Supplementary Material

Additional Discussion
Divergence-based Conditional Probability
P(7 | G) is unchanged from the previous definition in the
paper, that is
z(m) - w(m)
Ymrco 2(m) - w(n)
Thus, the full definition of the equation for P(q | G) is

P(r|G):=

P(q|G) =Y Plqg| mP(r|G)

TrEO

(¢ | m)-2(m) - w(r)
Z

20T on e > w()

This definition is useful to more explicitly highlight the
connection of this KL divergence-based conditional proba-
bility with the sampling and weighting steps described in the
IRPL model.

Given for each fact ¢; € O an associated Bernoulli
distribution P.(g;) = P(q; | G), and a hard assign-
ment P}(q;) = 1. Let Pg(OF) = [Lig,cor Pt(q;) and

Po(0") = [1;.q,e0r Pb@:) = 1.

The KL divergence is simplified as follows:
Dt (Po(OF) | Po(OF)) = Po(0F)log L2107
kL (o €] o Po(OF)

1 1

= |0 —————

® Pe(07)

= log 1

[Ti.q.cor Pé(a)
== Z log P& (a:)

i:q; €OF

GBFS Solvers

We evaluate several greedy best first search (GBFS) plan-
ners that expand nodes with the lowest heuristic value,
breaking ties by unit cost. When using multiple heuristics,

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

we apply heuristic alternation (Roger and Helmert 2010),
which avoids order bias and ensures fair comparison.

Table 1 shows that our heuristics, pcp and rpop, im-
prove coverage over a baseline using the Landmark heuris-
tic (Richter, Helmert, and Westphal 2008), while maintain-
ing similar expansion speed. Used alone, they underper-
form compared to h!™ as their P(O | G) estimates resem-
ble a more exploratory breadth-first search, as indicated by
Claim 1, favoring nodes near the start and failing to reach
deep plans in time. When used with landmarks, pcp and rpop
improve the performance of the GBES solvers, unlike using
a breadth-first search second open list for exploration, that
instead reduces the performance compared to the baseline
h!™ variant.

Why not use P(G | O) to estimate heuristics?

From our theoretical section, we discuss both maximizing
P(O | G), as well as P(G | O), but experimentally we only
estimate P(O | G). The main reason for this is that our ex-
perimental contributions are modifications and extensions of
existing techniques both in Planning and Goal Recognition.
Previous work in GR as planning generally estimates P(O |
G) (Ramirez and Geffner 2010; Masters and Sardifia 2021;
Wilken et al. 2024), and then derives the Bayesian posterior,
as opposed to directly estimating P(G | O). In planning,
however, we would need to estimate multiple posteriors for
different observations, such that their values can be ranked.
As such, we cannot treat the Bayesian denominator as a
normalizing constant, and must instead estimate P(O), or
P(O|=G) from the underlying distribution of the P(O | G).
We believe that obtaining effective estimates and derivations
for these quantities is better framed as future work, as it lies
outside the core focus of our current study and may require
new techniques.

We also describe how maximizing according to P(G | O)
is more “goal-directed” than P(O | G). As such, our cur-
rent contributions can provide a foundation to understand
whether estimating P(G | O) would be desirable if our esti-
mates are inaccurate, or if we should prefer using P(O | G)
in such cases. This aspect, however, also requires further
study, making it more suitable for future work.

Number of sampled relaxed plans for RPOP

We note that altering the number of sampled relaxed plans
in the RPOP information extraction phase between 10, 100,
1000, and 10000 samples does not improve coverage mean-
ingfully with this technique in empirical tests, so we did not
focus on evaluating this aspect in performance benchmarks.
We hypothesize that the quality of estimates obtained from
relaxed plans, which approximate an inherently biased dis-
tribution rather than that of the non-relaxed problem, are not
informative enough to gain any benefit from larger sample
counts. It mainly affects the computational cost of the infor-
mation extraction phase, as such we kept it at 100 to have a
meaningful number of samples, while retaining low compu-
tation times.

We do note that in several problems, the rpop-UTP ver-
sion of the heuristic re-weights sampled plans by placing
most of the weight (>90%) on a single plan. Given the lower
coverage but greater Agile score of this variant, it seems to
induce a more “high-risk high-reward” behaviour: it priori-
tises relaxed plans that are estimated to lead to solutions with
fewer node generations, solving problems earlier when they
prove valid, but potentially failing more when they do not.

