
A Analysis and proofs498

A.1 Detailed analysis of the motivating example499

We first show that the full state space of RPS(n) can be covered within O(n) samples by using500

a state buffer and resetting games to the newly visited states. We start with an empty state buffer,501

and the game resets according to its initial state distribution ⇢(·), which always resets the game to502

s0. With a random exploration policy, the probability for the game to transit from s0 to s1 is 1/3.503

Therefore, the number of samples required to visit state s1 in expectation is E[n(s1)] = 3. After s1 is504

visited, this new state will be stored in the state buffer. Since we select the newly visited states as the505

initial state, the game will be reset to state s1 and the additional number of samples required to visit506

state s2 in expectation is also E[n(s2)] = 3. In general, by starting from state sk�1, the expected507

number of samples to visit state sk is E[n(sk)] = 3, k = 1, 2, · · · , n� 1. Therefore, the total number508

of samples required to cover the full state space is
Pn�1

k=1 E[n(sk)] = 3(n� 1), which is O(n).509

Given that the state buffer has covered the entire state space, we then show that the NE Q-value of510

RPS(n) can be learned by solving subgames with minimax-Q backward from RSP (1) to RPS(n).511

Consider using minimax-Q to solve RPS(1), we can set the learning rate ↵ = 1 since the transition512

is deterministic, and the NE Q-value of a state-action pair (s,a) can be learned when this pair is in the513

collected samples. Therefore, to learn the NE Q-values of RPS(1), we have to collect all state-action514

pairs at least one time. With a random exploration policy, the number of samples required to cover515

all state-action pairs is
P9

i=1 9/i = 25.46 < 26. Therefore, the NE Q-values of RPS(1) can be516

learned within 26 samples in expectation. Given that the NE Q-values of RPS(k) are learned, the517

NE Q-values of RPS(k + 1) are only wrong at the first state, and can be learned within 26 episodes518

in expectation. Note that the expected episode length of RPS(1) is 1.5, so the expected episode519

length of RPS(k) is less than 1.5. Consider the episode used to learn the NE Q-values of the first520

state of RPS(k + 1), either P1 wins and the expected episode length is less than 1 + 1.5 = 2.5, or521

P1 draws or loses and the episode length is 1. In both cases, the episode length is less than 2.5, so the522

number of samples used is less than 26 ⇤ 2.5 = 65. Therefore, the total number of samples used to523

learn the NE Q-values from RPS(1) to RPS(n) is less than 65(n� 1), which is O(n).524

Since it takes O(n) samples to cover the entire state space and O(n) samples to learn the NE Q-values525

from RPS(1) to RPS(n), the total number of samples is still O(n).526

A.2 Proof of Proposition 1527

Proposition 1. If all initial states s0 with ⇢(s0) > 0 are sampled infinitely often, and the backbone528

MARL algorithm is guaranteed to converge to an NE in zero-sum Markov games, then subgame529

curriculum learning also produces an NE of the original Markov game.530

Proof. When the policy trained by subgame curriculum learning converges, it is an NE of all subgames531

induced by the proposed states, including all initial states s0 with ⇢(s0) > 0. Therefore, it is an NE532

of the original Markov game.533

A.3 Detailed analysis of the state sampling metric534

We approximate the squared difference between the current value and the NE value by Eq. (10), i.e.535

w(s) = Ei

⇥
(V ⇤

1 (s)� Ṽi(s))
2
⇤

⇡ ↵ · Ei

⇥
Ṽ (t)
i (s)� Ṽ (t�1)

i (s)
⇤2

+Vari
⇥
Ṽi(s)

⇤
.

The first term in Eq. (10) uses a hyperparameter ↵ and the difference between two consecutive value536

function checkpoints to estimate the difference between the current value and the NE value. As537

shown in Fig. 6, when the value function changes monotonically throughout training, the estimate538

can be regarded as a first-order approximation of the bias term. However, the value function of539

zero-sum games may oscillate up and down in different emergent stages (like in hide-and-seek) as540

shown in Fig. 7. In this case, the difference between two value function checkpoints is no longer541

an approximation of the distance to the NE value, but a first-order approximation of the difference542

between the current value and the next local minimal or local maximal value V (⇤,k)
1 , and the weight543

14

estimated differencetrue difference

Figure 6: Approximation of the bias term when
value function changes monotonically.

