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Abstract

We study design of black-box model extraction attacks that can send minimal1

number of queries from a publicly available dataset to a target ML model through2

a predictive API with an aim to create an informative and distributionally equiv-3

alent replica of the target. First, we define distributionally equivalent and Max-4

Information model extraction attacks, and reduce them into a variational optimisa-5

tion problem. The attacker sequentially solves this optimisation problem to select6

the most informative queries that simultaneously maximise the entropy and reduce7

the mismatch between the target and the stolen models. This leads to an active8

sampling-based query selection algorithm, MARICH, which is model-oblivious.9

Then, we evaluate MARICH on different text and image data sets, and different mod-10

els, including CNNs and BERT. MARICH extracts models that achieve∼ 60−95%11

of true model’s accuracy and uses ∼ 1, 000 − 8, 500 queries from the publicly12

available datasets, which are different from the private training datasets. Models13

extracted by MARICH yield prediction distributions, which are ∼ 2− 4× closer to14

the target’s distribution in comparison to the existing active sampling-based attacks.15

The extracted models also lead to 84-96% accuracy under membership inference16

attacks. Experimental results validate that MARICH is query-efficient, and capable17

of performing task-accurate, high-fidelity, and informative model extraction.18

1 Introduction19

In recent years, Machine Learning as a Service (MLaaS) is widely deployed and used in industries.20

In MLaaS [RGC15], an ML model is trained remotely on a private dataset, deployed in a Cloud, and21

offered for public access through a prediction API, such as Amazon AWS, Google API, Microsoft22

Azure. An API allows an user, including a potential adversary, to send queries to the ML model and23

fetch corresponding predictions. Recent works have shown such models with public APIs can be24

stolen, or extracted, by designing black-box model extraction attacks [TZJ+16]. In model extraction25

attacks, an adversary queries the target model with a query dataset, which might be same or different26

than the private dataset, collects the corresponding predictions from the target model, and builds a27

replica model of the target model. The goal is to construct a model which is almost-equivalent to the28

target model over input space [JCB+20].29

Often, ML models are proprietary, guarded by IP rights, and expensive to build. These models30

might be trained on datasets which are expensive to obtain [YDY+19] and consist of private data31

of individuals [LM05]. Also, extracted models can be used to perform other privacy attacks on32

the private dataset used for training, such as membership inference [NSH19]. Thus, understanding33

susceptibility of models accessible through MLaaS presents an important conundrum. This motivates34

us to investigate black-box model extraction attacks while the adversary has no access to the private35

data or a perturbed version of it [PMG+17]. Instead, the adversary uses a public dataset to query36

the target model [OSF19, PGS+20].37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

https://aws.amazon.com/machine-learning/ai-services/
https://cloud.google.com/prediction
https://azure.microsoft.com/en-us/products/app-service/api/
https://azure.microsoft.com/en-us/products/app-service/api/
https://azure.microsoft.com/en-us/products/app-service/api/


Extracted model

Black-box 
modelIndividuals

Predicted labels

Train 
extracted 

model

Queries 

Send  to 

Marich

Public
Query dataset

Private training 
dataset

Figure 1: Black-box model extraction with MARICH.

Query-efficient black-box model extraction38

poses a tension between the number of39

queries sent to the target model and the ac-40

curacy of extracted model [PGS+20]. With41

more queries and predictions, an adversary42

can build a better replica. But querying an43

API too much can be expensive, as each44

query incurs a monetary cost in MLaaS.45

Also, researchers have developed algo-46

rithms that can detect adversarial queries,47

when they are not well-crafted or sent to the48

API in large numbers [JSMA19, PGKS21].49

Thus, designing a query-efficient attack is paramount for practical deployment. Also, it exposes how50

more information can be leaked from a target model with less number of interactions.51

In this paper, we investigate effective definitions of efficiency of model extraction and corresponding52

algorithm design for query-efficient black-box model extraction attack with public data, which is53

oblivious to deployed model and applicable for any datatype.54

Our contributions. Our investigation yields three contributions.55

1. Formalism: Distributional equivalence and Max-Information extraction. Often, the ML models,56

specifically classifiers, are stochastic algorithms. They also include different elements of randomness57

during training. Thus, rather than focusing on equivalence of extracted and target models in terms of a58

fixed dataset or accuracy on that dataset [JCB+20], we propose a distributional notion of equivalence.59

We propose that if the joint distribution induced by a query generating distribution and corresponding60

prediction distribution due to both the target and the extracted models are same, they will be called61

distributionally equivalent (Sec. 3). Another proposal is to reinforce the objective of the attack, i.e.62

to extract as much information as possible from the target model. This allows us to formulate the63

Max-Information attack, where the adversary aims to maximise the mutual information between64

the extracted and target models’ distributions. We show that both the attacks can be performed by65

sequentially solving a single variational optimisation [SB12] problem (Eqn. (6)).66

2. Algorithm: Adaptive query selection for extraction with MARICH. We propose an algorithm,67

MARICH (Sec. 4), that optimises the objective of the variational optimisation problem (Eqn. (6)).68

Given an extracted model, a target model, and previous queries, MARICH adaptively selects a batch of69

queries enforcing this objective. Then, it sends the queries to the target model, collects the predictions70

(i.e. the class predicted by target model), and uses them to further train the extracted model (Algo. 1).71

In order to select the most informative set of queries, it deploys three sampling strategies in cascade.72

These strategies select: a) the most informative set of queries, b) the most diverse set of queries in the73

first selection, and c) the final subset of queries where the target and extracted models mismatch the74

most. Together these strategies allow MARICH to select a small subset of queries that both maximise75

the information leakage, and align the extracted and target models (Fig. 1).76

3. Experimental analysis. We perform extensive the most for a given modelevaluation with both77

image and text datasets, and diverse model classes, such as Logistic Regression (LR), ResNet, CNN,78

and BERT (Sec. 5). Leveraging MARICH’s model-obliviousness, we even extract a ResNet trained on79

CIFAR10 with a CNN and out-of-class queries from ImageNet. Our experimental results validate that80

MARICH extracts more accurate replicas of the target model and high-fidelity replica of the target’s81

prediction distributions in comparison to existing active sampling algorithms. While MARICH uses a82

small number of queries (∼ 1k − 8.5k) selected from publicly available query datasets, the extracted83

models yield accuracy comparable with the target model while encountering a membership inference84

attack. This shows that MARICH can extract alarmingly informative models query-efficiently.85

Related works: Taxonomy of model extraction. Black-box model extraction (or model stealing or86

model inference) attacks aim to replicate of a target ML model, commonly classifiers, deployed in a87

remote service and accessible through a public API [TZJ+16]. The replication is done in such a way88

that the extracted model achieves one of the three goals: a) accuracy close to that of the target model89

on the private training data used to train the target model, b) maximal agreement in predictions90

with the target model on the private training data, and c) maximal agreement in prediction with the91

target model over the whole input domain. Depending on the objective, they are called task accuracy,92

fidelity, and functional equivalence model extractions, respectively [JCB+20]. Here, we generalise93

2



these three approaches using a novel definition of distributional equivalence and also introduce a94

novel information-theoretic objective of model extraction which maximises the mutual information95

between the target and the extracted model over the whole data domain.96

Related works: Framework of attack design. Following [TZJ+16], researchers have proposed97

multiple attacks to perform one of the three types of model extraction. The attacks are based on98

two main approaches: direct recovery (target model specific) [MSDH19, BBJP18, JCB+20] and99

learning (target model specific/oblivious). The learning-based approaches can also be categorised100

into supervised learning strategies, where the adversary has access to both the true labels of queries101

and the labels predicted by the target model [TZJ+16, JCB+20], and online active learning strategies,102

where the adversary has only access to the predicted labels of the target model, and actively select the103

future queries depending on the previous queries and predicted labels [PMG+17, PGS+20, CCG+20].104

As query-efficiency is paramount for an adversary while attacking an API to save the budget and to105

keep the attack hidden and also the assumption of access true label from the private data is restrictive,106

we focus on designing an online and active learning-based attack strategy that is model oblivious.107

Related works: Types of target model. While [MSDH19, CCG+20] focus on performing attacks108

against linear models, all others are specific to neural networks [MSDH19, JCB+20, PGS+20] and109

even a specific architecture [CSBB+18]. In contrast, MARICH is capable of attacking both linear110

models and neural networks. Additionally, MARICH is model-oblivious, i.e. it can attack one model111

architecture (e.g. ResNet) using a different model architecture (e.g. CNN).112

Related works: Types of query feedback. Learning-based attacks often assume access to either113

the probability vector of the target model over all the predicted labels [TZJ+16, OSF19, PGS+20,114

JCB+20], or the gradient of the last layer of the target neural network [MSDH19, MHS21], which115

are hardly available in a public API. In contrast, following [PMG+17], we assume access to only116

the predicted labels of the target model for a set of queries, which is always available with a public117

API. Thus, experimentally, we cannot compare with existing active sampling attacks requiring access118

to the whole prediction vector [PGS+20, OSF19], and thus, compare with a wide-range of active119

sampling methods that can operate only with the predicted label, such as K-center sampling, entropy120

sampling, least confidence sampling, margin sampling etc. [RXC+21]. Details are in Appendix C.121

