Note that

Mε0 ≥ 8
√
6d log(1/δ0) log

(
4d2P

√
|Tp|

10βc1
√
log(16dMP/β)

)
.

We simplify the result as follows. Under event EV,p,

P

(
∥(θ̂p+1 − θ∗∥ ≥ c2√

M |Tp|

)
≤ β

2P
,

which completes the proof of Claim C.4.

Next, we prove Claim C.5.

Proof of Claim C.5:

Recall that at each time slot t ∈ Tp+1, client i greedily chooses an arm ai,t with respect to the estimator θ̂p+1 under context
ci,t drawn from ρi. We consider the matrix Eci,t∼ρi [ϕ(ci,t, ai,t)ϕ(ci,t, ai,t)

⊺] under the assumption that Eθ,p holds. We
have

Eci,t∼ρ [ϕ(ci,t, ai,t)ϕ(ci,t, ai,t)
⊺]

=
∑
a∈A

Ec∼ρi

[
ϕ(c, a)ϕ(c, a)⊺1

{
∀b ̸= a, (ϕ(c, a)− ϕ(c, b))⊺θ̂p+1 ≥ 0

}]
=
∑
a∈A

Ec∼ρ

[
ϕ(c, a)ϕ(c, a)⊺1

{
∀b ̸= a, (ϕ(c, a)− ϕ(c, b))⊺θ∗ ≥ (ϕ(c, a)− ϕ(c, b))⊺(θ∗ − θ̂p+1)

}]
(a)

≥
∑
a∈A

E

[
ϕ(c, a)ϕ(c, a)⊺1

{
∀b ̸= a, (ϕ(c, a)− ϕ(c, b))⊺θ∗ ≥ 2c2√

M |Tp|

}]

=
∑
a∈A

E

[
ϕ(c, a)ϕ(c, a)⊺1

{
∀b ̸= a, (ϕ(c, a)− ϕ(c, b))⊺θ∗ ≥ 2c2√

M |Tp|

}]

= E

[
ϕ(c, a∗c)ϕ(c, a

∗
c)

⊺1

{
∀b ̸= a∗c , (ϕ(c, a

∗
c)− ϕ(c, b))⊺θ∗ ≥ 2c2√

M |Tp|

}]
= E [ϕ(c, a∗c)ϕ(c, a

∗
c)

⊺]

− E

[
ϕ(c, a∗c)ϕ(c, a

∗
c)

⊺1

{
∃b ̸= a∗c , (ϕ(c, a

∗
c)− ϕ(c, b))⊺θ∗ <

2c2√
M |Tp|

}]

≥ λ0I − IP

(
∃b ̸= a∗c , (ϕ(c, a

∗
c)− ϕ(c, b))⊺θ∗ <

2c2√
M |Tp|

)
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(b)

≥

(
λ0 −

2C0c2√
M |Tp|

)
Id,

where (a) follows from Eθ,p, and (b) is due to the margin condition in Assumption 3.2.

Therefore, for any p ≥ U , we have

E
[
Ṽi,p+1

]
≥ λ0|Tp+1| − |Tp+1|

2C0c2√
M |Tp|

(a)
= λ0|Tp+1| − 2C0c2

√
2|Tp+1|
M

,

where (a) is due to |Tp+1| = 2p+1 = 2|Tp|.

Thus, we can apply the matrix concentration inequality Lemma G.4 on the martingale difference ϕ(ci,t, ai,t)ϕ(ci,t, ai,t)
⊺ −

E[ϕ(ci,t, ai,t)ϕ(ci,t, ai,t)⊺] for t ∈ Tp/TU to make the following conclusions: With probability at least 1 − β0, where
β0 > 0 is any positive number, we have

λmin(Ṽi,p+1) = λmin

(
Ṽi,p+1 − E[Ṽi,p+1] + E[Ṽi,p+1]

)
≥ λmin

(
E[Ṽi,p+1]

)
− λmax(Ṽi,p+1 − E[Ṽi,p+1])

≥ λ0|Tp+1| − 2C0c2

√
2|Tp+1|
M

−
√
2|Tp+1| log(d/β0)− 2/3.

Now, set β0 = β/(2MP ), and take the union bound over all clients. Then, with probability at least 1 − β/(2P ), for all
i ∈ [M ] the following holds.

λmin(Ṽi,p+1) ≥ λ0|Tp+1| − 2C0c2

√
2|Tp+1|
M

−
√
2|Tp+1| log(2dMP/β)− 2/3,

where c2 =
8
√

2d log(16d(M+1)P/β)

λ0

(
80 log(16dP/β)

√
6d log(16dMP/β) log(1/δ0)√

Mε0
+ 1

)
.

Note that p ≥ U , and |TU | satisfies the following inequality:√
2|TU | log(2dMP/β) + 2/3 ≤ λ0|TU |

4
.

In addition, due to p ≥ U , we have that

2
√
2C0c2 ≤

λ0

√
M |Tp+1|
2

holds for any p.

Thus, we conclude that, under event Eθ,p,

P
(
∀i ∈ [M ], λmin(Ṽi,p+1) ≥

λ0|Tp+1|
4

)
≥ 1− β

2P
,

which finishes the proof of Claim C.5.

Then, based on Claim C.5 and Claim C.4, combining with Lemma C.2, we conclude that

P (EV Eθ) = P
((

∩p≥U EV,p
)
∩
(
∩p≥U Eθ,p

))
≥ 1− β.

Step 3: Upper Bound the Regret.

Now, we are ready to provide the final result on the upper bound of the regret of Algorithm 1.
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Theorem C.6 (Regret). Under the parameter setting in Proposition C.3, with probability at least 1− β, the total regret of
Algorithm 1 is upper bounded by

Regret(M,T ) ≤ Õ

(
max

(
1,

d log T log(1/δ) log3(1/β)

ε2M

)
C0d log(1/β) log T

λ2
0

)
.

Proof. Consider a phase p > U . Under the events EV and Eθ defined in Proposition C.3, we have

E[r∗i,t − ri,t] = E
[(

ϕ(ci,t, a
∗
ci,t)− ϕ(ci,t, ai,t)

)⊺
θ∗
]

= E
[
1
{
ai,t ̸= a∗ci,t

}(
ϕ(ci,t, a

∗
ci,t)− ϕ(ci,t, ai,t)

)⊺
θ∗
]

≤ E
[
1
{
ai,t ̸= a∗ci,t

}(
ϕ(ci,t, a

∗
ci,t)− ϕ(ci,t, ai,t)

)⊺
(θ∗ − θ̂(p))

]
(a)

≤ E

[
1
{
ai,t ̸= a∗ci,t

} 2c2√
M |Tp−1|

]

=
2c2√

M |Tp−1|
P(ai,t is not optimal )

=
2c2√

M |Tp−1|
P
((

ϕ(ci,t, ai,t)− ϕ(ci,t, a
∗
ci,t)

)⊺
θ̂(p) ≥ 0

)
=

2c2√
M |Tp−1|

P
(
0 >

(
ϕ(ci,t, ai,t)− ϕ(ci,t, a

∗
ci,t)

)⊺
θ∗ ≥

(
ϕ(ci,t, ai,t)− ϕ(ci,t, a

∗
ci,t)

)⊺
(θ∗ − θ̂(p))

)
(b)

≤ 2c2√
M |Tp−1|

P

(
0 <

(
ϕ(ci,t, a

∗
ci,t)− ϕ(ci,t, ai,t)

)⊺
θ∗ ≤ 2c2√

M |Tp−1|

)
(c)

≤ 4C0c
2
2

M |Tp−1|
,

where (a) and (b) follow from event Eθ, and (c) is due to the margin condition in Assumption 3.2.