Figure 7: Approximation in different stages
when value function oscillates in training.

becomes the approximated squared difference between the current value and the next local optimal544

value, i.e.,545

w(s) = ↵ · Ei

⇥
Ṽ (t)
i (s)� Ṽ (t�1)

i (s)
⇤2

+Vari
⇥
Ṽi(s)

⇤

⇡ Ei

⇥
V (⇤,k)
1 (s)� Ṽi(s)

⇤2
+Vari

⇥
V (⇤,k)
1 (s)� Ṽi(s)

⇤

= Ei

⇥
(V (⇤,k)

1 (s)� Ṽi(s))
2
⇤
. (12)

Therefore, by using the weight in Eq. (10), we are not directly prioritizing states where the values are546

far from the NE values, but prioritizing states where the values are far from the next local optimal547

value. For example, in Fig. 7, before the value function has learned the first local maximal value548

V (⇤,1)
1 , we will give larger weights to states that are far from the V (⇤,1)

1 to accelerate the first stage of549

learning V (⇤,1)
1 . After V (⇤,1)

1 is successfully learned, we will then prioritize states that are far from550

the second local optimal value V (⇤,1)
2 and accelerated the second stage of learning V (⇤,2)

1 . Finally,551

we learn towards the NE value V (⇤,3)
1 = V ⇤

1 . By accelerating the learning in each stage, we make the552

NE learning process more efficient in total.553

It is also possible to train an ensemble of value functions for each player to improve the estimation.554

Suppose we train M value functions for player i and denote them as {Ṽi,m}
M
m=1 for i = 1, 2, then555

the weight for state s becomes556

w(s) = ↵ · Ei,m

⇥
Ṽ (t)
i,m(s)� Ṽ (t�1)

i,m (s)
⇤2

+Vari,m
⇥
Ṽi,m(s)

⇤
, (13)

where the expectation and variance are taken over both the player index i and the ensemble index m.557

B Implementation details558

B.1 Training details559

Multi-Agent Particle Environment. The default and hard setting of the predator-prey scenario in560

MPE are shown in Fig. 8. The environment is a 2D square space and the length of a side is 4, i.e.,561

{(x, y)|� 2 x 2,�2 y 2}. 3 predators (red) cooperatively chase 1 prey (blue) and there562

are 2 obstacles in the space. In the default setting, all agents and obstacles are randomly spawned. In563

the hard setting, predators are uniformly spawned in the top-right corner, i.e., {(x, y)|1 x 2, 1 564

y 2}, the prey is spawned in the bottom-left corner, i.e., {(x, y)|� 2 x �1,�2 y �1},565

and the obstacles are still randomly generated in the square.566

This environment is fully observable, and the state of each agent is a concatenation of the positions567

and the velocities of all agents and the positions of all obstacles. The action space is discrete with 5568

actions: idle, up, down, left, right. The environment lasts for 200 steps. In each step, if any predator569

collides with the prey, all predators get a reward of +1 and the prey gets a reward of �1.570

The actor and critic networks use the transformer architecture. The inputs first pass through a571

LayerNorm layer. The normalized states are divided into different entities including self, other agents,572

obstacles, and time, then each entity passes through fully connected layers to get its embedding. The573

15

Hyperparameters Value

Learning rate 5e-4
Discount rate (�) 0.99
GAE parameter (�GAE) 0.95
Gradient clipping 10.0
Adam stepsize 1e-5
Value loss coefficient 1
Entropy coefficient 0.01
Parallel threads 100
PPO clipping 0.2
PPO epochs 5
Size of embedding layer 32
Size of MLP layer 64
Size of LSTM layer 64
Residual attention layer 8
probability p 0.7
Ensemble size M 3
Capacity K 10000
Weight of the value difference ↵ 0.7

Table 2: Hyperparameters of MPE.

Hyperparameters Value

Learning rate 5e-4
Discount rate (�) 0.99
GAE parameter (�GAE) 0.95
Gradient clipping 10.0
Adam stepsize 1e-5
Value loss coefficient 1
Entropy coefficient 0.01
Parallel threads 200
PPO clipping 0.2
PPO epochs 10
Size of MLP layer 64
probability p 0.7
Ensemble size M 3
Capacity K 10000
Weight of the value difference ↵ 0.7

Table 3: Hyperparameters of GRF.