Related works: Choice of public datasets for queries. There are two approaches of querying a122

target model: data-free and data-selection based. In data-free attacks, the attacker begins with noise.123

The informative queries are generated further using a GAN-like model fed with responses obtained124

from an API [ZWL+20, TMWP21, MHS21, ZLX+22, SAB22]. Typically, it requires almost a125

million queries to the API to start generating sensible query data (e.g. sensible images that can leak126

from a model trained on CIFAR10). But since one of our main focus is query-efficiency, we focus on127

data-selection based attacks, where an adversary has access to a query dataset to select the queries128

from and to send it to the target model to obtain predicted labels. In literature, researchers assume129

three types of query datasets: synthetically generated samples [TZJ+16], adversarially perturbed130

private (or task domain) dataset [PMG+17, JSMA19], and publicly available (or out-of-task domain)131

dataset [OSF19, PGS+20]. As we do not want to restrict MARICH to have access to the knowledge132

of the private dataset or any perturbed version of it, we use publicly available datasets, which are133

different than the private dataset. To be specific, we only assume whether we should query the134

API with images, text, or tabular data and not even the identical set of labels. For example, we135

experimentally attack models trained on CIFAR10 with ImageNet queries having different classes.136

2 Background: Classifiers, model extraction, membership inference attacks137

Before proceeding to the details, we present the fundamentals of a classifier in ML, and two types of138

inference attacks: Model Extraction (ME) and Membership Inference (MI).139

Classifiers. A classifier in ML [GBCB16] is a function f : X → Y that maps a set of input features140

X ∈ X to an output Y ∈ Y .1 The output space is a finite set of classes, i.e. {1, . . . , k}. Specifically,141

a classifier f is a parametric function, denoted as fθ, with parameters θ ∈ Rd, and is trained on a142

dataset DT , i.e. a collection of n tuples {(xi, yi)}ni=1 generated IID from an underlying distribution143

D. Training implies that given a model class F = {fθ|θ ∈ Θ}, a loss function l : Y × Y → R≥0,144

and training dataset DT , we aim to find the optimal parameter θ∗ ≜ argminθ∈Θ

∑n
i=1 l(fθ(xi), yi).145

We use cross-entropy, i.e. l(fθ(xi), yi) ≜ −yi log(fθ(xi)), as the loss function for classification.146

1We denote sets/vectors by bold letters, and the distributions by calligraphic letters. We express random
variables in UPPERCASE, and an assignment of a random variable in lowercase.
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Model extraction attack. A model extraction attack is an inference attack where an adversary aims to147

steal a target model fT trained on a private dataset DT and create another replica of it fE [TZJ+16].148

In the black-box setting that we are interested in, the adversary can only query the target model fT149

by sending queries Q through a publicly available API and to use the corresponding predictions Ŷ to150

construct fE . The goal of the adversary is to create a model which is either (a) as similar to the target151

model as possible for all input features, i.e. fT (x) = fE(x) ∀x ∈ X [SS20, CCG+20] or (b) predicts152

labels that has maximal agreement with that of the labels predicted by the target model for a given data-153

generating distribution, i.e. fE = argminPrx∼D[l(f
E(x), fT (x))] [TZJ+16, PGS+20, JCB+20].154

The first type of attacks are called the functionally equivalent attacks. The later family of attacks is155

referred as the fidelity extraction attacks. The third type of attacks aim to find an extracted model156

fE that achieves maximal classification accuracy for the underlying private dataset used to train the157

fT . These are called task accuracy extraction attacks [TZJ+16, MSDH19, OSF19]. In this paper,158

we generalise the first two type of attacks by proposing the distributionally equivalent attacks and159

experimentally show that it yields both task accuracy and fidelity.160

Membership inference attack. Another popular family of inference attacks on ML models is the161

Membership Inference (MI) attacks [SSSS17, YGFJ18]. In MI attack, given a private (or member)162

dataset DT to train fT and another non-member dataset S with |DT ∩ S| ≠ ∅, the goal of the163

adversary is to infer whether any x ∈ X is sampled from the member dataset DT or the non-member164

dataset S. Effectiveness of an MI attacks can be measured by its accuracy of MI, i.e. the total fraction165

of times the MI adversary identifies the member and non-member data points correctly. Accuracy of166

MI attack on the private data using fE rather than fT is considered as a measure of effectiveness167

of the extraction attack [NSH19]. We show that the model fE extracted using MARICH allows us168

to obtain similar MI accuracy as that obtained by directly attacking the target model fT using even169

larger number of queries. This validates that the model fE by MARICH in a black-box setting acts as170

an information equivalent replica of the target model fT .171

3 Distributional equivalence and Max-Information model extractions172

In this section, we introduce the distributionally equivalent and Max-Information model extractions.173

We further reduce both the attacks into a variational optimisation problem.174

Definition 3.1 (Distributionally equivalent model extraction). For any query generating distri-175

bution DQ over Rd × Y , an extracted model fE : Rd → Y is distributionally equivalent to a target176

model fT : Rd → Y , if the joint distributions of input features Q ∈ Rd ∼ DQ and predicted labels177

induced by both the models are same almost surely. This means that for any divergence D, two178

distributionally equivalent models fE and fT satisfy D(Pr(fT (Q), Q)∥Pr(fE(Q), Q)) = 0 ∀ DQ.179

To ensure query-efficiency in distributionally equivalent model extraction, an adversary aims to180

choose a query generating distribution DQ that minimises it further. If we assume that the extracted181

model is also a parametric function, i.e. fE
ω with parameters ω ∈ Ω, we can solve the query-efficient182

distributionally equivalent extraction by computing183

(ω∗
DEq,D

Q
min) ≜ argmin

ω∈Ω
argmin

DQ

D(Pr(fT
θ∗(Q), Q)∥Pr(fE

ω (Q), Q)). (1)

Equation (1) allows us to choose a different class of models with different parametrisation for184

extraction till the joint distribution induced by it matches with that of the target model. For example,185

the extracted model can be a logistic regression or a CNN if the target model is a logistic regression.186

This formulation also enjoys the freedom to choose the data distribution DQ for which we want to187

test the closeness. Rather the distributional equivalence pushes us to find the best query distribution188

for which the mismatch between the posteriors reduces the most and to compute an extracted model189

fE
ω∗ that induces the joint distribution closest to that of the target model fT

θ∗ .190

Connection with different types of model extraction. For D = DKL, our formulation extends191

the fidelity extraction from label agreement to prediction distribution matching, which addresses192

the future work indicated by [JCB+20]. If we choose DQ
min = DT , and substitute D by prediction193

agreement, distributional equivalence retrieves the fidelity extraction attack. If we choose DQ
min =194

Unif(X ), distributional equivalent extraction coincides with functional equivalent extraction. Thus,195

a distributional equivalence attack can lead to both fidelity and functional equivalence extractions196

depending on the choice of query generating distribution DQ and the divergence D.197

Theorem 3.2 (Upper bounding distributional closeness). If we choose KL-divergence as the diver-198

gence function D, then for a given query generating distribution DQ199
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DKL(Pr(f
T
θ∗(Q), Q)∥Pr(fE

ω∗
DEq

(Q), Q)) ≤ min
ω

EQ[l(f
T
θ∗(Q), fE

ω (Q))]−H(fE
ω (Q)). (2)

By variational principle, Theorem 3.2 implies that minimising the upper bound on the RHS leads to200

an extracted model which minimises the KL-divergence for a chosen query distribution.201

Max-Information model extraction. Objective of any inference attack is to leak as much information202

as possible from the target model fT . Specifically, in model extraction attacks, we want to create an203

informative replica fE of the target model fT such that it induces a joint distribution Pr(fE
ω (Q), Q),204

which retains the most information regarding the target’s joint distribution. As adversary controls the205

query distribution, we aim to choose a query distribution DQ that maximises information leakage.206

Definition 3.3 (Max-Information model extraction). A model fE : Rd → Y and a query dis-207

tribution DQ are called a Max-Information extraction of a target model fT : Rd → Y and a208

Max-Information query distribution, respectively, if they maximise the mutual information between209

the joint distributions of input features Q ∈ Rd ∼ DQ and predicted labels induced by fE and that210

of the target model. Mathematically, (fE
ω∗ ,DQ

max) is a Max-Information extraction of fT
θ∗ if211

(ω∗
MaxInf ,DQ

max) ≜ argmax
ω

argmax
DQ

I(Pr(fT
θ∗(Q), Q)∥Pr(fE

ω (Q), Q)) (3)

Similar to Definition 3.1, Definition 3.3 also does not restrict us to choose a parametric model ω212

different from that of the target θ. It also allows us to compute the data distribution DQ for which the213

information leakage is maximum rather than relying on the private dataset DT used for training fT .214

Theorem 3.4 (Lower bounding information leakage). For any given distributionDQ, the information215

leaked by any Max-Information attack (Equation 3) is lower bounded as:216

I(Pr(fT
θ∗(Q), Q)∥Pr(fE

ω∗
MaxInf

(Q), Q)) ≥ max
ω
−EQ[l(f

T
θ∗(Q), fE

ω (Q))] +H(fE
ω (Q)). (4)