Therefore, with probability at least 1− β,

Regret(M,T ) =
∑
p∈[P ]

∑
i∈[M ],t∈Tp

E[r∗i,t − ri,t]

≤
∑
p>U

M |Tp| ·
4C0c

2
2

M |Tp−1|
+M |TU |

=
∑
p>U

8C0c
2
2 +M |TU |

= 8C0c
2
2P +M |TU |.

We complete the proof by noting that

P = O(log T ),

ε0 = ε/
√
P ,

U = O(log log log T ),

c2 =
4
√
2d log(16d(M + 1)P/β)

λ0

(
80 log(16dP/β)

√
6d log(16dMP/β) log(1/δ0)√

Mε0
+ 1

)

= Õ

(√
d log(1/β)

λ0
max

(
1,

log(1/β)
√

d log T log(1/β) log(1/δ)

ε
√
M

))
.
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D. Necessity of Diversity Assumption for Memoryless Algorithms under User-level CDP
Constraint

In this section, we prove that the diversity condition in Assumption 3.1 is necessary for achieving sublinear regret when
adopting almost-memoryless algorithms under the user-level CDP constraint.
Proposition D.1. If ε < 0.1 and δ < 0.001, then, there exists a federated linear contextual bandits instance not satisfying
Assumption 3.1 such that any almost-memoryless algorithm must incur a regret lower bounded by Ω(T ).

Proof. We consider a federated linear contextual bandits with two arms {1, 2} and M clients, where the context is fixed for
each client. For each client i ∈ [M ], let features ϕi(c, 1), ϕi(c, 2) ∈ R2 be defined as follows. For the first client (i = 1),
ϕ1(c, 1) = (0.5, 0)⊺ and ϕ1(c, 2) = (−0.5, 0)⊺. For any other client (i > 1), ϕi(c, 1) = (0, 0.5)⊺ and ϕi(c, 2) = (0,−0.5)⊺.
Let the model parameter θ∗ ∈ Θ = {±1} × {±1}, and the reward ri,t ∼ N

(
ϕi(c, ai,t)

T θ∗, 1
)
.

We note that the feature distribution does not satisfy the diversity assumption (Assumption 3.1), since the smallest
eigenvalue is 0 for each ϕi(c, 1) and ϕi(c, 2), while it satisfies the margin condition (Assumption 3.2) with C0 = 1.

To reduce the dependency between each client, we again consider the extended history similarly in Appendix E.1. Let
Hi,t = {c, ai,τ , ri,τ}τ<t be the history of client i, and H̄i,t = {c, a = {1, 2}, ri,τ,a}τ<t ⊃ Hi,t be the extended history of
client i at time t. H̄i,t is independent of H̄j,t conditioned on model parameter θ∗.

Note that the total regret is lower bounded by the regret of the first user, and the regret of play sub-optimal arm is 1. Then,
we have

Regret(M,T ) ≥
∑
t∈[T ]

P(a1,t ̸= e⊺1θ
∗)

≥
∑
t∈[T ]

inf
θ̂1,t∈F(Ī,{1,−1})

{R̄i}i∈[0,M]

P
(
e⊺1θ

∗ ̸= θ̂1,t(q̄≤t)
)
.

Now we aim to show that due to the user-level DP constraint, the estimation error cannot be too small for client 1.

Consider θ∗ and θ′, such that e⊺1θ
∗ = −e⊺1θ

′ = 1, and e⊺2θ
∗ = e⊺2θ

′. We construct a coupling between q̄≤t|θ∗ and q̄≤t|θ
′
.

Specifically, if we flip the distribution of r1,t,1 from N (0.5, 1) to N (−0.5, 1), and r1,t,2’s distribution from N (−0.5, 1)

to N (0.5, 1), we have changed the distribution from H̄1,t|θ∗ to H̄1,t|θ
′

while keeping the other H̄j,t(j ̸= 1) unchanged.
Furthermore, the expected Hamming distance of this coupling is 1, since only client 1’s data has been changed.

By leveraging the private Le Cam’s method (Theorem 1 in (Acharya et al., 2021)),

inf
θ̂1,t∈F(Ī,Θ)

{R̄i}i∈[0,M]

P
(
e⊺1θ

∗ ̸= θ̂1,t(q̄≤t)
)
≥ 0.9e−ϵ − 10δ.

Therefore, we have

Regret(M,T ) ≥ T
(
0.9e−ϵ − 10δ

)
.

If ϵ < 1 and δ < 0.001, we conclude that Regret(M,T ) = Ω(T ).

E. Proof of the Regret Lower Bounds Under User-level CDP Constraint
In this section, we provide the full analysis for CDP lower bounds. The first subsection describes a hard instance of linear
contextual bandits model that will be used in the proofs. The remaining subsections provide the proofs of Theorem 4.2 and
Theorem 4.5.

E.1. General Setting of Hard Instance

First, we introduce the notation of truncated Gaussian distributions. If a Gaussian random variable X ∼ N(0, Id) is
truncated to {x : ∥x∥2 ≤ r}, then we denote the truncated Gaussian distribution of X as N(0, Id|r).
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In the lower bound analysis, we follow the setting in He et al. (2022b), as specified below.

Arms and Dimension: There are 2 arms: {1, 2}, and the dimension d is an even number.

Feature Vectors and the Context Distribution: The feature vector of the second arm is always 0. For the feature vector of
the first arm, let the distribution of the context ci for any client i satisfy ϕ(ci, 1) = (0, . . . , z⊺i,s, . . . , 0)

⊺ with s uniformly
distributed over [d/2], and {zi,s}i,s ⊂ R2 independently sampled from a truncated normal N(0, I2|1).

Model Parameter and Its Distribution: The model parameter θ∗ = (θ∗⊺1 , . . . , θ∗⊺d/2)
⊺ ∈ Rd with each θ∗s ∈ R2 sampled

independently and uniformly from a sphere Sr = {x ∈ R2 : ∥x∥ = r}, where r ∈ [0, 1/
√
d]. The constraint on r is due to

the boundness assumption that ∥θ∗∥ ≤ 1. Moreover, the parameter C0 defined in Assumption 3.2 satisfies C0 = Ω(1/r).