Magnitude of Changes in Number of Expansions

Figure 1 compares the magnitudes of the changes in number
of expanded nodes to solve problems between BFWS(f5)
and our proposed variants. Results support our discussion in
the main paper, whereby both our heuristics positively im-
pact (reduce) the number of expansions on average across
tested problems.

Sampling Supporter Actions

Extracting fact observation probabilities relies on obtaining
sets of supporter actions that constitute relaxed plans, and
evaluating the proportion of such relaxed plans that achieve
each fact. We provide the algorithm for sampling supporter
actions as presented in (Wilken et al. 2024) in Alg. 1. In
red we highlight portions of the original algorithm we modi-
fied in our implementation in Alg. 2. First, we directly insert
all goal condition facts into the set C of facts that must be
achieved (line 5), and thus search for achievers for the en-
tire goal statement in a single pass, as opposed to separately
seeking achievers for each goal fact and merging achievers
for different goal facts together at a later stage. This is done
to improve overall computational cost, and account for ac-
tions that achieve more than one relevant fact for the entire
goal statement. Our second modification involves selecting
the set of candidate supporter actions. Rather than all sup-
porter actions in the earliest layer of the RPG in which they
occur, we select the set of valid supporter actions with min-
imum h-add heuristic value (line 13).

Algorithm 1 Supporter Action Sampling - Original.

1: function SAMPLERELEVANTACTIONS(g;, RPG, sq,

N)
2 count <+ {} > Map from action to count in samples
3 samples « [| > List of generated supporter sets
4 for i € range(0, N) do
5: C <y > Facts to be supported
6: found +
7 sups + 0
8: for t = RPG.levels to 0 do
9: newC + 0
10 while |C| > 0 do
11: p < C.pop()
12: psups <~
13: forto = 0totdo
14: for all « € RPG.level(t2) do
15: if jadd(a) N {p}| > O then
16: psups < psups U {a}
17: end if
18: end for
19: if [psups| > 0 then
20: break
21: end if
22: end for
23: psups <— MINCOUNT(psups, count)
24: a < RANDOM(psups)
25: found + found U {p}
26: C <+ C\{p}
27: sups < sups U {a}
28: count[a] < countla] + 1
29: for all n € pre(a) do
30: ifn ¢ sgAn ¢ foundAn ¢ C then
31: newC < newC U {n}
32: end if
33: end for
34: for all r € add(a) do
35: C+ C\{r}
36: newC «+ newC \ {r}
37: end for
38: end while
39: C + C U {newC}
40: end for
41: samples < samples.add(sups)
42: end for
43: return samples

44: end function

Algorithm 2 Supporter Action Sampling - Ours.

1: function SAMPLERELEVANTACTIONS(GG, RPG, s,
N)

2: count <— {} > Map from action to count in samples
3: samples + [] > List of generated supporter sets
4: for i € range(0, N) do
5: for g; € G do C + g; > Support all goal facts
6: found +
7: sups + ()
8: for t = RPG.levels to 0 do
9: newC <+ ()
10 while |C| > 0 do
11: p < C.pop()
12: psups < ()
13: PSUPS <— MINHADDSUPPORTERS(D, T, RPG)
14: psups <— MINCOUNT(psups, count)
15: a <— RANDOM(psups)
16: found < found U{p}
17: C + C\{p}
18: sups < sups U{a}
19: countla] < countla] + 1
20: for all n € pre(a) do
21: ifn ¢ soAn ¢ foundAn ¢ C then
22: newC <+ newC U {n}
23: end if
24: end for
25: for all » € add(a) do
26: C+«+ C\{r}
27: newC' < newC \ {r}
28: end for
29: end while
30: C + CU{newC}
31: end for
32: samples < samples.add(sups)
33: end for
34: return samples

35: end function

Experimental Considerations
Measuring Agile score

The Agile score is calculated for all planners using the over-
all process runtime provided by the Lab environment (Seipp
et al. 2017). This is done to obtain less biased estimates,
without relying on the search runtime measured by the plan-
ning libraries themselves, which may vary in when they start
or stop measurements.