By variational principle, Theorem 3.4 implies that maximising the lower bound in the RHS will lead217

to an extracted model which maximises the mutual information between target and extracted joint218

distributions for a given query generating distribution.219

Distributionally equivalent and Max-Information extractions: A variational optimisation220

formulation. From Theorem 3.2 and 3.4, we observe that the lower and upper bounds of221

the objective functions of distribution equivalent and Max-Information attacks are negatives of222

each other. Specifically, −DKL(Pr(f
T
θ∗(Q), Q)∥Pr(fE

ω∗
DEq

(Q), Q)) ≥ maxω −F (ω,DQ) and223

I(Pr(fT
θ∗(Q), Q)∥Pr(fE

ω∗
MaxInf

(Q), Q)) ≥ maxω F (ω,DQ), where224

F (ω,DQ) ≜ −EQ[l(f
T
θ∗(Q), fE

ω (Q))] +H(fE
ω (Q)). (5)

Thus, following a variational approach, we aim to solve an optimisation problem on F (ω,DQ) in an225

online and frequentist manner. We do not assume a parametric family of DQ. Instead, we choose a226

set of queries Qt ∈ Rd at each round t ∈ T . This leads to an empirical counterpart of our problem:227

max
ω∈ω,Q[0,T ]∈DQ

[T ]

F̂ (ω,Q[0,T ]) ≜ max
ω,Q[0,T ]

− 1

T

T∑
t=1

l(fT
θ∗(Qt), f

E
ω (Qt))] +

T∑
t=1

H(fE
ω (Qt)). (6)

As we need to evaluate fT
θ∗ for each Qt, we refer Qt’s as queries, the dataset DQ ⊆ Rd × Y from228

where they are chosen as the query dataset, and the corresponding unobserved distribution DQ as229

the query generating distribution. Given the optimisation problem of Equation 6, we propose an230

algorithm MARICH to solve it effectively.231

4 Marich: A query selection algorithm for model extraction232

In this section, we propose an algorithm, MARICH, to solve Equation (6) in an adaptive manner.233

Algorithm design. We observe that once the queries Q[0,T ] are selected, the outer maximisation234

problem of Eq. (6) is equivalent to regualrised loss minimisation. Thus, it can be solved using any235

standard empirical risk minimisation algorithm (e.g. Adam, SGD). Thus, to achieve query efficiency,236

we focus on designing a query selection algorithm that selects a batch of queries Qt at round t ≤ T :237

Qt ≜ argmax
Q∈DQ

−1

t

t−1∑
i=1

l(fT
θ∗(Qi ∪Q), fE

ωt−1
(Qi ∪Q))]︸ ︷︷ ︸

Model-mismatch term

+

t−1∑
i=1

H(fE
ωt−1

(Qi ∪Q))︸ ︷︷ ︸
Entropy term

. (7)
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Here, fE
ωt−1

is the model extracted by round t− 1. Equation (7) indicates two criteria to select the238

queries. With the entropy term, we want to select a query that maximises the entropy of predictions239

for the extracted model fE
ωt−1

. This allows us to select the queries which are most informative about240

the mapping between the input features and the prediction space. With the model-mismatch term,241

Eq. (7) pushes the adversary to select queries where the target and extracted models mismatch the242

most. Thus, minimising the loss between target and extracted models for such a query forces them to243

match over the whole domain. Algorithm 1 illustrates a pseudocode of MARICH (Appendix A).244

Initialisation phase. To initialise the extraction, we select a set of n0 queries, called Qtrain
0 ,245

uniformly randomly from the query dataset DQ. We send these queries to the target model and246

collect corresponding predicted classes Y train
0 (Line 3). We use these n0 samples of input-predicted247

label pairs to construct a primary extracted model fE
0 .248

Active sampling. As the adaptive sampling phase commences, we select γ1γ2B number of queries249

at round t. To maximise the entropy term and minimise the model-mismatch term of Eq. (7), we250

sequentially deploy ENTROPYSAMPLING and LOSSSAMPLING. To achieve further query-efficiency,251

we refine the queries selected using ENTROPYSAMPLING by ENTROPYGRADIENTSAMPLING, which252

finds the most diverse subset from a given set of queries. Now, we describe the sampling strategies.253

ENTROPYSAMPLING. First, we aim to select the set of queries which unveil most information254

about the mapping between the input features and the prediction space. Thus, we deploy EN-255

TROPYSAMPLING. In ENTROPYSAMPLING, we compute the output probability vectors from256

fE
t−1 for all the query points in DQ \ Qtrain

t−1 and then select top B points with highest entropy:257

Qentropy ← argmaxX⊂Xin,|X|=B H(fE(Xin)). Thus, we select the queries Qentropy
t , about258

which fE
t−1 is most confused and training on these points makes the model more informative.259

ENTROPYGRADIENTSAMPLING. To be frugal about the number of queries, we refine Qentropy
t to260

compute the most diverse subset of it. First, we compute the gradients of entropy of fE
t−1(x), i.e.261

∇xH(fE
t−1(x)), for all x ∈ Qentropy

t . The gradient at point x reflects the change at x in the prediction262

distribution induced by fE
t−1. We use these gradients to embed the points x ∈ Qentropy

t . Now, we263

deploy K-means clustering to find k (= #classes) clusters with centers Cin. Then, we sample γ1B264

Algorithm 1 MARICH

Input: Target model: fT , Query dataset: DQ, #Classes: k
Parameter: #initial samples: n0, Training epochs: Emax, #Batches of queries: T , Query budget:
B, Subsampling ratios: γ1, γ2 ∈ (0, 1]
Output: Extracted model fE

1: //* Initialisation of the extracted model*// ▷ Phase 1
2: Qtrain

0 ← n0 datapoints randomly chosen from DQ

3: Y train
0 ← fT (Qtrain

0 ) ▷ Query the target model fT with Qtrain
0

4: for epoch← 1 to Emax do
5: fE

0 ← Train fE with (Qtrain
0 , Y train

0 )
6: end for
7: //* Adaptive query selection to build the extracted model*// ▷ Phase 2
8: for t← 1 to T do
9: Qentropy

t ← ENTROPYSAMPLING(fE
t−1,D

Q \Qtrain
t−1 , B)

10: Qgrad
t ← ENTROPYGRADIENTSAMPLING(fE

t−1, Q
entropy
t , γ1B)

11: Qloss
t ← LOSSSAMPLING(fE

t−1, Q
grad
t , Qtrain

t−1 , Y train
t−1 , γ1γ2B)

12: Y new
t ← fT (Qloss

t ) ▷ Query the target model fT with Qloss
t

13: Qtrain
t ← Qtrain

t−1 ∪Qloss
t

14: Y train
t ← Y train

t−1 ∪ Y new
t

15: for epoch← 1 to Emax do
16: fE

t ← Train fE
t−1 with (Qtrain

t , Y train
t )

17: end for
18: end for
19: return Extracted model fE ← fE

T
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Figure 2: Accuracy of the extracted models (mean ± std. over 10 runs) w.r.t. the target model using
MARICH, and competing active sampling methods (KC, LC, MS, ES, RS). Each figure represents (a
target model, a query dataset). Models extracted by MARICH are closer to the target models.

points from these clusters: Qgrad ← argminX⊂Qentropy
t ,|X|=γ1B

∑
xi∈X

∑
xj∈Cin

∥∇xiH(fE(.))265

−∇xj
H(fE(.))∥22. Selecting from k clusters ensures diversity of queries and reduces them by γ1.266

LOSSSAMPLING. We select points from Qgrad
t for which the predictions of fT

θ∗ and fE
t−1 are most267

dissimilar. To identify these points, we compute the loss l(fT (x), fE
t−1(x)) for all x ∈ Qtrain

t−1 . Then,268

we select top-k points from Qtrain
t−1 with the highest loss values (Line 11), and sample a subset Qloss

t269

of size γ1γ2B from Qgrad
t which are closest to the k points selected from Qtrain

t−1 . This ensures that270

fE
t−1 would better align with fT if it trains on the points where the mismatch in predictions are higher.271

At the end of Phase 2 in each round of sampling, Qloss
t is sent to fT for fetching the labels Y train

t272

predicted by the target model. We use (Qloss
t , Y loss

t ) along with (Qtrain
t−1 , Y train

t−1 ) to train fE
t−1 further.273

Thus, MARICH performs n0 + γ1γ2BT number of queries through T + 1 number of interactions274

with the target model fT to create the final extracted model fE
T . We experimentally demonstrate275

effectiveness of the model extracted by MARICH to achieve high task accuracy and to act as an276

informative replica of the target for extracting private information regarding private training data DT .277

Discussions. Eq. (7) dictates that the active sampling strategy should try to select queries that max-278

imise the entropy in the prediction distribution of the extracted model, while decreases the mismatch279

in predictions of the target and the extracted models. We further use the ENTROPYGRADIENTSAM-280