Notations of Available Information Used to Make Decisions: Recall that Hi,t = {ci,τ , ai,τ , ri,τ}τ<t is the history of
client i. Note that ri,t is sampled from a Gaussian distribution with mean ϕ(ci,t, ai,t)

⊺θ∗ and variance 1, if the true model is
θ∗. We further denote that ϕ(ci,t, a) = xi,t,a.

To reduce the dependency between histories of different clients, we define H̄i,t = {ci,τ , a = {1, 2}, ri,τ,a}τ<t ⊃ Hi,t

to be the extended history of client i at time t, where ri,t,a is the (virtual) reward sampled from (un-played) pulled arm,
such that H̄i,t provides full information. It is worth pointing out that H̄i,t is independent with H̄j,t conditioned on model
parameter θ∗. With these notations, we introduce q̄i,≤t and q̄≤t, which are outputs from the “extended” DP channels R̄i

and R̄0 with inputs H̄i,t and {q̄i,t}i∈[M ], respectively. Here, “extended channels” implies that R̄i(Hi,t) = Ri(Hi,t) and
R̄0({qi,≤t}i) = R0({qi,≤t}i).

With the general setting described above, we present the generic regret lower bound modified from Proposition 3.5 in He
et al. (2022b). Note that while the original result holds for the single-client setting, it is straightforward to extend the result
into the federated setting.

Theorem E.1. For the hard instance described in Appendix E.1, the total regret of M clients can be lower bounded by

Ω

 ∑
i∈[M ],t∈[T ],s∈[d/2]

inf
θi,t,s∈F(Īi,Sr)

{R̄i}i∈[0,M]

1

rd
Ev

[
∥θ∗s − θi,t,s∥2

] ,

where Īi is a set of all possible information (H̄i,t, q̄≤t) provided to client i.

Note that θ∗s are independently and identically distributed, and {θi,t,s}s are from the same set of measurable functions.
Without loss of generality, it suffices to lower bound the estimation error for the first parameter θ∗1 , which leads to the
following corollary.

Corollary E.2. Under the same setting in Theorem E.1, the total regret of all clients can be lower bounded by

Ω

 ∑
i∈[M ],t∈[T ]

inf
θi,t∈F(Īi,Sr)

{R̄i}i∈[0,M]

1

2r
Ev

[
∥θ∗1 − θi,t∥2

] ,

where r ∈ [0, 1/
√
d].

Corollary E.2 suggests that it suffices to lower bound the estimation error for each single time step t and client i, where the
estimator θi,t is constructed from both the local data H̄i,t and global information q̄≤t. Since q≤t is a private output from
an (ε, δ)-CDP mechanism, by the post-processing property, θi,t is also an (ε, δ)-CDP estimator. However, we have to be
cautious that it is differentilly private only with respect to client j’s local data, where j ̸= i. Mathematically, for any subset
S ⊂ Sr and j-neighboring dataset Ht, H ′

t, where j ̸= i, we have

P (θi,t ∈ S|Ht) ≤ eεP (θi,t ∈ S|H ′
t) + δ.

E.2. Proof of Theorem 4.5

Equipped with Corollary E.2, we are able to lower bound the regret by the estimation error.
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Note that both true parameter and the estimator are two dimensional vectors with constant norm. We point out that our
setting is different from other works on lower bound of estimation error where each coordinate of the true parameter is
sampled from an interval independently (Levy et al., 2021; Kamath et al., 2019). Hence, we re-parameterize θ∗1 by its angle,
i.e. θ∗1 = r(cos γ∗, sin γ∗)⊺, and γ∗ is sampled uniformly from the interval [0, 2π). We further denote e1 = (1, 0) and
e2 = (0, 1) that form the canonical basis of R2.

Proof Outline: Step 1 is to decompose the estimation error to the expectations of M random variables {Zi}i which capture
the covariance of the global estimator and local data of each client i. Step 2 upper bounds E[Zi] for all i ∈ [M ] under the
CDP constraint, indicating that the estimation error is bounded from below. Step 3 combines the previous steps to prove the
final regret lower bound.

To simplify notations, in Step 1 and Step 2, we fix a time step t and a client i0, and aim to bound the estimation error

E
[∥∥∥θ∗1 − θ̂

∥∥∥2], where θ̂ is the optimal solution of inf θ̂∈F(Īi0
,Sr)

{R̄i}i∈[0,M]

E
[∥∥∥θ∗1 − θ̂

∥∥∥2].

Step 1: Decompose the Estimation Error.

We note that similar result is obtained when each coordinate of θ∗ is independently sampled. (See Lemma 6.8 in (Kamath
et al., 2019) and Lemma 3.6 in (Bun et al., 2017).)
Lemma E.3 (Fingerprinting Lemma2 ). Define random variables Zi for each i as follows.

Zi = (θ̂ − θ∗1)
⊺(−e1 sin γ

∗ + e2 cos γ
∗)(−e1 sin γ

∗ + e2 cos γ
∗)⊺V̄i(θ̄i − θ∗),

where V̄i =
∑

τ<t xi,τ,1x
⊺
i,τ,1, and θ̄i = V̄ †

i

(∑
τ<t xi,τ,1ri,τ,1

)
, and recall that ri,τ,1 is sampled from N(x⊺

i,τ,1θ
∗
1 , 1).

Then, we have

E
[∥∥∥θ∗1 − θ̂

∥∥∥2] = 2r2 − 2r2
∑
i

E[Zi].

Proof. Due to ∥θ∗1∥ = ∥θ̂∥ = r, it suffices to analyze the term E
[
θ̂⊺θ∗1

]
. Note that θ∗1 = r(cos γ∗, sin γ∗)⊺. Then, we have

E
[
θ̂⊺θ∗1

]
=

r

2π

∫ 2π

0

e⊺1E[θ̂|γ∗] cos γ∗ + e⊺2E[θ̂|γ∗] sin γ∗dγ∗

=
r

2π

(
e⊺1E[θ̂|γ∗] sin γ∗ − e⊺2E[θ̂|γ∗] cos γ∗

) ∣∣∣∣γ∗=2π

γ∗=0

− r

2π

∫ 2π

0

e⊺1
∂

∂γ∗E[θ̂|γ
∗] sin γ∗ + e⊺2

∂

∂γ∗E[θ̂|γ
∗] cos γ∗dγ∗

= rEγ∗

[
(−e1 sin γ

∗ + e2 cos γ
∗)

⊺ ∂

∂γ∗E[θ̂|γ
∗]

]
.

For the derivative, it is worth noting that E[θ̂|γ∗] = E
[
E
[
θ̂
∣∣{H̄i,t}i∈[M ]

] ∣∣γ∗
]
. We have

∂

∂γ∗E[θ̂|γ
∗] =

∫
{H̄i,t}i

E
[
θ̂
∣∣{H̄i,t}i

] 1

(2π)M(t−1)/2

∂

∂γ∗ exp

−1

2

∑
i∈[M ],τ<t

(
ri,τ,1 − x⊺

i,τ,1θ
∗)2

= rE

E [θ̂|{H̄i,t}i
]
(−e1 sin γ

∗ + e2 cos γ
∗)⊺

∑
i,τ<t

xi,τ,1(ri,τ,1 − x⊺
i,τ,1θ

∗)

∣∣∣∣θ∗


= rE

[
θ̂(−e1 sin γ

∗ + e2 cos γ
∗)⊺
∑
i

V̄i(θ̄i − θ∗)
∣∣θ∗] .