BFWS Variants

* BFWS(f5): BFWS solver with evaluation function f5 :=
(Waer 49, F#g), where #r is the #r partition function
from (Lipovetzky and Geftner 2017), and #g¢ is the goal
count heuristic. Remaining ties are broken by path length.

e BFWS(f5)-pcp: BEFWS(f5) where third ties are broken
by pcp, and remaining ties are broken by path length.

e BFWS(f5)-rpop,.: BEWS(f5) where third ties are broken
by rpop,, and remaining ties are broken by path length.

BFWS(f5)-rpop,-UTP adopts rpop,. with an additional
UTP sample relaxed plan weighting function.

¢ BFWS(f5)-Landmarks: BFWS solver with evaluation
function f5 := (Wgy im, Im), where Im is the Landmarks
heuristic (Richter, Helmert, and Westphal 2008). Remain-
ing ties are broken by path length.

¢ BFWS(f5)-Landmarks-rpop,.: BFWS(f5)-Landmarks
where third ties are broken by rpop,, and remaining
ties are broken by path length. A key consideration is
that it automatically reverts to using #g¢ instead of the
landmarks heuristic if it detects more than 100 facts in
the goal condition. This is a practical consideration that
is done to limit the number of problem partitions created
by the planner, as traces used by rpop, start only at the
most recent heuristic improvement. If there are too many
improvements, then rpop,. is restarted too often and does
not inform the search. Since the number of landmarks is
greater or equal to the number of goal facts, switching
helps reduce this problem in such cases.

*« BFWS(f5):: BEWS(f5) solver that substitutes the nor-
mal open list with a trimmed open list (Rosa and Lipovet-
zky 2024). This open list variant limits the maximum
depth allowed of the binary heap, limiting memory us-
age. The maximum binary heap depth allowed by the open
list is a hyperparameter, and is set to 18, following results
in (Rosa and Lipovetzky 2024). All BFWS,(f5) variants
are the same as variants described above, but also adopt a
trimmed open list.

¢ BFWS(f5);-RPOP,.-Dual: A dual-strategy solver, where
a frontend solver attempts to solve the problem and, if it
fails, it falls back to a backend solver. The frontend solver
is BFWS(f5);-RPOP,., the backend is the backend solver
of Dual-BFWS (Lipovetzky and Geffner 2017). This con-
figuration is the same as BFNoS-Dual (Rosa and Lipovet-
zky 2024) albeit substituting the BFNoS frontend with
our proposed BFWS(f5),-RPOP,.. As such, like BFNoS-
Dual, it adopts both time and memory thresholds to signal
the fallback of the frontend solver. We set the time thresh-
olds to 1500 sec and the memory threshold to 6000 MB.
We use as a reference the 1600 sec and 6000 MB thresh-
olds of BFNoS-Dual, but reduce the time threshold due to
the faster solution times of our proposed solver compared
to BFNoS.

Sources and commands for Benchmark Planners

BFWS, Dual-BFWS, Approximate BFWS. Run on
LAPKT (Ramirez et al. 2015).

BFWS —--grounder FD -d <domain>
-p <problem> —--search_type BEFWS-£f5

BFWS —--grounder FD -d <domain>
-p <problem> --search_ type DUAL-BFWS

Approximate_BFWS --grounder Tarski
—-d <domain> -p <problem>
—-—seed <seed>

BFNoS-Dual Run on LAPKT-BFNoS (Ramirez et al.
2025).

BFWS —--grounder FD

-d <domain> -p <problem>
——-search_type BFNOS
——fallback_backend
——-backend_type DUAL-BFWS
——time_limit 1600
——memory_limit 6000
——tol_seed <seed>

LAMA Run on the Fast Downward planning system
(Helmert 2006).

—-—-alias lama-first <domain> <problem>

Scorpion-Maidu We run a “first” version of Scorpion
Maidu (Corréa et al. 2023b), which halts after finding a so-
lution rather than improving the plan, from the IPC-2023
branch of the code base (Corréa et al. 2023a).