PLING to choose a smaller but most diverse subset. As Eq. (7) does not specify any ordering between281

these objectives, one can argue about the sequence of using these three sampling strategies. We282

choose to use sampling strategies in the decreasing order of runtime complexity as the first strategy283

selects the queries from the whole query dataset, while the following strategies work only on the284

already selected queries. We show in Appendix E that LOSSSAMPLING incurs the highest runtime285

followed by ENTROPYGRADIENTSAMPLING, while ENTROPYSAMPLING is significantly cheaper.286

5 Experimental analysis287

Now, we perform an experimental evaluation of models extracted by MARICH. Here, we discuss the288

experimental setup, the objectives of experiments, and experimental results. We defer the source289

code, extended results, parametric similarity of the extracted models, effects of model-mismatch,290

details of different samplings, and hyperparameters to Appendix.291

Experimental setup. We have implemented a prototype of MARICH using Python 3.9 and PyTorch292

1.12, and run on a NVIDIA GeForce RTX 3090 24 GB GPU. We perform attacks against four target293

models (fT ), namely Logistic Regression (LR), CNN [LBH15], ResNet [HZRS16], BERT [DCLT18],294

trained on three private datasets (DT ): MNIST handwritten digits [Den12], CIFAR10 [KNH] and295

BBC News, respectively. For model extraction, we use EMNIST letters dataset [CATvS17], CIFAR10,296

ImageNet [DDS+09], and AGNews [ZZL15], as publicly available and mismatched query datasets297

DQ. To instantiate task accuracy, we compare accuracy of the extracted models fE
MARICH with the target298

model and models extracted by K-Center (KC) [SS18], Least-Confidence sampling (LC) [LS06],299

Margin sampling (MS) [BBZ07, JG19], Entropy Sampling (ES) [LG94], and Random Sampling300

(RS). To instantiate informativeness of the extracted models [NSH19], we compare the Membership301

Inference (MI), i.e. MI accuracy and MI agreements (% and AUC), performed on the target models,302

and the models extracted using MARICH and competitors with same query budget. For MI, we use303

in-built membership attack from IBM ART [NST+18]. For brevity, we discuss Best of Competitors304

(BoC) against MARICH for each experiment (except Fig. 2- 3) The objectives of the experiments are:305

1. How do the accuracy of the model extracted using MARICH on the private dataset compare with306

that of the target model, and RS with same query budget?307
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Figure 3: Comparing fidelity of the prediction dis-
tributions (in log scale) for different active learn-
ing algorithms. MARICH achieves 2− 4× lower
KL-divergence than others.

0 1000 2000 3000 4000 5000
Queries

20

40

60

80

Ac
cu

ra
cy

Target model (LR)
=
 = 0.2
 = 0.5
 = 1

(a) DP-SGD to train target

0 1000 2000 3000 4000 5000
Samples

20

40

60

80

Ac
cu

ra
cy

 %

Target model (LR)
 = 0.25
 = 2
 = 8
 = 

(b) Perturb output of query
Figure 4: Comparing test accuracy of the models
extracted by MARICH against different DP mecha-
nisms (DP-SGD and Output Perturbation) applied
on the target model.

Table 1: Statistics of accuracy & membership inference (MI) for different target models, datasets &
attacks. “-” means member dataset and target model is used. *BoC means Best of Competitors.

Member dataset Target model Query Dataset Algorithm Non-member dataset #Queries MI acc. MI agreement MI agreement AUC Accuracy
MNIST LR - - EMNIST 50,000 (100%) 87.99% - - 90.82%
MNIST LR EMNIST MARICH EMNIST 1863 (3.73%) 84.47% 90.34% 90.89% 73.98%
MNIST LR EMNIST BoC* EMNIST 1863 (3.73%) 78.00% 80.11% 83.07% 52.60%
MNIST LR - - CIFAR10 50,000 (100%) 98.02% - - 90.82%
MNIST LR CIFAR10 MARICH CIFAR10 959 (1.92%) 96.32% 96.89% 94.32% 81.06%
MNIST LR CIFAR10 BoC* CIFAR10 959 (1.92%) 93.70% 93.67% 91.53% 77.93%
MNIST CNN - - EMNIST 50,000 (100%) 89.97% - - 94.83%
MNIST CNN EMNIST MARICH EMNIST 6317 (12.63%) 90.62% 87.27% 86.71% 86.83%
MNIST CNN EMNIST BoC* EMNIST 6317 (12.63%) 90.73% 87.53% 86.97% 82.51%

CIFAR10 ResNet - - EMNIST 50,000 (100%) 93.61% - - 91.82%
CIFAR10 ResNet ImageNet MARICH EMNIST 8429 (16.58%) 90.40% 93.84% 76.51% 56.11%
CIFAR10 ResNet ImageNet BoC* EMNIST 8429 (16.58%) 90.08% 95.41% 72.94% 40.66%
BBCNews BERT - AGNews 1,490 (100%) 98.61% - - 98.65%
BBCNews BERT AGNews MARICH AGNews 1,070 (0.83%) 94.42% 91.02% 82.62% 87.01%
BBCNews BERT AGNews BoC* AGNews 1,070 (0.83%) 89.17% 86.93% 58.64% 76.41%

2. How close are the prediction distributions of the model extracted using MARICH and the target308

model? Can MARICH produce better replica of target’s prediction distribution than other active309

sampling methods, leading to better distributional equivalence?310

3. How do the models extracted by MARICH behave under Membership Inference (MI) in comparison311

to the target models, and the models extracted by RS with same budget? The MI accuracy achievable312

by attacking a model acts as a proxy of how informative is the model.313

4. How does the performance of extracted models change if Differentially Private (DP) mecha-314

nisms [DMNS06] are applied on target model either during training or while answering the queries?315

Accuracy of extracted models. MARICH extracts LR models with 1,863 and 959 queries selected316

from EMNIST and CIFAR10, while attacking a target LR model, fT
LR trained on MNIST (test317

accuracy: 90.82%). The models extracted by MARICH using EMNIST and CIFAR10 achieve test318

accuracy 73.98% and 86.83% (81.46% and 95.60% of fT
LR), respectively (Fig. 2a-2b). The models319

extracted using BoC show test accuracy 52.60% and 79.09% (57.91% and 87.08% of fT
LR), i.e.320

significantly less than that of MARICH. MARICH attacks a ResNet, fT
ResNet, trained on CIFAR10 (test321

accuracy: 91.82%) with 8,429 queries from ImageNet dataset, and extracts a CNN. The extracted322

CNN shows 56.11% (61.10% of fT
ResNet) test accuracy. But the model extracted using BoC achieves323

42.05% (45.79% of fT
ResNet) accuracy (Fig. 2c). We also attack a CNN with another CNN, which324

also reflects MARICH’s improved performance (Fig. 2d). To verify MARICH’s effectiveness for text325

data, we also attack a BERT, fT
BERT trained on BBCNews (test accuracy: 98.65%) with queries from326

the AGNews dataset. By using only 474 queries, MARICH extracts a model with 85.45% (86.64%327

of fT
BERT ) test accuracy. The model extracted by BoC shows test accuracy 79.25% (80.36% of328

fT
BERT ). For all the models and datasets, MARICH extracts models that achieve test accuracy closer329

to target models, and are more accurate than models extracted by the other algorithms.330

Distributional equivalence of extracted models. One of our aims is to extract a distributionally331

equivalent model of the target fT using MARICH. Thus, in Figure 3, we illustrate the KL-divergence332

(mean±std. over 10 runs) between the prediction distributions of the target model and the model333

extracted by MARICH. Due to brevity, we show two cases in the main paper: when we attack i) an LR334

trained on MNIST with EMNIST with an LR, and ii) a ResNet trained on CIFAR10 with ImageNet335

with a CNN. In all cases, we observe that the models extracted by MARICH achieve ∼ 2− 4× lower336

KL-divergence than the models extracted by all other active sampling methods. These results show337

that MARICH is extracts high-fidelity distributionally equivalent models than competing algorithms.338

Membership inference with extracted models. In Table 1, we report accuracy, agreement in339

inference with target model, and agreement AUC of membership attacks performed on different340

target models and extracted models with different query datasets. The models extracted using341
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MARICH demonstrate higher MI agreement with the target models than the models extracted using342

its competitors in most of the cases. They also achieve MI accuracy close to the target model. These343

results indicate that the models extracted by MARICH act as informative replicas of the target models.344

Performance against privacy defenses. We test the impact of DP-based defenses deployed in the345

target model on the performance of MARICH. First, we train four target models on MNIST using346

DP-SGD [ACG+16] with privacy budgets ε = {0.2, 0.5, 1,∞} and δ = 10−5. As illustrated in347

Figure 4a, accuracy of the models extracted by querying DP target models are ∼ 2.3− 7.4% lower348

than the model extracted from non-private target models. Second, we apply an output perturbation349

method [DMNS06], where a calibrated Laplace noise is added to the responses of the target model350

against MARICH’s queries. This ensures ε-DP for the target model. Fig. 4b shows that performance of351

the extracted models degrade slightly for ε = 2, 8, but significantly for ε = 0.25. Thus, performance352

of MARICH decreases while operating against DP defenses but the degradation varies depending on353

the defense mechanism.354

Summary of results. From the experimental results, we deduce the following conclusions.355