2We adopt the fingerprinting lemma rather than DP Assouad’s method (Acharya et al., 2021), because in general, the lower bound
obtained by DP Assouad’s method has an additional blow-up factor

√
d compared to that obtained from the fingerprinting lemma.
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Combining with the fact that E[V̄i(θ̄i − θ∗)|θ∗, V̄i] = 0, we have

E
[
θ̂⊺θ∗1

]
= r2E

[
(−e1 sin γ

∗ + e2 cos γ
∗)⊺
(
θ̂ − θ∗

)
(−e1 sin γ

∗ + e2 cos γ
∗)⊺
∑
i

V̄i(θ̄i − θ∗)

]
= r2

∑
i

E[Zi].

Therefore,

E
[∥∥∥θ∗1 − θ̂

∥∥∥2] = 2r2 − 2E
[
θ̂⊺θ∗1

]
= 2r2 − 2r2

∑
i

E[Zi],

which completes the proof.

Step 2: Upper Bound Each E[Zi] under the CDP Constraint.
Lemma E.4. Under the same setting as in Lemma E.3, if the federated algorithm satisfies user-level (ε, δ)-CDP, we have

E[Zj ] ≤ (eε − 1)

√
2(t− 1)

d
E
[
∥θ̂ − θ∗∥2

]
+ 6rδ

√
2(t− 1) log(1/δ), ∀j ̸= i0, (5)

E[Zi0 ] ≤
√

2(t− 1)

d
E
[
∥θ̂ − θ∗∥2

]
. (6)

Proof. Recall that

Zi = (θ̂ − θ∗1)
⊺(−e1 sin γ

∗ + e2 cos γ
∗)(−e1 sin γ

∗ + e2 cos γ
∗)⊺
∑
τ<t

xi,τ,1(ri,τ,1 − x⊺
i,τ,1θ

∗),

where ri,τ,1 is sampled from N(x⊺
i,τ,1θ

∗
1 , 1), and xi,τ,1 = (0, . . . , zi,τ,s, . . . , 0) with probability 2/d, and zi,τ,s is sampled

independently from a truncated normal N(0, I2|1).

We have

E[Zi0 ]
2 ≤ E

[
∥θ̂ − θ∗1∥2

]
E

((− e1 sin γ
∗ + e2 cos γ

∗)⊺∑
τ<t

xi,τ,1(ri,τ,1 − x⊺
i,τ,1θ

∗)

)2


= E
[
∥θ̂ − θ∗1∥2

]
E

[∑
τ<t

((
− e1 sin γ

∗ + e2 cos γ
∗)⊺xi,τ,1

)2]

=
2(t− 1)

d
E
[
∥θ̂ − θ∗1∥2

]
,

which verifies the second Equation (6) of Lemma E.4.

To prove the first part of Lemma E.4, the approach is akin to Kamath et al. (2019). We introduce a statistically indistinguish-
able random variable Z̃j for each Zj , j ̸= i. Let H̄ ′

j,t be sampled independently and identically with H̄j,t, and θ̂−j be the
estimator constructed from {H̄i,t}i ̸=j ∪ H̄ ′

j,t. By the definition of CDP, θ̂−j is statistically indistinguishable compared with
θ̂. Then, define

Z̃j = (θ̂−j − θ∗1)
⊺(−e1 sin γ

∗ + e2 cos γ
∗)(−e1 sin γ

∗ + e2 cos γ
∗)⊺V̄j(θ̄j − θ∗). (7)

We have several properties about Z̃j . First, due to the independence between Hj,t and H ′
j,t, the expectation of Z̃j is 0, i.e.

E[Z̃j ] = 0.
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Second, the variance of Z̃j is upper bounded by the estimation error, because

E[Z̃2
j ]

(a)

≤ E
[
∥θ̂−j − θ∗1∥2

(
(−e1 sin γ

∗ + e2 cos γ
∗)⊺V̄j(θ̄j − θ∗)

)2]
(b)
= E

[
E
[
∥θ̂−j − θ∗1∥2

]
E
[(
(−e1 sin γ

∗ + e2 cos γ
∗)⊺V̄j(θ̄j − θ∗)

)2] ∣∣∣∣θ∗1]
(c)

≤ 2(t− 1)

d
E
[
∥θ̂ − θ∗1∥2

]
,

where (a) follows from the Cauchy’s inequality, and (b), (c) are due to the fact that H ′
j,t and Hj,t are IID sampled.

Then, by choosing a threshold Z > 0 which will be specified later, we can bound E[Zj ] as follows.

E [Zj ] = E [Zj ]− E[Z̃j ]

(a)
= E

[
E
[∫ +∞

0

[
P
(
Zj > z|{H̄i,t}i

)
− P

(
Z̃j > z|{H̄i,t}i, H̄ ′

j,t

)]
dz

∣∣∣∣θ∗1 , {H̄i,t}i, H̄ ′
j,t

]]
− E

[
E
[∫ 0

−∞

[
P
(
Zj < z|{H̄i,t}i

)
− P

(
Z̃j < z|{H̄i,t}i, H̄ ′

j,t

)]
dz

∣∣∣∣θ∗1 , {H̄i,t}i, H̄ ′
j,t

]]
≤ E

[
E

[∫ Z

0

[
P
(
Zj > z|{H̄i,t}i

)
− P

(
Z̃j > z|{H̄i,t}i, H̄ ′

j,t

)]
dz

∣∣∣∣θ∗1 , {H̄i,t}i, H ′
j,t

]]

+ E
[
E
[∫ +∞

Z

P
(
Zj > z|{H̄i,t}i

)
dz

∣∣∣∣θ∗1 , {H̄i,t}i
]]

+ E
[
E
[∫ 0

−Z

[
P
(
Z̃j < z|{H̄i,t}i, H̄ ′

j,t

)
− P

(
Zj < z|{H̄i,t}i

)]
dz

∣∣∣∣θ∗1 , {H̄i,t}i, H̄ ′
j,t

]]
+ E

[
E

[∫ −Z

−∞
P
(
Z̃j < z|{H̄i,t}i, H̄ ′

j,t

)
dz

∣∣∣∣θ∗1 , {H̄i,t}i, H̄ ′
j,t

]]
(b)

≤ Zδ + (eε − 1)E

[
E

[∫ Z

0

P
(
Z̃j > z|{H̄i,t}i, H̄ ′

j,t

)
dz

∣∣∣∣θ∗1 , {H̄i,t}i, H̄ ′
j,t

]]