<domain> <problem>
——evaluator "hlm=lmcount (
Im_factory=1lm_reasonable_orders_hps (
Im_rhw()),
transform=adapt_costs (one),pref=false)’
—-—evaluator
"hff=ff (transform=adapt_costs (one))’
—-search ’'lazy(alt([single (hff),
single (hff, pref_only=true),
single (hlm),
single (hlm, pref_only=true),
type_based ([hff, g() 1),
novelty_open_list (novelty (width=2,
consider_only_novel_states=true,
reset_after_progress=True),
break_ties_randomly=False,
handle_progress=move)],
boost=1000) ,preferred=[hff,hlm],
cost_type=one, reopen_closed=false)”’

Expansions

10° 10

(a) BFWS vs. BFWS-pcp

7

Expansions

10° 10 7

(b) BFWS vs. BEWS-rpop;-

Figure 1: Num Expansions (x-axis vs. y-axis) (lower is better). Comparing BFWS(f5) with BEWS(f5)-pcp and BEWS(f5)-
rpop,, BEWS(f5)-rpop,- was ran with seed O for this comparison. Blue crosses on the border indicate problems not solved by
one planner. The majority of data points are below the red line. This indicates a meaningful reduction in the average number of
expansions across all tested instances.

Domain hlm | pcp rpop hlm, gn | hlm, pcp | hlm, rpop
agricola-sat18-strips 12 0 0+£0.0 12 3 1240.5
airport 26 24 244+0.0 26 28 29+0.0
assembly 0 5 0+0.0 0 5 0+0.0
barman-sat14-strips 0 0 0+£0.0 0 0 0£0.0
blocks 35 18 24+0.0 35 35 3540.0
caldera-sat18-adl 9 4 2+0.0 8 10 91+0.5
cavediving-14-adl 6 6 7+0.0 7 7 7+0.0
childsnack-sat14-strips 0 0 0+£0.0 0 0 0£0.0
citycar-sat14-adl 0 0 0+£0.0 0 0 0£0.0
data-network-sat18-strips 0 1 0+£0.0 0 1 0+£0.0
depot 13 9 6+0.0 13 13 13+0.5
driverlog 19 11 10£0.0 18 19 18+0.0
elevators-satl 1-strips 0 0 0+0.0 0 0 0+£0.0
flashfill-sat18-adl 8 3 4+0.0 7 12 11+0.0
floortile-sat14-strips 0 0 0+£0.0 0 0 2+0.0
folding 0 1 0+0.0 7 8 7+0.0
freecell 80 78 15+0.0 80 80 80+0.0
ged-sat14-strips 20 1 0+0.0 20 20 2040.0
grid 4 2 4£0.0 4 4 540.0
gripper 20 6 6+0.0 20 20 20+0.0
hiking-sat14-strips 2 2 240.0 2 2 7+0.0
labyrinth 9 9 10+0.0 9 9 9+0.0
logistics00 28 12 1440.0 28 28 284+0.0
maintenance-sat14-adl 9 0 0+£0.0 9 11 9+0.0
miconic 150 | 50 40+£0.0 150 150 150+0.0
movie 30 30 30+0.0 30 30 3040.0
mprime 18 27 24+0.0 18 24 224+0.0
mystery 14 16 14£0.0 14 16 1440.0
nomystery-sat11-strips 7 6 4£0.0 7 14 11£0.0
nurikabe-sat18-adl 11 7 4+0.0 10 11 9+0.6
openstacks-sat14-strips 20 0 0+0.0 20 19 20+0.0
organic-synthesis-split-sat18-strips 4 4 4+0.0 3 3 4+0.0
parcprinter-sat1 1-strips 0 6 0+0.0 12 12 12+0.0
parking-sat14-strips 0 0 0+£0.0 0 0 0£0.0
pathways 5 5 4£0.0 5 6 4+0.0
pegsol-sat11-strips 20 15 16+0.0 19 19 194+0.0
pipesworld-notankage 29 25 194+0.0 32 38 31+1.4
pipesworld-tankage 15 13 114+0.0 20 22 234+0.6
psr-small 50 43 494+0.0 44 45 49+0.0
quantum-layout 18 8 1+0.0 18 18 18+0.0
recharging-robots 11 13 6+0.0 13 14 13£0.0
ricochet-robots 1 2 4£0.6 1 2 4+0.0
rovers 17 7 5+0.0 17 16 16£0.0
rubiks-cube 4 6 54+0.9 8 8 71+0.0
satellite 9 8 4+£0.5 8 9 10+0.8
scanalyzer-sat1 1 -strips 20 3 3+0.6 20 20 20+0.0
schedule 71 22 18£0.5 59 65 624+0.0
settlers-sat18-adl 3 0 0+£0.0 1 1 240.6
slitherlink 2 1 1+0.0 3 4 31+0.0
snake-sat18-strips 20 1 0+£0.5 3 3 3+0.0
sokoban-satl 1-strips 6 3 240.0 8 7 7+0.0
spider-sat18-strips 13 3 0+£0.0 13 13 16£0.7
storage 17 14 174+0.0 15 16 17+0.0
termes-sat18-strips 10 0 3+0.0 9 9 104+0.0
tetris-sat14-strips 20 0 0+0.0 19 18 194+0.5
thoughtful-sat14-strips 5 6 4+£0.0 5 5 5+0.0
tidybot-sat11-strips 18 9 31+0.0 18 18 19+0.0
tpp 23 6 6+0.0 21 21 214+0.6
transport-sat14-strips 2 0 0+0.0 0 0 0+0.6
trucks-strips 4 2 440.0 4 6 8+0.0
visitall-sat14-strips 20 0 0+£0.0 20 20 20+0.0
woodworking-sat1 1-strips 1 1 1+£0.0 1 1 1+0.0
zenotravel 20 10 81+0.0 20 20 20£0.0
Coverage (1831) 1004 | 564 | 444 £2.83 993 1038 1042 £2.39