Accuracy. Test accuracy (on the subsets of private datasets) of the models fE
MARICH are higher than the356

models extracted with the competing algorithms, and are ∼ 60− 95% of the target models (Fig. 2).357

This shows effectiveness of MARICH as a task accuracy extraction attack, while solving distributional358

equivalence and max-info extractions.359

Distributional equivalence. We observe that the KL-divergence between the prediction distributions360

of the target model and fE
MARICH are ∼ 2 − 4× lower than the models extracted by other active361

sampling algorithms. This confirms that MARICH conducts more accurate distributionally equivalent362

extraction than existing active sampling attacks.363

Informative replicas: Effective membership inference. The agreement in MI achieved by attacking364

fE
MARICH and the target model in most of the cases is higher than that of the BoC* (Table 1). Also,365

MI accuracy for fE
MARICH’s are 84.74%− 96.32% (Table 1). This shows that the models extracted by366

MARICH act as informative replicas of the target model.367

Query-efficiency. Table 1 shows that MARICH uses only 959−8, 429 queries from the public datasets,368

i.e. a small fraction of data used to train the target models. Thus, MARICH is significantly query369

efficient, whereas existing active learning attacks use 10k queries to commence [PGS+20, Table 2].370

Performance against defenses. Performance of MARICH decreases with the increasing level of DP371

applied on the target model, which is expected. But when DP-SGD is applied to train the target, the372

degradation is little (∼ 7%) even for ε = 0.2. In contrast, the degradation is higher when the output373

perturbation is applied with similar ε (0.25).374

Model-obliviousness and out-of-class data. By construction, MARICH is model-oblivious and can375

use out-of-class public data to extract a target model. To test this flexibility of MARICH, we try and376

extract a ResNet trained on CIFAR10 using a different model, i.e. CNN, and out-of-class data, i.e.377

ImageNet. We show CNNs extracted by MARICH are more accurate, distributionally close, and also378

lead to higher MI accuracy that the competitors, validating flexibility of MARICH.379

6 Conclusion and future directions380

We investigate the design of a model extraction attack against a target ML model (classifier) trained381

on a private dataset and accessible through a public API. The API returns only a predicted label for382

a given query. We propose the notions of distributional equivalence extraction, which extends the383

existing notions of task accuracy and functionally equivalent model extractions. We also propose384

an information-theoretic notion, i.e. Max-Info model extraction. We further propose a variational385

relaxation of these two types of extraction attacks, and solve it using an online and adaptive query386

selection algorithm, MARICH. MARICH uses a publicly available query dataset different from the387

private dataset. We experimentally show that the models extracted by MARICH achieve 56− 86%388

accuracy on the private dataset while using 959 - 8,429 queries. For both text and image data,389

we demonstrate that the models extracted by MARICH act as informative replicas of the target390

models and also yield high-fidelity replicas of the targets’ prediction distributions. Typically, the391

functional equivalence attacks require model-specific techniques, while MARICH is model-oblivious392

while performing distributional equivalence attack. This poses an open question: is distributional393

equivalence extraction ‘easier’ than functional equivalence extraction, which is NP-hard [JCB+20]?394
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Broader impact553

In this paper, we design a model extraction attack algorithm, MARICH, that aims to construct a554

model that has similar predictive distribution as that of a target model. In this direction, we show that555

popular deep Neural Network (NN) models can be replicated with a few number of queries and only556

outputs from their predictive API. We also show that this can be further used to conduct membership557

inference about the private training data that the adversary has no access to. Thus, MARICH points558

our attention to the vulnerabilities of the popular deep NN models to preserve the privacy of the559

users, whose data is used to train the deep NN models. Though every attack algorithm can be used560

adversarially, our goal is not to promote any such adversarial use.561

Rather, in the similar spirit as that of the attacks developed in cryptography to help us to design better562

defenses and to understand vulnerabilities of the computing systems better, we conduct this research563

to understand the extent of information leakage done by an ML model under modest assumptions. We564

recommend it to be further used and studied for developing better privacy defenses and adversarial565

attack detection algorithms.566

Erratum567

1. In the line 327, page 8 of the main paper, we had mentioned that we used 1,070 queries to extract568

a BERT with 87.01% accuracy. It is a mistake. We replace it by 474 queries and the accuracy569

value 85.45%.570

2. In line 328, page 8 of the main paper we had mentioned accuracy value of Best of Competitors to571

be 76.41%. This is to be replaced with 79.25%.572

3. In page 8 of the main paper, Table 1 is modified to include the results of the Best of Competitors573

(BoC) for each of the experimental setups, which makes the comparison more fair.574

In the main text (pages 1-9 of this PDF), we highlight the corresponding changes in red.575
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A Complete pseudocode of MARICH576

Algorithm 2 MARICH

Input: Target model: fT , Query dataset: DQ, #Classes: k
Parameter: #initial samples: n0, Training epochs: Emax, #Batches of queries: T , Query budget:
B, Subsampling ratios: γ1, γ2 ∈ (0, 1]
Output: Extracted model fE

1: //* Initialisation of the extracted model*// ▷ Phase 1
2: Qtrain

0 ← n0 datapoints randomly chosen from DQ

3: Y train
0 ← fT (Qtrain

0 ) ▷ Query the target model fT with Qtrain
0

4: for epoch← 1 to Emax do
5: fE

0 ← Train fE with (Qtrain
0 , Y train

0 )
6: end for
7: //* Adaptive query selection to build the extracted model*// ▷ Phase 2
8: for t← 1 to T do
9: Qentropy

t ← ENTROPYSAMPLING(fE
t−1,D

Q \Qtrain
t−1 , B)

10: Qgrad
t ← GRADIENTSAMPLING(fE

t−1, Q
entropy
t , γ1B)

11: Qloss
t ← LOSSSAMPLING(fE

t−1, Q
grad
t , Qtrain

t−1 , Y train
t−1 , γ1γ2B)

12: Y new
t ← fT (Qloss

t ) ▷ Query the target model fT with Qloss
t

13: Qtrain
t ← Qtrain

t−1 ∪Qloss
t

14: Y train
t ← Y train

t−1 ∪ Y new
t

15: for epoch← 1 to Emax do
16: fE

t ← Train fE
t−1 with (Qtrain

t , Y train
t )

17: end for
18: end for
19: return Extracted model fE ← fE

T
20:
21: EntropySampling (extracted model: fE , input data points: Xin, budget: B)
22: Qentropy ← argmaxX⊂Xin,|X|=B H(fE(Xin))

▷ Select B points with maximum entropy
23: return Qentropy

24:
25: GradientSampling (extracted model: fE , input data points: Xin, budget: γ1B)
26: E ← H(fE(Xin))
27: G← {∇xE | x ∈ Xin}
28: Cin ← k centres of G computed using K-means
29: Qgrad ← argminX⊂Xin,|X|=γ1B

∑
xi∈X

∑
xj∈Cin

∥∇xi
E −∇xj

E∥22
▷ Select γ1B points from Xin whose ∂E

∂x are closest to that of Cin

30: return Qgrad

31:
32: LossSampling (extracted model: fE , input data points: Xin, previous queries: Qtrain, previous

predictions: Ytrain, budget: γ1γ2B)
33: L← l(Ytrain, f

E(Qtrain)) ▷ Compute the mismatch vector
34: Qmis ← ARGMAXSORT(L, k) ▷ Select top-k mismatching points
35: Qloss ← argminX⊂Xin,|X|=γ1γ2B

∑
xi∈X

∑
xj∈Qmis

∥xi − xj∥22
▷ Select γ1γ2B points closest to Qmis

36: return Qloss
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B Theoretical analysis: Proofs of section 3577

In this section, we elaborate the proofs for the Theorems 3.2 and 3.4.2578

Theorem 3.2 (Upper Bounding Distributional Closeness). If we choose KL-divergence as the579

divergence function D, we can show that580

DKL(Pr(f
T
θ∗(Q), Q)∥Pr(fE

ω∗
DEq

(Q), Q)) ≤ min
ω

EQ[l(f
T
θ∗(Q), fE

ω (Q))]−H(fE
ω (Q)).