Length Information

22 (x,y) coordinates of left team players
22 (x,y) direction of left team players
22 (x,y) coordinates of right team players
22 (x,y) direction of right team players
3 (x, y and z) ball position
3 ball direction
3 one hot encoding of ball ownership (none, left, right)
11 one hot encoding of which player is active
7 one hot encoding of game mode

Table 4: Information in the state vector of GRF.

weights of the embedding layers are shared within entities of the same type. Then the embedding of574

each entity is concatenated with the self states and passed through a self-attention network. Then575

we average the output of the attention block and concatenate it with the self-embedding to get the576

final representation. This representation is then passed through a LayerNorm layer and an MLP577

layer and then produces the value through a critic head and the action through an actor head. All578

hyperparameters for training are listed in Table 2.579

Google Research Football. The environment is a physics-based 3D football simulation and the580

length and width are 2.0 and 0.9, i.e., {(x, y)|� 1.0 x 1.0,�0.45 y 0.45}. The pass and581

shoot scenario in GRF is shown in Fig. 9. There are five players and a soccer ball in the environment,582

with a scripted goalkeeper and two RL attackers on the left side and a scripted goalkeeper and one583

RL defender on the right side. The left goalkeeper is spawned at (�1.0, 0.0) and the two attackers584

are spawned at (0.7, 0.0) and (0.7,�0.3). The right goalkeeper is spawned at (1.0, 0.0) and the585

defender is spawned at (0.75,�0.3). The ball is spawned at (0.7,�0.28). The run, pass and shoot586

scenario in GRF is shown in Fig. 10. There are five players and a soccer ball in the environment, with587

a scripted goalkeeper and two RL attackers on the left side and a scripted goalkeeper and one RL588

defender on the right side. The left goalkeeper is spawned at (�1.0, 0.0) and the two attackers are589

spawned at (0.7, 0.0) and (0.7,�0.3). The right goalkeeper is spawned at (1.0, 0.0) and the defender590

is spawned at (0.75,�0.1). The ball is spawned at (0.7,�0.28). The 3 vs 1 with keeper scenario in591

GRF is shown in Fig. 11. There are six players and a soccer ball in the environment, with a scripted592

goalkeeper and three RL attackers on the left side and a scripted goalkeeper and one RL defender on593

16

predator prey obstacle

default hard

Figure 8: Illustration of the default and hard
setting of predator-prey in MPE.

Figure 9: Pass and shoot scenario in
GRF.

Figure 10: Run, pass and shoot
scenario in GRF.

Figure 11: 3 vs 1 with keeper
scenario in GRF.

Figure 12: Quadrant sce-
nario in HnS.

the right side. The left goalkeeper is spawned at (�1.0, 0.0) and the three attackers are spawned at594

(0.6, 0.0), (0.7, 0.2) and (0.7,�0.2). The right goalkeeper is spawned at (1.0, 0.0) and the defender595

is spawned at (0.75, 0.0). The ball is spawned at (0.6, 0.0). In all three environments, attackers596

have to learn how to dribble the ball, cooperate with teammates to pass the ball, and overcome the597

defender’s defense to score goals.598

The environment is fully observable, and the state of each agent is a 115-dimensional vector, including599

the coordinates of left team players, the directions of left team players, the coordinates of right team600

players, the directions of right team players, the ball position, the ball direction, one hot encoding601

of ball ownership, one hot encoding of which player is active and one hot encoding of game mode.602

The detailed information is listed in Table 4. The action space is discrete with 19 actions: idle, left,603

top left, top, top right, right, bottom right, bottom, bottom left, long pass, high pass, short pass,604

shoot, start sprinting, reset current movement direction, stop sprinting, slide, start dribbling and stop605

dribbling. An episode lasts a maximum of 200 steps. The environment ends prematurely when one606

side scores, the possession of the ball changes, or the game is out of play. We use the standard scoring607

and checkpoint rewards provided by the football engine. Specifically, if the left team scores a goal in608

each step, all left players get a reward of +1 and the right player gets -1. There are also 10 concentric609

circles with the goal in the center, called checkpoint regions. The left team obtains an additional610

checkpoint reward of +0.1 when they possess the ball and first move into the next checkpoint region,611

and the right team gets -0.1. Checkpoint rewards are only given once per episode.612

The inputs of the actor and critic networks first pass through a LayerNorm layer. The normalized613

states then pass through an MLP layer and then produce the value through a critic head and the action614

through an actor head. All hyperparameters for training are listed in Table 3.615

Hide-and-seek environment. The quadrant scenario in the hide-and-seek environment is shown in616