Table 1: Comparative performance analysis across GBFS variants, employing one alternating open list per heuristic. Values for
rpop variants represent the mean and include the standard deviation across 3 measurements, using seeds from O to 2.

Domain BFWS(f5) | BEWS(f5)-pcp | BEWS(f5)-rpop,, | BFWS.(f5) | BFWS.(f5)-pcp | BFWS,(f5)-rpop;
agricola-sat18-strips 10 12 12+0.6 11+£0.8 12+0.6 13£0.5
airport 47 48 474+0.6 47+£0.5 48+0.5 48+0.7
assembly 30 30 30+0.5 29+1.1 30+0.0 30+0.5
barman-sat14-strips 20 20 20+0.0 20+0.0 20+0.0 20+0.0
blocks 35 35 354+0.0 354+0.0 354+0.0 3540.0
caldera-sat18-adl 15 16 18+0.6 18+0.5 19+0.0 19+0.5
cavediving-14-adl 7 7 7£0.0 7+0.0 7+0.0 7+0.0
childsnack-sat14-strips 0 1 0+£0.0 0+£0.5 1£0.0 0+0.0
citycar-sat14-adl 5 5 5+0.6 20+0.0 15+1.3 20+0.0
data-network-sat18-strips 11 12 17£0.8 17+1.1 174+0.8 2040.5
depot 22 22 2240.0 2240.0 224+0.0 2240.0
driverlog 20 20 2040.0 2040.0 2040.0 2040.0
elevators-satl 1-strips 20 20 20+£0.0 20+£0.0 20+£0.0 20+£0.0
flashfill-sat18-adl 12 12 16+0.5 13+0.5 13+0.6 174+0.6
floortile-sat14-strips 2 1 2+0.0 1+0.0 1+0.0 2+0.0
folding 8 5 8+0.8 8+0.0 540.0 8+0.8
freecell 80 80 80+0.0 80+0.0 80+0.0 80+0.0
ged-sat14-strips 20 20 20+0.0 20+0.0 20+0.0 20+0.0
grid 5 5 540.0 540.0 540.0 540.0
gripper 20 20 20+0.0 204+0.0 20+0.0 20+0.0
hiking-sat14-strips 11 11 9+1.5 15+0.7 17+1.6 12+1.4
labyrinth 15 15 15+0.0 15+0.5 15+0.0 15+0.0
logistics00 28 28 284+0.0 284+0.0 284+0.0 28+0.0
maintenance-sat14-adl 17 16 16+0.5 17+0.0 16£0.0 17+£0.5
miconic 150 150 150+0.0 150+0.0 150+0.0 150+0.0
movie 30 30 30+0.0 3040.0 30+0.0 30+0.0
mprime 30 35 3440.0 354+0.0 354+0.0 3540.0
mystery 19 19 18+0.5 19+0.0 1940.0 1940.5
nomystery-satl 1-strips 16 14 15+0.8 14+0.9 14+0.6 15+0.8
nurikabe-sat18-adl 16 17 16+0.8 16+0.0 17+0.0 16+1.5
openstacks-sat14-strips 20 19 20+£0.0 20+0.0 20+0.6 20+0.0
organic-synthesis-split-sat18-strips 5 5 5+0.0 5+0.0 540.0 6+0.0
parcprinter-sat1 1-strips 9 9 16£0.0 8+0.8 9+0.6 16+0.0
parking-sat14-strips 20 20 20+0.0 20+0.0 20+0.0 20+0.0
pathways 24 27 29+0.5 254+0.5 26+1.3 29+0.8
pegsol-satl 1-strips 19 20 19+0.0 19+0.0 20+£0.0 19+0.0
pipesworld-notankage 50 50 50+0.0 5040.0 5040.0 50+0.0
pipesworld-tankage 44 44 444+0.8 4340.6 43£1.0 44+0.8
psr-small 47 48 48+0.0 49+0.0 49+0.0 49+0.0
quantum-layout 20 20 20+0.0 20+0.0 20+0.0 20+0.0
recharging-robots 14 14 14+£0.5 13+£0.5 14+0.0 13+0.6
ricochet-robots 1 3 20+£0.0 1+0.0 3+0.0 20+£0.0
rovers 39 39 40+0.6 40+0.0 40+0.5 3940.8
rubiks-cube 5 5 540.0 540.0 540.0 540.0
satellite 28 29 30+0.0 354+0.6 324+0.8 3440.6
scanalyzer-sat11-strips 20 20 20+£0.5 20+£0.0 20+0.0 20+£0.0
schedule 149 149 150+0.0 149+0.9 150+0.6 150+0.0
settlers-sat18-adl 10 11 10+1.1 11£0.5 124+0.6 14+0.6
slitherlink 4 5 4+0.5 410.0 540.6 4+0.5
snake-sat18-strips 18 18 19£1.0 191+0.5 1940.5 184+0.0
sokoban-sat1 1-strips 15 15 1440.6 15+0.5 154+0.6 16+1.1
spider-sat18-strips 14 15 12+1.4 14£0.0 15£0.0 12+1.4
storage 29 29 30+0.5 30+0.6 30+0.9 30+0.0
termes-sat18-strips 9 10 8+0.5 10+£0.5 10+0.0 9+0.5
tetris-sat14-strips 20 20 20+£0.0 20+0.0 20+0.0 20+0.0
thoughtful-sat14-strips 20 20 20+0.0 20+0.0 20+0.0 20+0.0
tidybot-sat11-strips 20 20 20+£0.5 20+£0.0 20+0.0 20+0.5
tpp 29 29 3040.6 304+0.5 29+0.6 3040.0
transport-sat14-strips 20 20 20+£0.0 20+£0.0 20+£0.9 20+£0.0
trucks-strips 8 8 9+0.8 9+0.9 8+0.5 10£1.1
visitall-sat14-strips 20 20 20+0.0 2040.0 20+0.0 20+0.0
woodworking-sat11-strips 20 20 20+0.0 20+0.0 20+0.0 20+0.0
zenotravel 20 20 20+0.0 20+0.0 20+0.0 20+0.0
Coverage (1831) 1510 1526 1560+5.0 1557+3.7 1558+2.6 1599+3.8
% Score (100%) 76.77 77.63% 80.20%+0.35 79.90%+0.24 | 79.99%=+0.19 82.94%+0.32

Table 2: Comparative performance analysis across the full set of benchmark domains. % score is the average of the % of
instances solved in each domain. Values for solvers with randomized components represent the mean and include the standard
deviation across 5 measurements, using seeds from O to 4.