Proof. Let us consider a query generating distribution DQ on Rd. A target model fT
θ∗ : Rd → Y581

induces a joint distribution over the query and the output (or label) space, denoted by Pr(fT
θ∗ , Q).582

Similarly, the extracted model fT
θ∗ : Rd → Y also induces a joint distribution over the query and the583

output (or label) space, denoted by Pr(fE
ω , Q).584

DKL(Pr(f
T
θ∗(Q), Q)∥Pr(fE

ω (Q), Q))

=

∫
Q∈Rd

dPr(fT
θ∗(Q), Q) log

Pr(fT
θ∗(Q), Q)

Pr(fE
ω (Q), Q)

=

∫
Q∈Rd

Pr(fT
θ∗(Q)|Q = q) Pr(Q = q) log

Pr(fT
θ∗(Q)|Q = q)

Pr(fE
ω (Q)|Q = q)

dq

=

∫
Q∈Rd

Pr(fT
θ∗(Q)|Q = q) Pr(Q = q) log Pr(fT

θ∗(Q)|Q = q) dq

−
∫
Q∈Rd

Pr(fT
θ∗(Q)|Q = q) Pr(Q = q) log Pr(fE

ω (Q)|Q = q) dq

=

∫
Q∈Rd

Pr(fT
θ∗(Q)|Q = q) Pr(Q = q) log Pr(fT

θ∗(Q)|Q = q) dq + Eq∼DQ
[
l(fT

θ∗(q)), fE
ω (q))

]
≤ −H(fT

θ∗(Q) dq + Eq∼DQ
[
l(fT

θ∗(q)), fE
ω (q))

]
≤ −H(fE

ω (Q) dq + Eq∼DQ
[
l(fT

θ∗(q)), fE
ω (q))

]
(8)

The last inequality holds true as the extracted model fE
ω is trained using the outputs of the target585

model fT
θ∗ . Thus, by data-processing inequality, its output distribution possesses less information586

than that of the target model. Specifically, we know that if Y = f(X), H(Y ) ≤ H(X).587

Now, by taking minω on both sides, we obtain588

DKL(Pr(f
T
θ∗(Q), Q)∥Pr(fE

ω∗
DEq

(Q), Q)) ≤ min
ω

EQ[l(f
T
θ∗(Q), fE

ω (Q))]−H(fE
ω (Q)).

Here, ω∗
DEq ≜ argminω DKL(Pr(f

T
θ∗(Q), Q)∥Pr(fE

ω (Q), Q)). The equality exists if minima of589

LHS and RHS coincide.590

Theorem 3.4 (Lower Bounding Information Leakage). The information leaked by any Max-591

Information attack (Equation 3) is lower bounded as follows:592

I(Pr(fT
θ∗(Q), Q)∥Pr(fE

ω∗
MaxInf

(Q), Q)) ≥ max
ω
−EQ[l(f

T
θ∗(Q), fE

ω (Q))] +H(fE
ω (Q)).

Proof. Let us consider the same terminology as the previous proof. Then,593

I(Pr(fT
θ∗(Q), Q)∥Pr(fE

ω (Q), Q))

= H(fT
θ∗(Q), Q) +H(fE

ω (Q), Q)−H(fT
θ∗(Q), fE

ω (Q), Q)

= H(fT
θ∗(Q), Q) +H(fE

ω (Q), Q)−H(fE
ω (Q), Q|fT

θ∗(Q)) +H(fT
θ∗(Q))

≥ H(fE
ω (Q), Q)−H(fE

ω (Q), Q|fT
θ∗(Q)) (9)

≥ H(fE
ω (Q))−H(fE

ω (Q), Q|fT
θ∗(Q)) (10)

≥ H(fE
ω (Q))− EQ[l(f

E
ω (Q), fT

θ∗(Q))] (11)

2Throughout the proofs, we slightly abuse the notation to write l(Pr(X),Pr(Y )) as l(X,Y ) for avoiding
cumbersome equations.
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The inequality of Equation 9 is due to the fact that entropy is always non-negative. Equation 10 holds594

true as H(X,Y ) ≥ max{H(X), H(Y )} for two random variables X and Y . The last inequality is595

due to the fact that conditional entropy of two random variables X and Y , i.e. H(X|Y ), is smaller596

than or equal to their cross entropy, i.e. l(X,Y ) (Lemma B.1).597

Now, by taking maxω on both sides, we obtain598

I(Pr(fT
θ∗(Q), Q)∥Pr(fE

ω∗
MaxInf

(Q), Q)) ≤ max
ω
−EQ[l(f

T
θ∗(Q), fE

ω (Q))] +H(fE
ω (Q)).

Here, ω∗
MaxInf ≜ argmaxω I(Pr(fT

θ∗(Q), Q)∥Pr(fE
ω∗

MaxInf
(Q), Q)). The equality exists if maxima599

of LHS and RHS coincide.600

Lemma B.1 (Relating Cross Entropy and Conditional Entropy). Given two random variables X and601

Y , conditional entropy602

H(X|Y ) ≤ l(X,Y ). (12)

Proof. Here, H(X|Y ) ≜ −
∫
Pr(x, y) log Pr(x,y)

Pr(y) dν1(X)dν2(Y ) and l(X,Y ) ≜603

l(Pr(X),Pr(Y )) = −
∫
Pr(x) lnPr(y)dν1(X)dν2(Y ) denotes the cross-entropy, given ref-604

erence measures ν1 and ν2.605

l(X,Y ) = H(X) +DKL(Pr(X)∥Pr(Y ))

= H(X|Y ) + I(X;Y ) +DKL(PX∥PY )

≥ H(X|Y )

The last inequality holds as both mutual information I and KL-divergence DKL are non-negative606

functions for any X and Y .607
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C A review of active sampling strategies608

K-Center sampling (KC). K-Center sampling as an active learning algorithm that has been609

originally proposed to train CNNs sample-efiiciently [SS18]. For a given data pool, K-Center610

sampling iteratively selects the k datapoints that minimise the core set loss (see Equation 3, [SS18])611

the most for a given model fω. In this method, the embeddings (from the model under training) of612

the data points are used as the representative vectors, and K-Center algorithm is applied on these613

representative vectors.614

Least Confidence sampling (LC). Least confidence sampling method [Set09, LS06] iteratively615

selects the subset of k data points from a data pool, which are most uncertain at that particular instant.616

The uncertainty function (u(·|fω) : X → [0, 1]) is defined as617

u(x|fω) ≜ 1− Pr(ŷ|x),

where ŷ is the predicted class by a model fω for input x.618

Margin Sampling (MS). In margin sampling [JG19], a subset of k points is selected from a data619

pool, such that the subset demonstrates the minimum margin, where margin(·|fω) : X → [0, 1] is620

defined as621

margin(x|fω) ≜ Pr(ŷ1(x)|x, fω)− Pr(ŷ2(x)|x, fω),
where fω is the model, and ŷ1(x) and ŷ2(x) are respectively the highest and the second highest622

scoring classes returned by fω .623

Entropy Sampling (ES). Entropy sampling, also known as uncertainty sampling [LG94], iteratively624

selects a subset of k datapoints with the highest uncertainty from a data pool. The uncertainty is625

defined by the entropy function of the prediction vector, and is computed using all the probabilities626

returned by the model fω for a datapoint x. For a given point x and a model fω , entropy is defined as627

entropy(x|fω) ≜ −
|Y|∑
a=1

pa log(pa),

where pa = Pr[fω(x) = a] for any output class a ∈ {1, . . . , |Y|}. [LG94] mention that while using628

this strategy, “the initial classifier plays an important role, since without it there may be a long period629

of random sampling before examples of a low frequency class are stumbled upon". This is similar to630

our experimental observation that ES often demonstrate high variance in its outcomes.631

Random Sampling (RS). In random sampling, a subset of k datapoints are selected from a data632

pool uniformly at random.633

In our experiments, for query selection at time t, the extracted model at time t− 1, i.e. fE
t−1, is used634

as fω , and data pool at time t is the corresponding query dataset, except the datapoints that has been635

selected before step t. Hereafter, we deploy a modified version of the framework develop by [Hua21]636

to run our experiments using the active learning algorithms mentioned above.637
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D Extended experimental analysis638

In this section, we step-wise elaborate further experimental setups and results that we skipped for639

the brevity of space in the main draft. Specifically, we conduct our experiments in six experimental640

setups. Each experimental setup corresponds to a triplet (target model architecture trained on a private641

dataset, extracted model architecture, query dataset). Here, we list these six experimental setups in642

detail643

1. A Logistic Regression (LR) model trained on MNIST, a LR model for extraction, EMNIST dataset644

for querying645

2. A Logistic Regression (LR) model trained on MNIST, a LR model for extraction, CIFAR10646

dataset for querying647

3. A CNN model trained on MNIST, a CNN model for extraction, EMNIST dataset for querying648

4. A ResNet model trained on CIFAR10, a CNN model for extraction, ImageNet dataset for querying649

5. A ResNet model trained on CIFAR10, a ResNet183 model for extraction, ImageNet dataset for650

querying651

6. A BERT model4 trained on BBCNews, a BERT model for extraction, AGNews dataset for querying652

For each of the experimental setups, we evaluate five types of performance evaluations, which are653

elaborated in Section D.1, D.2.1, D.2.2, D.3, and D.4. While each of the following sections contain654

illustrations of the different performance metrics evaluating efficacy of the attack and corresponding655

discussions, Table 2- 4 contain summary of all queries used, accuracy, and membership inference656

statistics for all the experiments.657

D.1 Test accuracy of extracted models658

Test accuracy of the extracted model and its comparison with the test accuracy of the target model659

on a subset of the private training dataset, which was used by neither of these models, is the most660

common performance metric used to evaluate the goodness of the attack algorithm. The attacks661

designed solely to optimise this performance metric are called the task accuracy model extraction662

attacks [JCB+20].663

With MARICH, we aim to extract models that have prediction distributions closest to that of the target664

model. Our hypothesis is constructing such a prediction distribution lead to a model that also has665

high accuracy on the private test dataset, since accuracy is a functional property of the prediction666

distribution induced by a classifier. In order to validate this hypothesis, we compute test accuracies667

of the target models, and models extracted by MARICH and other active sampling algorithms in668

six experimental setups. We illustrate the evolution curves of accuracies over increasing number of669

queries in Figure 5.670

To compare MARICH with other active learning algorithms, we attack the same target models using671