+ E
[
E
[∫ +∞

Z

P
(
Zj > z|{H̄i,t}i

)
dz

∣∣∣∣θ∗1 , {H̄i,t}i
]]

+ Zδ + (1− e−ε)E
[
E
[∫ 0

−Z

P
(
Z̃j < z|{H̄i,t}i, H̄ ′

j,t

)
dz

∣∣∣∣θ∗1 , {H̄i,t}i, H̄ ′
j,t

]]
+ E

[
E

[∫ −Z

−∞
P
(
Z̃j < z|{H̄i,t}i, H̄ ′

j,t

)
dz

∣∣∣∣θ∗1 , {H̄i,t}i, H̄ ′
j,t

]]
(c)

≤ 2Zδ + (eε − 1)E
[
|Z̃j |

]
+ E

[
E
[∫ +∞

Z

P (Zj > z) dz

∣∣∣∣θ∗1]]+ E

[
E

[∫ −Z

−∞
P
(
Z̃i < z

)
dz

∣∣∣∣θ∗1
]]

(d)

≤ (eε − 1)

√
2(t− 1)

d
E
[
∥θ̂ − θ∗1∥2

]
+ 2Zδ

E
[
E
[∫ +∞

Z

P (Zj > z) dz

∣∣∣∣θ∗1]]+ E

[
E

[∫ −Z

−∞
P
(
Z̃i < z

)
dz

∣∣∣∣θ∗1
]]

,

where (a) follows from E[X] =
∫ +∞
0

P(X > x)dx −
∫ 0

−∞ P(X < x)dx, (b) follows from (ε, δ)-CDP, (c) is due to
1− e−ε ≤ eε − 1, and (d) is due to the Cauchy’s inequality.
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For the term
∫ +∞
Z

P (Zj > z|θ∗1) dz, we can bound it as∫ +∞

Z

P (Zj > z|θ∗1) dz ≤
∫ +∞

Z

P
(
2r
∣∣(−e1 sin γ

∗ + e2 cos γ
∗)⊺V̄j(θ̄j − θ∗)

∣∣ > z
∣∣θ∗) dz.

Note that V̄j θ̄j ∼ N(V̄iθ
∗
1 , V̄i) conditioned on (θ∗1 , V̄j). If we denote Wj = (−e1 sin γ

∗ + e2 cos γ
∗)⊺V̄j(θ̄j − θ∗), then

Wj ∼ N(0, ∥(−e1 sin γ
∗ + e2 cos γ

∗)∥2
V̄j
) and is conditionally independent with other θ̄i, where i ̸= j. Hence,

E
[
E
[∫ +∞

Z

P
(
Zj > z|{V̄j}

)
dz
∣∣θ∗]]

≤ E
[∫ +∞

Z

P
(
2rWj > z|θ∗, V̄i

)
dz

]
=

∫ +∞

Z

∫ +∞

z
2r∥(−e1 sin γ∗+e2 cos γ∗)∥V̄j

1√
2π

exp
(
−x2/2

)
dxdz

≤ E

∫
Z

2r∥(−e1 sin γ∗+e2 cos γ∗)∥V̄j

2r∥(−e1 sin γ
∗ + e2 cos γ

∗)∥V̄j
· x

√
2π

exp(−x2/2)dx


= E

2r∥(−e1 sin γ
∗ + e2 cos γ

∗)∥V̄j
exp(− Z2

8r2∥(−e1 sin γ∗+e2 cos γ∗)∥2
V̄j

)

√
2π


≤ 2r

√
(t− 1)/π exp

(
− Z2

8r2(t− 1)

)
,

where the last inequality again follows from ∥ − e1 sin γ
∗ + e2 cos γ

∗∥V̄j
≤

√
t− 1.

Following the same reason, we also have∫ −Z

−∞
P
(
Z̃i < z

)
dz ≤ 2r

√
(t− 1)/π exp

(
− Z2

8r2(t− 1)

)
.

Thus, we conclude that

E[Zj ] ≤ (eε − 1)

√
2(t− 1)

d
E
[
∥θ̂ − θ∗1∥2

]
+ 2Zδ + 4r

√
(t− 1)/π exp

(
− Z2

8r2(t− 1)

)
.

We finish the proof by choosing Z = 2
√
2(t− 1)r log(1/δ).

Step 3: Lower Bound the Total Regret.

Theorem E.5 (Restatement of Theorem 4.5). Fix any ε ∈ (0, log 2), δ = Õ
(

1
M

√
T

)
, T ≥ d2. Then, there exists a

federated linear contextual bandits instance satisfying Assumptions 3.1 and 3.2 such that any with-memory federated
algorithm satisfying user-level (ε, δ)-CDP must incur a regret lower bounded by

Ω

(
min

{
M,max

{
1,

1

Mε2

}}
C0d log T

)
.

If Assumption 3.2 is not satisfied, then the minimax regret lower bound becomes

Ω
(
min

{
M,max

{√
M, 1

ε

}}√
dT
)
.
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Proof. Combine Step 1 (Lemma E.3) and Step 2 (Lemma E.4), we have,

2r2 = E
[
∥θ̂ − θ∗∥2

]
+ 2r2

∑
i

E [Zi]

≤ E
[
∥θ̂ − θ∗∥2

]
+ 2 ((eε − 1)(M − 1) + 1) r2

√
2(t− 1)

d
E
[
∥θ̂ − θ∗∥2

]
+ 12r3δM

√
2(t− 1) log(1/δ).

Consider the case when ε ≤ log 2, δ ≤
√
π

12rM
√
2T log(1/δ)

, we further have

r2 ≤ E
[
∥θ̂ − θ∗∥2

]
+ 2r2(ε(M − 1) + 1)

√
2(t− 1)

d
E
[
∥θ̂ − θ∗∥2

]
.

Therefore,

E
[
∥θ̂ − θ∗∥2

]
≥ r2

8r2(ε(M − 1) + 1)2(t− 1)/d+ 4
.

Substituting the above result into the generic lower bound Corollary E.2, we conclude that

Regret(M,T ) ≥ Ω

 ∑
i∈[M ],t∈[T ]

1

r

r2

32r2 max{ε2M2, 1}(t− 1)/d+ 4


≥ Ω

(
dM

rmax{ε2M2, 1}
log
(
1 + r2 max{ε2M2, 1}T/d

))
.

The rest of the proof consists of two parts, in which two suitable r’s are chosen such that we can obtain the desired regret
bounds.

First, under the margin condition, note that our setting indicates C0 = Ω(1/r). Thus, under the margin condition in As-
sumption 3.2, we have

Regret(M,T ) ≥ Ω

(
min

{
M,

1

ε2M

}
C0d log T

)
.

Thus, the first lower bound is obtained by combining the regret lower bound Ω(C0d log T ) of non-private case (Proposi-
tion G.6).

Then, we select r =
√
d

max{εM,1}
√
T

, where we require that T > d2. We obtain a worst-case lower bound as follows

Regret(M,T ) ≥ Ω

(
min

{
M,

1

ε

}√
dT

)
. (8)

We finally finish the proof by combining with the non-private regret lower bound Ω(
√
dMT ).