Domain Dual- Apx-BFWS LAMA- | Scorpion | BFNoS-Dual BFWS;-hlm BFWS;-hlm BFWS;-hlm
BFWS (Tarski) First Maidu RPOP,. RPOP,-UTP | RPOP,-Dual
agricola-sat18-strips 13 18+0.6 12 12 15+0.0 14+1.0 1440.6 14+0.6
airport 46 4740.6 34 38 46+0.6 47+0.0 47+0.0 47+0.0
assembly 30 30+0.0 30 30 30+0.0 30£0.0 30+0.6 30+0.0
barman-sat14-strips 20 20+0.0 20 20 20+0.0 20=£0.0 20+0.0 20+0.0
blocks 35 35+0.0 35 35 354+0.0 35£0.0 35+0.0 35+0.0
caldera-sat18-adl 18 19+0.6 16 16 16+0.0 18+0.6 184+0.6 16+0.0
cavediving-14-adl 8 8+0.6 7 7 8+0.0 7+0.6 740.0 8+0.0
childsnack-sat14-strips 9 5+1.5 6 6 8+0.0 0+0.0 0+0.0 8+0.6
citycar-sat14-adl 20 20+0.0 5 7 20+0.0 19+0.6 20+0.0 194+0.6
data-network-sat18-strips 16 19£0.0 13 16 15£0.6 18+0.0 18+0.0 18+0.0
depot 22 22+0.0 20 22 224+0.0 2240.0 2240.0 224+0.0
driverlog 20 20+0.0 20 20 20+0.0 20=£0.0 20+0.0 20+0.0
elevators-sat11-strips 20 20+0.0 20 20 20+£0.0 20+0.0 20+0.0 20+0.0
flashfill-sat18-adl 17 15+1.0 14 15 17+0.0 174+0.6 154+0.6 18+0.6
floortile-sat14-strips 2 240.0 2 2 24+0.0 1+0.6 1+0.6 240.0
folding 5 5+0.6 11 11 9+0.0 8+0.6 9+1.0 8+0.6
freecell 80 80+0.0 79 80 80+0.0 80£0.0 80+0.0 80+0.0
ged-sat14-strips 20 2040.0 20 20 20+0.0 20+0.0 204+0.0 20+0.0
grid 5 540.0 5 5 540.0 540.0 540.0 540.0
gripper 20 20+0.0 20 20 2040.0 20=£0.0 20+0.0 20+0.0
hiking-sat14-strips 18 20+0.0 20 20 20+0.0 20=£0.0 20+0.0 20+0.0
labyrinth 5 1840.6 1 0 154+0.6 154+0.0 154+0.0 154+0.0
logistics00 28 28+0.0 28 28 28+0.0 28+0.0 28+0.0 2840.0
maintenance-sat14-adl 17 17+0.0 11 13 17+0.0 174+0.0 1740.0 17£0.0
miconic 150 150+0.0 150 150 150+0.0 150+0.0 15040.0 150+0.0
movie 30 30+0.0 30 30 30+0.0 30+0.0 30+0.0 30+0.0
mprime 35 35+0.0 35 35 35+0.0 35+0.0 35+0.0 35+0.0
mystery 19 19+0.0 19 19 1940.0 1940.0 19+0.0 194+0.0
nomystery-sat11-strips 19 14£1.0 11 19 19£0.0 15+0.6 1740.6 1940.0
nurikabe-sat18-adl 14 18+0.6 9 11 16+0.6 16+0.6 154+0.0 16+0.6
openstacks-sat14-strips 20 20+0.0 20 20 20+0.0 20+£0.0 20+0.0 20+0.0
organic-synthesis-split-sat18-strips 12 8+0.6 14 14 1240.0 540.0 4+0.5 12+0.0
parcprinter-sat1 1-strips 16 10+0.6 20 20 20+£0.0 16+0.0 1640.6 20+0.0