Fig. 12. The environment is a square space with a square room with a door in the bottom-right corner.617

There are 2 hiders (green), 1 seeker (red), 1 box, and 1 ramp. At the beginning of each episode, the618

hiders, box, and ramp are uniformly spawned inside the room, and the seeker is uniformly spawned619

outside the room.620

The environment is fully observable and the state of each agent is a concatenation of the positions621

and velocities of all agents, the positions, velocities, and lock flags of the box and the ramp, and the622

17

Running and Chasing

Fort Building

Ramp Use

Ramp Defense

Figure 13: Sample trajectory traces from each emergent stage in quadrant scenario of HnS.

current timestep. The action space is discrete and agents can choose to move in 4 directions, grab,623

and lock/unlock. Each episode lasts for 80 steps and is divided into 2 phases: the preparation phase624

and the main phase. In the preparation phase, the seeker is fixed and only the hiders can act to prepare625

for the main phase. No reward is given to any agent in the preparation phase. In the main phase,626

all agents can act and the seeker tries to find the hiders and the hiders try to avoid being discovered.627

When the hiders are spotted by the seeker, the seeker gets a reward of +1 at this step and the hiders628

get a reward of �1. Otherwise, the seeker gets a reward of �1 and the hiders get +1.629

There are a total of 4 emergent stages in this game, as shown in Fig. 13. (1) Running and Chasing:630

The hiders learn to run away from the seeker to avoid detection, while the seeker learns to chase the631

hiders. The seeker is the winner at this stage and the average episode reward of hiders is about �20.632

(2) Fort Building: In the preparation phase, the hiders learn to use the box to block the door and lock633

it in place to build a fort so that the seeker cannot enter the room and see the hider. The hiders are the634

winner in this stage, and the average episode reward of hiders is about 30. (3) Ramp Use: The seeker635

learns to move the ramp to the wall of the room and use it to get into the room. The average episode636

reward of hiders reduces to about 25 but is still larger than 0. (4) Ramp Defense: In the preparation637

phase, the hiders learn to move the ramp into the room or push it far away from the wall and lock it to638

prevent being used by the seeker. The seeker can no longer enter the room and find the hiders. The639

average episode reward of hiders is about 40 at this stage.640

We adopt the same network architecture as [2]. The states are divided into different entities including641

self, other agents, box, and ramp, then each entity passes through fully connected layers to get642

its embedding. The weights of the embedding layers are shared within entities of the same type.643

Then the embedding of each entity is concatenated with the self embedding and passed through a644

self-attention network. Then we average the output of the attention block and concatenate it with the645

self-embedding to get the final representation. This representation is then passed through an MLP646

layer and a LSTM layer and then produces the value through a critic head and the action through an647

actor head. All hyperparameters of HnS are listed in Table 5.648

Besides zero-sum games, it is also possible to use SACL in cooperative tasks. We choose the649

Ramp Use stage in HnS to show that SACL can produce comparable results to curriculum learning650

algorithms specialized for cooperative tasks [8]. In this task, there is 1 hider with fixed policy, 1651

seeker to train, 1 box and 1 ramp. We need to train a seeker policy to use the ramp to get into652

the quadrant room for positive rewards. The environment is fully observable and the state is the653

same as that in the quadrant scenario. We use the same prior knowledge to define easy tasks as [8],654

18

Hyper-parameters Value

Learning rate 3e-4
Discount rate (�) 0.998
GAE parameter (�GAE) 0.95
Gradient clipping 5.0
Adam stepsize 1e-5
Value loss coefficient 1
Entropy coefficient 0.01
PPO clipping 0.2
Chunk length 10
PPO epochs 4
Horizon 80
Mini-batch size 64000
Size of embedding layer 128
Size of MLP layer 256
Size of LSTM layer 256
Residual attention layer 32
Weight decay coefficient 10�6

probability p 0.7
Ensemble size M 3
Capacity K 10000
Weight of the value difference ↵ 1.0

Table 5: Hyperparameters of HnS.