E.3. Proof of Theorem 4.2

In this section, we leverage the previous analysis to prove the result for regret lower bound under the CDP constraint,
almost-memoryless setting, and the margin condition in Assumption 3.2.

The hard instance is defined the same as that in Appendix E.1. We point out that the only difference of memoryless case is
that the estimator θi,t is a private estimator with respect to all clients, including itself.

Theorem E.6 (Restatement of Theorem 4.2). If ε < log 2, δ = Õ( 1
M

√
T
), then, there exists a federated linear contextual

bandits instance satisfying Assumptions 3.1 and 3.2, such that any almost-memoryless federated algorithm satisfying
user-level (ε, δ)-CDP must incur a regret lower bounded by

Ω
(
max

{
1, 1

Mε2

}
C0d log T + e−MεC0MT

)
.

29



Federated Linear Contextual Bandits with User-level Differential Privacy

Proof. According to Corollary E.2, and Definition 4.1 of almost-memoryless algorithms, it suffices to analyze the estimation
error

inf
θi0,t∈F(Ī,Sr)

{R̄i}i∈[0,M]

Ev

[
∥θ∗1 − θi0,t∥

2
]

for a “memoryless” time t and client i0, where Ī is the set of all possible q≤t. By the post-processing property, θi,t is a
(ε, δ)-CDP estimator. Mathematically, for any subset S ⊂ Sr and j-neighboring dataset Ht, H ′

t, where j ∈ [M ], we have

P (θi0,t ∈ S|Ht) ≤ eεP (θi0,t ∈ S|H ′
t) + δ.

The proof follows the same argument as in Appendix E.2, where we have three steps. The first step remains the same, where
we construct M random variables {Zi} (defined in Lemma E.3), and show that

E[∥θ̂ − θ∗1∥2] = 2r2 − 2r2
∑
i

E[Zi],

where θ̂ = arg inf θi0,t∈F(Ī,Sr)

{R̄i}i∈[0,M]

Ev

[
∥θ∗1 − θi0,t∥

2
]
.

The second step is almost the same as in Lemma E.4, except that we can upper bound E[Zi,0] using the same inequality in
Equation (5).

Therefore, we obtain,

2r2 = E
[
∥θ̂ − θ∗∥2

]
+ 2r2

∑
i

E [Zi]

≤ E
[
∥θ̂ − θ∗∥2

]
+ 2(eε − 1)Mr2

√
2(t− 1)

d
E
[
∥θ̂ − θ∗∥2

]
+ 12r3δM

√
2(t− 1) log(1/δ).

By choosing ε < log 2, and δ < 1
12rM

√
2T log(1/δ)

, we have

E
[
∥θ̂ − θ∗∥2

]
≥ r2

8r2ε2M2(t− 1)/d+ 4
.

Substituting the above inequality into the generic lower bound in Corollary E.2, and noting that r = O(1/C0), we conclude
that

Regret(M,T ) ≥ Ω

(
C0d log T

ε2M

)
.

To derive the second term e−εMMT in the regret lower bound, we directly analyze the estimation error as follows

E[∥θ̂ − θ∗1∥2] = E

[∫ 4r2

0

P
(
∥θ̂ − θ∗∥2 > z|{H̄i,t}i

)]
(a)

≥ e−MεE

[∫ 4r2

0

P
(
∥θ̂ − θ∗∥2 > z

∣∣{H̄i,t}i = {xi,τ,a = 0, ri,τ,a = 0}i,τ
)]

− 4r2Mδ

= e−MεE
[
∥θ̂0 − θ∗∥2

]
− 4r2Mδ,

(b)

≥ e−Mε
(
r2 − 2E[θ̂0⊺θ∗1 ]

)
− 4r2δ

= e−Mεr2 − 4r2Mδ,
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where (a) is due to the CDP constraint, θ̂0 is the output from a fixed “zero” dataset, which is independent with θ∗, and (b)
follows from the independency, and E[θ∗] = 0.

Note that r = O(1/C0). By choosing δ < O( 1
dM2T ), we have

Regret(M,T ) ≥ Ω
(
e−MεC0MT − 1

)
.

We finish the proof by noting that the non-private regret lower bound is Ω(C0d log T ) under the margin condition, according
to Proposition G.6.

F. Proof of the Regret Lower Bounds Under User-level LDP Constraint
In this section, we provide the proof for regret lower bounds under the user-level LDP constraint. It consists of two
subsections. The first subsection lists several general lemmas, which are used to bound the total variation distance between
multivariate distributions. The second subsection provides the full proof of the lower bounds.

F.1. Useful Lemmas for the Proof of Theorem 5.3

We first introduce a lemma that bounds the divergence of the output distributions from a DP channel with different input
distributions.

Lemma F.1 (Adapted from Lemma 2 in Asoodeh et al. (2021)). If qi,≤t is the output of an (ε, δ)-LDP channel Ri with
input Hi,t, and Hi,t follows a prior distribution parameterized by θ, then, for any two different θ, θ′, let P(qi,≤t|θ) be the
marginal distribution of qi,t, and we have

KL(P(qi,≤t|θ),P(qi,≤t|θ′)) ≤
(
1− e−ε(1− δ)

)
KL (P(Hi,t|θ),P(Hi,t|θ′)) ,

dTV (P(qi,≤t|θ),P(qi,≤t|θ′)) ≤
(
1− e−ε(1− δ)

)
dTV (P(Hi,t|θ),P(Hi,t|θ′)) .

In the following, we give a tighter bound on the total variation distance of two multivariate distributions. It is crucial since
the policy depends on both local data Hi,t and global information q≤t. While q≤t is from a DP channel, Hi,t is a non-private
information and should be analyzed separately.

First, we introduce the notion of coupling and relate the total variation distance with an error probability.

Definition F.2 (Coupling (Den Hollander, 2012)). A coupling of two random variables X,X ′ is any pair of random variables
(X̂, X̂ ′) such that their marginals have the same distribution as X and X ′, i.e. X̂ D

= X , and X̂ ′ D
= X ′. The law P̂ of (X̂, X̂ ′)

is a coupling of the laws P and P′ of X and X ′.

Lemma F.3 (Theorem 2.4 & Theorem 2.12 in Den Hollander (2012)). For any two probability measures P and P′ on the
same measurable space, any coupling P̂ satisfies

dTV (P,P′) ≤ P̂(X̂ ̸= X̂ ′).

Moreover, there exists a coupling P̂0 such that

dTV (P,P′) = P̂0(X̂ ̸= X̂ ′).

Equipped with the coupling method, we are able to upper bound the total variation distance of two multivariate distributions,
as shown in the following lemma.