parking-sat14-strips 20 20+0.0 20 20 20+0.0 20+0.0 20+0.0 20+0.0
pathways 30 29+1.5 23 25 30+0.0 30+0.6 29+0.6 30+0.0
pegsol-satl 1-strips 20 20+0.0 20 20 20+0.0 20=£0.0 20+0.0 20+0.0
pipesworld-notankage 50 50+0.0 43 45 50+£0.0 50+0.0 50+0.0 50+0.0
pipesworld-tankage 42 45+0.6 43 43 43+0.6 48+1.0 47£1.0 48+1.0
psr-small 50 50+0.0 50 50 50-+0.0 4940.0 4940.0 50+0.0
quantum-layout 20 20+0.0 20 20 20+0.0 20=£0.0 20+0.0 20+0.0
recharging-robots 11 14+1.0 13 13 14+1.0 144+0.0 144+0.0 144+0.6
ricochet-robots 20 18+0.0 14 18 20+0.0 20+0.0 20+0.0 20+0.0
rovers 39 40+0.6 40 40 40+0.6 39+£1.0 40+0.0 39+1.0
rubiks-cube 6 5+0.6 20 20 540.0 540.0 540.0 5+0.0
satellite 32 34+0.0 36 36 32+1.0 34+0.6 33+0.6 33£1.2
scanalyzer-satl 1-strips 20 20+0.6 20 20 20+0.0 1940.0 19+0.6 194+0.0
schedule 150 150+0.0 150 150 149+0.6 150+0.0 150+0.0 150+0.0
settlers-sat18-adl 7 12+0.6 17 18 11+0.6 19+0.6 19+0.6 19+0.6
slitherlink 6 5+0.6 0 0 6+0.6 740.0 540.6 74+0.0
snake-sat18-strips 17 20+0.0 5 14 20+0.0 1940.0 18+0.0 194+0.0
sokoban-sat1 1-strips 18 15+0.0 19 19 16+0.6 15+0.6 13+1.0 16+0.6
spider-sat18-strips 16 17£1.2 16 16 18+0.0 19+0.6 19£1.5 194+0.0
storage 30 30+0.0 20 25 30+0.0 30+0.6 30+0.5 30+0.0
termes-sat18-strips 10 5+2.0 16 14 10+0.6 10+0.6 10+0.6 10£0.0
tetris-sat14-strips 17 20+0.0 16 17 20+0.0 20=£0.0 20+0.0 20+0.0
thoughtful-sat14-strips 20 20+0.0 15 19 20+0.0 20=£0.0 20+0.0 20+0.0
tidybot-sat11-strips 18 20+0.0 17 20 20+0.0 19+0.0 194+0.0 194+0.0
tpp 30 30+0.0 30 30 30+0.0 30£0.0 30+0.0 30+0.0
transport-sat14-strips 20 20+0.0 17 18 20+0.0 20+0.0 20+0.0 20+£0.0
trucks-strips 19 13+1.0 18 20 18+0.0 9+0.6 9+0.6 18+0.0
visitall-sat14-strips 20 20+0.0 20 20 20+0.0 20-£0.0 2040.0 20+0.0
woodworking-sat1 1-strips 20 13+1.5 20 20 20+0.0 20+0.0 20+0.0 20+0.0
zenotravel 20 20+0.0 20 20 2040.0 20=£0.0 20+0.0 20+0.0
Coverage (1831) 1607 1611+£3.5 1535 1591 1641+0.6 1621+3.2 1616+2.1 1655+1.5
% Score (100%) 83.56% | 83.83%+0.17 | 79.07% | 82.92% | 86.23%+0.06 | 84.59%=+0.25 | 84.22%40.13 | 86.99%+0.08
Agile score 12009 | 1233.7£0.24 | 11923 1206.4 1173.3+3.5 1229.44+3.4 1236.0+1.9 1232.6+2.9