Hyperparameters Value

Learning rate 5e-4
Discount rate (�) 0.99
GAE parameter (�GAE) 0.95
Gradient clipping 20.0
Adam stepsize 1e-5
Value loss coefficient 1
Entropy coefficient 0.01
PPO clipping 0.2
chunk length 10
PPO epochs 15
Horizon 60
Parallel threads 300
probability p 0.7
Ensemble size M 3
Capacity K 2000

Table 6: Hyperparameters of the cooperative
task in HnS

which prioritizes states where the ramp is right next to the wall and agents are next to the ramp. All655

hyperparameters are listed in Table 6.656

B.2 Evaluation details657

Exploitability. We compute the approximate exploitability by training an approximate best response658

⇡̃0
i of the fixed policy ⇡i using MAPPO. The lower the exploitability, the better the algorithm. We659

use the checkpoints of an algorithm’s policy trained with different numbers of environment steps to660

estimate the exploitability. Specifically, we run SACL in MPE and save a policy checkpoint when661

the agent has consumed 0M, 5M, 10M, 15M, ..., and 40M environment samples. Then for each662

checkpoint, we keep it fixed and train an adversarial policy to be the best response of the fixed policy663

to estimate the exploitability. Then we get an exploitability curve of SACL over samples. Finally, we664

repeat this procedure for two more seeds and average the results and plot the std error. For a single665

algorithm, we trained 9⇥ 3 = 27 (checkpoints ⇥ seeds) best-response policies to plot one curve in666

the exploitability graph.667

Cross-play. We evaluate SACL and other baselines by cross-play, which uses a head-to-head match668

between any two policies and records the results in a payoff matrix. In MPE, the element of the669

payoff matrix represents the episodic reward of the predators, and in GRF, represents the win rate of670

the red team. More specifically, we train 3 seeds for each algorithm and match three models of one671

algorithm against the three models of the opponent algorithm, i.e., we get 3⇥ 3 = 9 competitions672

between any two algorithms and report the average results and the std error. For example, in MPE, we673

use three different predators of SACL to compete with three different preys of SP to get the episode674

predator reward. We can evaluate the performance of the predator using the elements of a row and675

evaluate the performance of the prey using the elements of a column. We use the first row to represent676

the predator of SACL, then a larger value in this row than other rows means that the predator of SACL677

is better than other algorithms. We use the first column to represent the prey of SACL, then a smaller678

value in this column than other columns means that the prey of SACL is better than other algorithms.679

Four rounds of emergent strategies in HnS. As shown in Figure 14, we use three inflection points680

to evaluate the sample required to produce the first three stages. More specifically, the Running and681

Chasing phase ends when the hider’s reward decreases to the lowest value of about �20. When682

the hider’s reward begins to increase, the Fort-Building phase begins and continues until the hider’s683

19

Running and Chasing

Ramp Use

Fort Building

Ramp Defense

Figure 14: Checkpoints of four rounds of emergent strategies in HnS.

reward reaches a local maximum of about 30. Then the agents move to the Ramp-Defense phase until684

the hider’s reward reaches a local minimum and begins the final Ramp-Use stage. We choose the685

point when the hider’s episode reward reaches 40 as the end of the final stage.686

C Additional experiment results687

C.1 Multi-Agent Particle Environment688

Cross-play. The results of cross-play at 40M in MPE and MPE hard are shown in Fig. 15 and Fig. 16.689

In MPE and MPE hard, the predator and prey of SACL beat all baselines. For example, let x be the690

row x and y be represent the column y of the payoff matrix. We compare the predator of SACL with691

FSP using rows 1 and 3 and find that the elements of row 1 are larger than the elements of row 3, i.e.,692

the predator of SACL is better than FSP. The elements of column 1 are smaller than the elements of693

column 3, which means the prey of SACL is better than FSP. The prey trained by SACL swerves to694

avoid the predators when the predators surround him and the predators learn to capture the prey in695

the two environments. SP is comparable with SACL in MPE, but in the hard setting, SP does not696

converge to the NE policy due to the large initial distance between predator and prey. We show the697

initial state distributions of the predator in SP and SACL at 40M training steps in Fig. 17. We find698

that in MPE hard, the initial distance between the prey and the predator is too far. As a result, the699

prey trained by SP learns little about how to stay away from predators and the predators have hardly700

learned how to catch the prey. FSP also performs worse than SACL in the hard setting for the same701

reason as SP. For PSRO, it is even difficult to obtain the best response corresponding to the prey of702

random policy in MPE hard because the initial distance between prey and predator is too far. NeuRD703

performs poorly in both environments because NeuRD’s update rules cause drastic policy changes704

and erratic convergence.705

C.2 Google Research Football706

The results of cross-play in pass and shoot, run, pass and shoot and 3 vs 1 with keeper are shown707

in Fig. 18. In the three scenarios, SACL is comparable to FSP and PSRO, and better than SP and708