Lemma F.4 (Total variation distance of two multivariate distributions). Let P and Q be two multivariate distributions
defined on X × Y , and suppose P(X,Y ) = P1(X|Y )P2(Y ), Q(X,Y ) = Q1(X|Y )Q2(Y ). Then, we have

dTV (P−Q) ≤ 1−
(
1−max

y
dTV (P1(·|y),Q1(·|y))

)
(1− dTV (P2(Y ),Q2(Y ))) .

Proof. By Lemma F.3, we can find couplings P̂1(X̂, X̂ ′|Ŷ , Ŷ ′) and P̂2(Ŷ , Ŷ ′) such that
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• P̂1(X̂, X̂ ′|Ŷ , Ŷ ′) is a coupling of P1(X|Y ) and Q1(X
′|Y ′). Moreover,

P̂1(X̂ ̸= X̂ ′|Ŷ , Ŷ ′) = dTV

(
P1(·|Ŷ ),Q(·|Ŷ ′)

)
.

• P̂2(Ŷ , Ŷ ′) is a coupling of P2(Y ) and Q2(Y ). Moreover,

P̂2(Ŷ ̸= Ŷ ′) = dTV (P2,Q2) .

Then, if we define P̂(X̂, X̂ ′, Ŷ , Ŷ ′) = P̂1(X̂, X̂ ′|Ŷ , Ŷ ′)P̂2(Ŷ , Ŷ ′), it can be verified that P̂(X̂, X̂ ′, Ŷ , Ŷ ′) is a coupling of
P(X,Y ) and Q(X,Y ), since∫

X̂′,Ŷ ′
P̂(X̂, X̂ ′, Ŷ , Ŷ ′) =

∫
Ŷ ′

∫
X̂′

P̂1(X̂, X̂ ′|Ŷ , Ŷ ′)P̂2(Y, Ŷ
′)

=

∫
Ŷ ′

P1(X̂|Ŷ )P̂2(Ŷ , Ŷ ′)

= P1(X̂|Ŷ )P2(Ŷ )

= P(X̂, Ŷ ).

Then, by Lemma F.3, we have

dTV (P,Q) ≤ P̂((X̂, Ŷ ) ̸= (X̂ ′, Ŷ ′))

= 1− P̂((X̂, Ŷ ) = (X̂ ′, Ŷ ′))

= 1− P̂(X̂ = X̂ ′, Ŷ = Ŷ ′)

= 1− P̂1(X̂ = X̂ ′|Ŷ = Ŷ ′)P̂2(Ŷ = Ŷ ′)

≤ 1−
(
1−max

y
dTV

(
P1(·|y),Q1(·|y)

))
(1− dTV (P2,Q2)) ,

which completes the proof.

F.2. Proof of Theorem 5.3

We follow the same setting defined in Appendix E.1. Hence, it suffices to lower bound the estimation error

inf
θi,t∈F(Īi,Sr)

{R̄i}i∈[0,M]

Ev

[
∥θ∗1 − θi,t∥2

]
,

for each single time step t and each client i. We emphasize that θi,t is an LDP estimator with respect to all clients j ̸= i.
Therefore, without loss of generality, we assume q̄≤t = {q̄i,≤t}, i.e. R0 is an identical map that does not perform any
operation on the aggregated information.

Proof of Theorem 5.3. Recall that the DP mechanism Ri is non-interactive, i.e. qi,≤t is independent with other client’s data
conditioned on the client i’s own data.

Moreover, the full information data set H̄i,t (H̄i,t contains rewards sampled from all un-played arms) is independent with
the global information q≤t conditioned on θ∗1 . Thus, for any θ and θ′,

KL
[
P(H̄i,t|θ, q≤t)∥P(H̄i,t|θ′, q≤t)

]
= E

[
log

P
(
H̄i,t|θ

)
P
(
H̄i,t|θ′

)]
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=

t−1∑
τ∈[t−1],a∈{1,2}

E
[
log

P (ci,τ , a, ri,τ,a|θ)
P (ci,τ , a, ri,τ,a|θ′)

]
(a)
=

∑
τ∈[t−1]

E
[
log

P (ri,τ,1|θ, xi,τ,1)

P (ri,τ,a|θ′, xi,τ,1)

]
(b)

≤ ∥θ − θ′∥2(t− 1)/d,

where (b) follows from that only the reward of the first arm depends on the model parameter, and (a) is due to the fact that
the KL-divergence of two Gaussian random variables is upper bounded by the squared difference of their expectations.

Similarly, due to θ∗ − {Hi,t}i∈[M ] − {q≤t}, we have

KL [P(H1,t, ...,HM,t|θ)∥P(H1,t, ...,HM,t|θ′)] ≤ ∥θ − θ′∥2M(t− 1)/d.

Then, we apply Lemma F.1 and the chain rule of KL-divergence on the total variation distance between P(q̄≤t|θ) and
P(q̄≤t|θ′).

dTV (P(q̄≤t|θ),P(q̄≤t|θ′))
(a)

≤
√

1− exp (−KL [P(q̄≤t|θ)∥P(q̄≤t|θ′)])

=

√√√√√1− exp

−
∑
i∈[M ]

KL [P(q̄i,≤t|θ)∥P(q̄i,≤t|θ′)]



≤

√√√√√1− exp

−(1− e−ε(1− δ))
∑
i∈[M ]

KL
[
P(H̄i,≤t|θ)∥P(H̄i,≤t|θ′)

]
≤

√
1− exp

(
− (1− e−ε(1− δ))M∥θ − θ′∥2(t− 1)/d

)
,

where (a) is due to the Bretagnolle–Huber inequality.

Let ε′ = (1− e−ε(1− δ)). Based on Lemma F.4, we characterize the total variation distance of the joint distribution of
local data Hi,t and global information q̄≤t as follows.

dTV

(
P(H̄i,t, q̄≤t|θ),P(H̄i,t, q̄≤t|θ′)

)
≤ 1−

(
1− dTV

(
P(H̄i,t|θ), P r(H̄i,t|θ′)

)) (
1− dTV

(
P(q̄≤t

∣∣θ),P(q̄≤t

∣∣θ′)))
≤ 1−

(
1−

√
1− e−2∥θ−θ′∥2(t−1)/d

)(
1−

√
1− e−2ε0∥θ−θ′∥2M(t−1)/d

)
.

Now, applying the technique in Proposition 4.1 in He et al. (2022b), we have for any θ, θ′ ∈ Θ,

P
(
∥θ∗ − θi,t∥22 ≥ 1

4
∥θ − θ

′
∥22|θ∗ = θ

)
≥ 1

2

(
(1− dTV

(
P(Hi,t, qt

∣∣θ),P(Hi,t, qt
∣∣θ′)))

≥ 1

2

(
1−

√
1− e−ε′∥θ−θ′∥2M(t−1)/d

)(
1−

√
1− e−∥θ−θ′∥2(t−1)/d

)
.