K-centre sampling, Least Confidence sampling, Margin Sampling, Entropy Sampling, and Random672

Sampling algorithms (ref. Appendix C) using the same number of queries as used for MARICH in673

each setup.674

From Figure 5, we observe that in most of the cases MARICH outperforms all other competing675

algorithms.676

In this process, MARICH uses ∼ 500− 8000 queries, which is a small fraction of the corresponding677

query datasets. This also indicates towards the query-efficiency of MARICH.678

Extraction of a ResNet trained on CIFAR10 with a ResNet18. Along with the five experimental679

setups mentioned in the paper, we trained a ResNet with CIFAR10 dataset (DT here), that shows a680

test accuracy of 91.82% on a disjoint test set. We use ImageNet as DQ here, to extract a ResNet18681

model from the target model. We have restrained from discussing this setup in the main paper due to682

brevity of space.683

3We begin with a pre-trained ResNet18 model from https://pytorch.org/vision/main/models/
generated/torchvision.models.resnet18.html

4We use the pre-trained BERT model from https://huggingface.co/bert-base-cased
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Figure 5: Comparison of test accuracies achieved by models extracted by different active sampling
algorithms.
MARICH extracts a ResNet18 using 8429 queries, and the extracted ResNet18 shows test accuracy684

of 71.65 ± 0.88%. On the other hand, models extracted using Best of Competitors (BoC) using685

ImageNet queries shows accuracy of 70.67± 0.12%.686
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D.2 Fidelity of the prediction distributions of The extracted models687

Driven by the distributional equivalence extraction principle, the central goal of MARICH is to688

construct extracted models whose prediction distributions are closest to the prediction distributions689

of corresponding target models. From this perspective, in this section, we study the fidelity of690

the prediction distributions of models extracted by MARICH and other active sampling algorithms,691

namely K-centre sampling, Least Confidence sampling, Margin Sampling, Entropy Sampling, and692

Random Sampling.693

D.2.1 KL-divergence between prediction distributions694

First, as the metric of distributional equivalence, we evaluate the KL-divergence between the pre-695

diction distributions of the models extracted by MARICH and other active sampling algorithms. In696

Figure 6, we report the box-plot (mean, median ± 25 percentiles) of KL-divergences (in log-scale)697

calculated from 5 runs for each of 10 models extracted by each of the algorithms.698
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Figure 6: Comparison of KL-divergences (in log-scale) between the target prediction distributions
and prediction distributions of the models extracted by different active learning algorithms.

Results. Figure 6 shows that the KL-divergence achieved by the prediction distributions of models699

extracted using MARICH are at least ∼ 2− 10 times less than that of the other competing algorithms.700

This validates our claim that MARICH yields distributionally closer extracted model fE from the701

target model fT than existing active sampling algorithms.702
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D.2.2 Prediction agreement703
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Figure 7: Comparison of agreement in predictions (in %) between the target model and the models
extracted by different active learning algorithms.

In Figure 7, we illustrate the agreement in predictions of fE with fT on test datasets using different704

active learning algorithms. Prediction agreement functions as another metric of fidelity of prediction705

distributions constructed by extracted models in comparison with those of the target models.706

Similar to Figure 6, we report the box-plot (mean, median ± 25 percentiles) of prediction agreements707

(in %) calculated from 5 runs for each of 10 models extracted by each of the algorithms.708

Results. We observe that the prediction distributions extracted by MARICH achieve almost same to709

∼ 30% higher prediction agreement in comparison with the competing algorithms. Thus, we infer710

that in this particular case MARICH achieves better fidelity than the other active sampling algorithms,711

in some instances, while it is similar to the BoC in some instances.712
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D.3 Fidelity of parameters of the extracted models713
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(c) CNN with EMNIST queries

Marich KC LC MS ES RS

5.6 × 10 1

5.8 × 10 1

6 × 10 1

6.2 × 10 1

6.4 × 10 1

6.6 × 10 1

Lo
g(

Pa
ra

m
et

ri
c 

D
is

ta
nc

e 
(L

2)
)

(d) BERT with AGNews queries

Figure 8: Comparison of parametric fidelity for MARICH and different active learning algorithms.

Generating extracted models with low parametric fidelity is not a main goal or basis of the design714

principle of MARICH. Since parametric fidelity is a popularly studied metric to evaluate goodness715

of model extraction, in Figure 8, we depict the parametric fidelity of models extracted by different716

active learning algorithms.717

Let wE be the parameters of the extracted model and wT be the parameters of the target model. We718

define parametric fidelity as Fw ≜ log ∥wE−wT ∥2. Since the parametric fidelity is only computable719

when the target and extracted models share the same architecture, we report the four instances here720

where MARICH is deployed with the same architecture as that of the target model. For logistic721

regression, we compare all the weights of the target and the extracted models. For BERT and CNN,722

we compare between the weights in the last layers of these models.723

Results. For LR, we observe that the LR models extracted by MARICH have 20− 30 times lower724

parametric fidelity than the extracted LR models of the competing algorithms. For BERT, the BERT725

extracted by MARICH achieves 0.4 times lower parametric fidelity than the Best of Competitors726

(BoC). As an exception, for CNN, the model extracted by K-center sampling achieves 0.996 times727

less parametric fidelity than that of MARICH.728

Thus, we conclude that MARICH as a by-product of its distributionally equivalent extraction principle729

also extracts model with high parametric fidelity, which is often better than the competing active730

sampling algorithms.731
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D.4 Membership inference with the extracted models732

A main goal of MARICH is to conduct a Max-Information attack on the target model, i.e. to extract733

an informative replica of its predictive distribution that retains the most information about the private734

training dataset. Due to lack of any direct measure of informativeness of an extracted model with735

respect to a target model, we run Membership Inference (MI) attacks using the models extracted736

by MARICH, and other competing active sampling algorithms. High accuracy and agreement in MI737

attacks conducted on extracted models of MARICH and the target models implicitly validate our738

claim that MARICH is able to conduct a Max-Information attack.739

Observation 1. From Figure 9, we see that in most cases the probability densities of the membership740

inference are closer to the target model when the model is extracted using MARICH, than using all741

other active sampling algorithms (BoC, Best of Competitors).742
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Figure 9: Comparison among membership vs. non-membership probability densities for membership
attacks against models extracted by MARICH, the best of competitors (BoC) and the target model.
Each figure represents the model class and query dataset. Memberships and non-memberships
inferred from the model extracted by MARICH are significantly closer to the target model.
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Observation 2. In Figure 10, we present the agreements from the member points, nonmember points743

and overall agreement curves for varying membership thresholds, along with the AUCs of the overall744

membership agreements. We see that in most cases, the agreement curves for the models extracted745

using MARICH are above those for the models extracted using random sampling, thus AUCs are746

higher for the models extracted using MARICH.747
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(a) Logistic regression with EMNIST queries
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(b) Logistic regression with CIFAR10 queries
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(c) CNN with EMNIST queries
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(d) ResNet with CNN and ImageNet queries
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(e) ResNet with ResNet18 & ImageNet queries
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(f) BERT with AGNews queries

Figure 10: Comparison of membership, nonmembership and overall agreements of membership
attacks against models extracted by MARICH and the best of competitors with the target model trained
with MNIST. Each figure represents the model class and query dataset. Membership agreement of
the models extracted by MARICH are higher.

Observation 3. In Table 2, 3, and 4, we summarise the MI accuracy on the private training dataset,748

Nonmembership inference accuracy on the private training dataset, Agreement in MI w.r.t. the MI on749

the target model, and AUC of Agreement in MI with that of the target model for Logistic Regression750

(LR), CNN, ResNet, and BERT target models. We observe that, while compared with other active751

sampling algorithms, out of 6 combinations of (target model, extracted model, query dataset) under752

study, the models extracted by MARICH achieve the highest accuracy in MI and agreement in MI753

w.r.t. the target model, in most of the instances.754

Results. These observations support our claim that model extraction using MARICH gives models755

are accurate and informative replica of the target model.756
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E Significance and comparison of three sampling strategies757

Given the bi-level optimization problem, we came up with MARICH in which three sampling methods758

are used in the order: (i) ENTROPYSAMPLING, (ii) ENTROPYGRADIENTSAMPLING, and (iii)759

LOSSSAMPLING.760

These three sampling techniques contribute to different goals:761

• ENTROPYSAMPLING selects points about which the classifier at a particular time step is most762

confused763

• ENTROPYGRADIENTSAMPLING uses gradients of entropy of outputs of the extracted model w.r.t.764

the inputs as embeddings and selects points behaving most diversely at every time step.765

• LOSSSAMPLING selects points which produce highest loss when loss is calculated between target766

model’s output and extracted model’s output.767

One can argue that the order is immaterial for the optimization problem. But looking at the algorithm768

practically, we see that ENTROPYGRADIENTSAMPLING and LOSSSAMPLING incur much higher769

time complexity than ENTROPYSAMPLING. Thus, using ENTROPYSAMPLING on the entire query set770

is more efficient than the others. This makes us put ENTROPYSAMPLING as the first query selection771

strategy.772

As per the optimization problem in Equation (7), we are supposed to find points that show highest773

mismatch between the target and the extracted models after choosing the query subset maximising774

the entropy. This leads us to the idea of LOSSSAMPLING. But as only focusing on loss between775

models may choose points from one particular region only, and thus, decreasing the diversity of the776

queries. We use ENTROPYGRADIENTSAMPLING before LOSSSAMPLING. This ensures selection of777

diverse points with high performance mismatch.778

In Figure 11, we experimentally see the time complexities of the three components used. These are779

calculated by applying the sampling algorithms on a logistic regression model, on mentioned slices780

of MNIST dataset.781
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Entropy - Gradient sampling
Loss sampling

Figure 11: Runtime comparison of three sampling strategies to select queries from 4500 datapoints.