NeuRD. For example, let x be the row x and y be the column y of the payoff matrix. In 3 vs 1 with709

keeper, the elements of row 1 are larger than the elements of row 2, which means the attackers of710

SACL are better than SP. The elements of column 1 are comparable with the elements of column 2,711

i.e., the prey of SACL is comparable with SP. It is worth mentioning that in run, pass and shoot, FSP712

and PSRO attackers have a higher win rate than SACL against PSRO and NeuRD defenders. This is713

because PSRO and NeuRD defenders have a bad defensive policy, and FSP and PSRO attackers have714

their counter policy. However, Table 1 in the main text shows that the exploitability of SACL is lower715

than others. This is because zero-sum games are non-transitive. For example, in rock-paper-scissors,716

it doesn’t mean that rock is better than paper just because rock beats scissors and scissors beats717

20

Figure 15: MPE: cross-play Figure 16: MPE hard: cross-play.

(a) SP. (b) SACL.

Figure 17: Visualization of the state distributions in MPE hard.

paper. Thus, a high return against a single policy does not mean that it is close to the NE policy,718

and the comparable result in cross-play does not contradict with the exploitability result. In general,719

exploitability is a better measure of policy performance and is used in many papers.720

We also visualize the behavior of different methods to show that SACL learns more complex policies721

than others and is closer to the NE policies. For example, in 3 vs 1 with keeper, the NE policy is that722

the left players shoot from the top, middle, and bottom with equal probability. SACL learns to shoot723

from the top and the middle, while FSP and PSRO only shoot from the bottom.724

C.3 Hide-and-seek725

Although SACL is derived for zero-sum games, it is also applicable to more general settings such as726

goal-conditioned problems. We consider the Ramp-Use task proposed in VACL [8], where the seeker727

aims to get into the lower-right quadrant (with no door opening) which is only possible by using a728

ramp. We adopt the same prior knowledge of “easy tasks” used in VACL to initialize the state buffer729

M and achieve comparable sample efficiency with VACL, one of the strongest ACL algorithms for730

goal-conditioned RL. The result is shown in Figure 19.731

21

(a) Pass and shoot. (b) Run, pass and shoot. (c) 3 vs 1 with keeper.

Figure 18: The results of cross-play in GRF.

Figure 19: Seeker’s average episode rewards in a goal-reaching Ramp-Use task. SACL is comparable
to a strong baseline VACL, which is specialized for goal-oriented problems.

C.4 Ablation studies732

Buffer size. As shown in Fig. 20(a), the buffer capacity K must be large enough. When the buffer is733

too small, the states in the buffer cannot approximate the state space. When the buffer is too large,734

FPS consumes much time. So we finally choose K = 10000.735

Subgame sample probability. As shown in Fig. 20(b), we need more samples from the subgame736

buffer than uniform sampling in the training batch, and uniform sampling from the state space ensures737

global exploration. When p is too small, SACL degenerates into SP, resulting in poor performance.738

When p = 1, the lack of global exploration also leads to poor performance. Finally we choose739

p = 0.7.740

Ensemble size. As shown in Fig. 20(c), we can train an ensemble of value functions for each player741

to improve the estimation. Excessive ensemble size requires much memory and training time. So we742

finally choose M = 3.743

Weight of the value difference. As shown in Fig. 20(d), our algorithm is insensitive to the Weight744

of the value difference ↵. Empirically, we prefer ↵ less than 1. We finally choose ↵ = 0.7 in MPE,745

MPE hard and GRF, ↵ = 1.0 in Hns.746

22

(a) Buffer size. (b) Sample probability.

(c) Ensemble size. (d) Weight of the value difference.

Figure 20: Ablation studies of hyperparameters in MPE hard.

23

	Introduction
	Preliminary
	Markov game
	MARL algorithms in zero-sum games

	A motivating example
	Iterated Rock-Paper-Scissors game
	From exponential to linear complexity

	Method
	Subgame curriculum learning
	Subgame sampling metric
	Particle-based subgame sampler
	Overall algorithm

	Experiment
	Main results
	Ablation study

	Related work
	Conclusion
	Analysis and proofs
	Detailed analysis of the motivating example
	Proof of Proposition 1
	Detailed analysis of the state sampling metric

	Implementation details
	Training details
	Evaluation details

	Additional experiment results
	Multi-Agent Particle Environment
	Google Research Football
	Hide-and-seek
	Ablation studies