Therefore, if t > 1, we have

E[∥θ − θi,t∥2] ≥
1

2

∫ r2

0

(
1−

√
1− e−qε′M(t−1)/d

)(
1−

√
1− e−q(t−1)/d

)
dq
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≥ 1

2

∫ min{r2, d
ε′M(t−1)

, d
t−1}

0

(
1−√

q
√
ε′M(t− 1)/d

)(
1−√

q
√
(t− 1)/d

)

=


r2
(
1 + r2/2− 2

3
√
d
r(1 +Mε′)

√
t− 1

)
, if r2 < min

{
1, 1

Mε′

}
d

t−1 ,

(2−
√
Mε′) d

t−1 , if ε′M < 1, r2 > d
t−1 ,

(2− 1/
√
Mε′) d

Mε′(t−1) , if ε′M > 1, r2 > d
Mε′(t−1) .

Thus, the regret is bounded below by

Regret(M,T ) ≥ Ω

1

r

∑
i,t

E[∥θ − θi,t∥2]



≥


Ω
(
rM

(
T + Tr2/2− 4

9
√
d
r(1 +Mε′)T 3/2

))
, if r2 < min

{
1, 1

Mε′

}
d

t−1 ,

Ω (C0dM log T ) , if ε′M < 1, r = O(1/C0),

Ω
(

C0d log T
ε′

)
, if ε′M > 1, r = O(1/C0).

By selecting r = O(min{1, 1/
√
Mε′})

√
d/T , and noting that ε′ = O(ε) when ε < log 2, δ < 0.1 we obtain two lower

bounds:

Regret(M,T ) ≥

{
Ω
(
min

{
M,

√
M√
ε

}√
dT
)
, without Assumption 3.2,

Ω
(
min

{
M, 1

ε

}
C0d log T

)
, with Assumption 3.2.

F.3. Proof of the Regret Lower Bounds Under User-level Pure-LDP Constraint

Corollary F.5 (Restatement of Corollary 5.5). For any ε ∈ (0, log 2), there exists a federated linear contextual bandits
instance satisfying Assumptions 3.1 and 3.2 such that any with-memory federated algorithm satisfying ε-LDP must incur a
regret lower bounded by

Ω
(
min

{
M, 1/ε2

}
C0d log T

)
.

If Assumption 3.2 is not satisfied, then the minimax regret lower bound becomes

Ω
(
min

{
M,

√
M/ε

}√
dT
)
.

Proof. We follow nearly the same argument in Appendix F.2, except the upper bound of dTV (P(q̄≤t|θ),P(q̄≤|θ′)). Since
we are under the ε-LDP constraint, we have

dTV (P(q̄≤t|θ),P(q̄≤t|θ′)) (9)

≤
√

1− exp (−KL [P(q̄≤t|θ)∥P(q̄≤t|θ′)]) (10)

=

√√√√√1− exp

−
∑
i∈[M ]

KL [P(q̄i,≤t|θ)∥P(q̄i,≤t|θ′)]

 (11)

(a)

≤

√√√√√1− exp

−4ε2
∑
i∈[M ]

d2TV

[
P(H̄i,≤t|θ)∥P(H̄i,≤t|θ′)

] (12)

(b)

≤

√√√√√1− exp

−2ε2
∑
i∈[M ]

KL
[
P(H̄i,≤t|θ)∥P(H̄i,≤t|θ′)

] (13)
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≤

√
1− exp

(
− 2ε2M∥θ − θ′∥2(t− 1)/d

)
, (14)

where (a) is due to Theorem 1 in Duchi et al. (2013), and (b) is due to the Pinsker’s inequality.

Following the same argument, we can conlude that under the user-level ε-LDP, we have

Regret(M,T ) ≥

{
Ω
(
min

{
M,

√
M
ε

}√
dT
)
, without Assumption 3.2,

Ω
(
min

{
M, 1

ε2

}
C0d log T

)
, with Assumption 3.2.

G. Auxiliary Lemmas
This section present lemmas that are commonly used in both bandits literature and differential privacy works, including
concentration inequality, composition rule and elliptical potential lemma.

The first is the advanced composition rule, which allows us to reduce the dependency on k for a k-fold composition
mechanism.

Lemma G.1 (Advanced composition rule, Theorem 3.20 in (Dwork et al., 2014)). For all ε, δ, δ′ > 0, the class of
(ε, δ)-differentially private mechanisms satisfies (ε′, kδ + δ′)-differential privacy under k-fold composition for

ε′ = ε
√
2k log(1/δ′) + kε(eε − 1).

By noting that eε − 1 < ε when ε < log 2, we have the following corollary.

Corollary G.2. Under the same setting in the advanced composition rule, when ε < 1/
√
k < log 2, we must have

ε′ ≤
√
6k log(1/δ′).

Then, we provide several probability bound random vector and random matrices.

Lemma G.3. Let X1, . . . , Xd be d IID random variables following distribution Laplace(0, b). Then, for any β > 0, we
have

P


√√√√ d∑

s=1

X2
s ≥ b

√
d log(d/β)

 ≤ β.

Proof. We note that

P


√√√√ d∑

s=1

X2
s ≥ t

 = P

(
d∑

s=1

X2
s ≥ t2

)
≤ P(max

s
X2

s ≥ t2/d)

(a)

≤
d∑

s=1

P(|Xs| ≥ t/
√
d)

(b)

≤ de
− t

b
√

d ,

where (a) is due to union bound, and (b) follows from the fact that the density of Lap(0, b) is e−|x|/b/(2b). Setting
t = b

√
d log(d/β), we complete the proof.

Lemma G.4 (Matrix concentration lemma, Theorem 1.2 in (Tropp, 2011)). Consider a martingale difference sequence of
symmetric random matrices {Xt}t with filtration {Ht}t. Suppose E[Xt|Ht] = 0 and λmax (Xt) ≤ R almost surely. Then,
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P

λmax

(
T∑

t=1

Xt

)
≥ n, and

∥∥∥∥∥∥
∑
t∈[T ]

E
[
X2

t

]∥∥∥∥∥∥ ≤ σ2

 ≤ d exp

(
−n2/2

σ2 +Rn/3

)
,

where ∥X∥ is the spectral norm of a matrix X .

The following lemma is widely used in the linear bandits literature.

Lemma G.5 (Elliptical potential lemma, Proposition 1 in Carpentier et al. (2020)). Let {xt}t≥1 ⊂ Rd be an arbitrary
sequence of d-dimensional vectors such that ∥xt∥ ≤ 1 for all t ≥ 1. If Vt = λId +

∑t−1
τ=1 xτx

⊺
τ , then

T∑
t=1

∥xt∥V −1
t

≤
√

dT log
T + dλ

dλ
. (15)

Finally, we provide the regret lower bound under the non-private setting and the margin condition for completeness.

Due the margin condition in Assumption 3.2, we choose r = O(1/C0) in Proposition 4.1 in He et al. (2022b). Then, we
have the following non-private regret lower bound under the margin condition.

Proposition G.6. There exists a federated linear contextual bandits instance satisfying the diversity (Assumption 3.1) and
the margin (Assumption 3.2) conditions such that any non-private federated learning algorithm must incur a regret lower
bounded by Ω(C0d log T ).
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