Table 5: Time complexity of different sampling Strategies
Sampling Algorithm Query space size #Selected queries Time (s)
Entropy Sampling 4500 100 1.82 ± 0.04
Entropy-Gradient Sampling 4500 100 10.56 ± 0.07
Loss Sampling 4500 100 41.64 ± 0.69
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F Performance against differentially private target models782

In this section, we aim to verify performance of MARICH against privacy-preserving mechanisms.783

Specifically, we apply a (ε, δ)-Differential Privacy (DP) inducing mechanism [DMNS06, DBB21]784

on the target model to protect the private training dataset. There are three types of methods to785

ensure DP: output perturbation [DMNS06], objective perturbation [CMS11, DBB18], and gradient786

perturbation [ACG+16]. Since output perturbation and gradient perturbation methods scale well for787

nonlinear deep networks, we focus on them as the defense mechanism against MARICH’s queries.788

Gradient perturbation-based defenses. DP-SGD [ACG+16] is used to train the target model on789

the member dataset. This mechanism adds noise to the gradients and clip them while training the790

target model. We use the default implementation of Opacus [YSS+21] to conduct the training in791

PyTorch.792

Following that, we attack the (ε, δ)-DP target models using MARICH and compute the corresponding793

accuracy of the extracted models. In Figure 12, we show the effect of different privacy levels ε on794

the achieved accuracy of the extracted Logistic Regression model trained with MNIST dataset and795

queried with EMNIST dataset. Specifically, we assign δ = 10−5 and vary ε in {0.2, 0.5, 1, 2,∞}.796

Here, ε =∞ corresponds to the model extracted from the non-private target model.797

We observe that the accuracy of the models extracted from private target models are approximately798

2.3 − 7.4% lower than the model extracted from the non-private target model. This shows that799

performance of MARICH decreases against DP defenses but not significantly.800
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Figure 12: Performance of models extracted by MARICH against (ε, δ)-differentially private target
models trained using DP-SGD. We consider different privacy levels ε and δ = 10−5. Accuracy of the
extracted models decrease with increase in privacy (decrease in ϵ).

Output perturbation-based defenses. Perturbing output of an algorithm against certain queries801

with calibrated noise, in brief output perturbation, is one of the basic and oldest form of privacy-802

preserving mechanism [DMNS06]. Here, we specifically deploy the Laplace mechanism, where a803

calibrated Laplace noise is added to the output of the target model generated against some queries.804

The noise is sampled from a Laplace distribution Lap(0, ∆
ε ), where ∆ is sensitivity of the output and805

ε is the privacy level. This mechanism ensures ε-DP.806

We compose a Laplace mechanism to the target model while responding to MARICH’s query and807

evaluate the change in accuracy of the extracted model as the impact of the defense mechanism. We808

use a logistic regression model trained on MNIST as the target model. We query it using EMNIST809

and CIFAR10 datasets respectively. We vary ε in {0.25, 2, 8,∞}. For each ε and query dataset, we810

report the mean and standard deviation of accuracy of the extracted models on a test dataset. Each811

experiment is run 10 times.812

We observe that decrease in ε, i.e. increase in privacy, causes decrease in accuracy of the extracted813

model. For EMNIST queries (Figure 13a), the degradation in accuracy is around 10% for ε = 2, 8 but814

we observe a significant drop for ε = 0.25. For CIFAR10 queries (Figure 13b), ε = 8 has practically815

no impact on the performance of the extracted model. But for ε = 2 and 0.25, the accuracy of816

extracted models drop down very fast.817
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Thus, we conclude that output perturbation defends privacy of the target model against MARICH for818

smaller values of ε. But for larger values of ε, the privacy-preserving mechanism might not save the819

target model significantly against MARICH.820
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(a) LR with EMNIST queries
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Figure 13: Performance of models extracted by MARICH against target models that perturbs the
output of the queries to achieve ε-DP. We consider different privacy levels ε. Accuracy of the
extracted models decrease with increase in privacy (decrease in ϵ).
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G Effects of model mismatch821

From Equation (7), we observe that functionality of MARICH is not constrained by selecting the822

same model class for both the target model fT and the extracted model fE . To elaborately study823

this aspect, in this section, we conduct experiments to show MARICH’s capability to handle model824

mismatch and impact of model mismatch on performance of the extracted models.825

Specifically, we run experiments for three cases: (1) extracting an LR model with LR and CNN, (2)826

extracting a CNN model with LR and CNN, and (3) extracting a ResNet model with CNN and ResNet18.827

We train the target LR and the target CNN model on MNIST dataset. We further extract these two828

models using EMNIST as the query datasets. We train the target ResNet model on CIFAR10 dataset829

and extract it using ImageNet queries. The results on number of queries and achieved accuracies are830

summarised in Table 6 and Figure 14.831

Observation 1. In all the three experiments, we use MARICH without any modification for both the832

cases when the model classes match and mismatch. This shows universality and model-obliviousness833

of MARICH as a model extraction attack.834

Observation 2. From Figure 14, we observe that model mismatch influences performance of the835

model extracted by MARICH. When we extract the LR target model with LR and CNN, we observe836

that both the extracted models achieve almost same accuracy and the extracted CNN model achieves837

even a bit more accuracy than the extracted LR model. In contrast, when we extract the CNN target838

model with LR and CNN, we observe that the extracted LR model achieves lower accuracy than the839

extracted CNN model. Similar observations are found for extracting the ResNet with ResNet18 and840

CNN, respectively.841

Conclusions. From these observations, we conclude that MARICH can function model-obliviously.842

We also observe that if we use a less complex model to extract a more complex model, the accuracy843

drops significantly. But if we extract a low complexity model with a higher complexity one, we844

obtain higher accuracy instead of model mismatch. This is intuitive as the low-complexity extracted845

model might have lower representation capacity to mimic the non-linear decision boundary of the846

high-complexity model but the opposite is not true. In future, it would be interesting to delve into the847

learning-theoretic origins of this phenomenon.848
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Figure 14: Effect of model mismatches on models extracted by MARICH.

Table 6: Effect of model mismatch on accuracy of The extracted models.
fE fT #samples Accuracy
LR LR 5130 82.37 ± 5.7%
LR CNN 5130 85.41 ± 0.57%

CNN LR 5440 57.81 ± 3.64%
CNN CNN 5440 91.63 ± 0.42%

ResNet CNN 8429 56.11 ± 1.35%
ResNet ResNet18 8429 71.65 ± 0.88%
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H Choices of hyperparameters849

In this section, we list the choices of the hyperparameters of Algorithm 1 for different experiments850

and also explain how we select them.851

Hyperparameters γ1 and γ2 are kept constant, i.e., 0.8, for all the experiments. These two parameters852

act as the budget shrinking factors.853

Instead of changing these two, we change the number of points n0, which are randomly selected854

in the beginning, and the budget B for every step. We obtain the optimal hyperparameters for each855

experiment by performing a line search in the interval [100, 500].856

We further change the budget over the rounds. At time step t, the budget, Bt = αt ×Bt−1. The idea857

is to select more points as fE goes on reaching the performance of fT . Here, α > 1 and needs to be858

tuned. We use α = 1.02, which is obtained through a line search in [1.01, 1.99].859

For number of rounds T , we perform a line search in [10, 20].860

Table 7: Hyperparameters for different datasets and target models.
Member Dataset Target Model Attack Model Attack Dataset Budget Initial points γ1 γ2 Rounds Epochs/Round Learning Rate

MNIST LR LR EMNIST 250 300 0.8 0.8 10 10 0.02
MNIST LR LR CIFAR10 50 100 0.8 0.8 10 10 0.02
MNIST CNN CNN EMNIST 550 500 0.8 0.8 10 10 0.015
MNIST CNN CNN CIFAR10 750 500 0.8 0.8 10 10 0.03

CIFAR10 ResNet CNN ImageNet 750 500 0.8 0.8 10 8 0.2
CIFAR10 ResNet ResNet18 ImageNet 750 500 0.8 0.8 10 8 0.02

BBC News BERT BERT AG News 60 100 0.8 0.8 6 3 5× 10−6
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