Table 3: Comparative performance analysis across the full set of benchmark domains. % score is the average of the % of
instances solved in each domain. Values for solvers with randomized components represent the mean and include the standard
deviation across 3 measurements, using seeds from 0 to 2.

References

Corréa, A. B.; Frances, G.; Hecher, M.; Longo,
D. M.; and Seipp, J. 2023a. Scorpion maidu sat-
isficing ipc2023-classical. https://github.
com/ipc2023-classical/planner8/tree/
ipc2023-classical.

Corréa, A. B.; Frances, G.; Hecher, M.; Longo, D. M.; and
Seipp, J. 2023b. Scorpion Maidu: Width search in the Scor-
pion planning system. In Tenth International Planning Com-
petition (IPC-10): Planner Abstracts.

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191-246.

Lipovetzky, N., and Geffner, H. 2017. Best-first width
search: Exploration and exploitation in classical planning.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 31.

Masters, P., and Sardifia, S. 2021. Expecting the unex-
pected: Goal recognition for rational and irrational agents.
297:103490.

Ramirez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. 1121-1126.
Ramirez, M.; Lipovetzky, N.; Singh, A.; and Muise, C.
2015. Lightweight Automated Planning ToolKiT. http:
//lapkt.org/. Accessed: 2025.

Ramirez, M.; Lipovetzky, N.; Singh, A.; Muise, C.; and
Rosa, G. 2025. Lightweight Automated Planning ToolKiT
- BFNoS Planners. https://github.com/grosa97/
LAPKT-BFNoS. Accessed: 2025.

Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In AAAI, volume &, 975-982.

Roger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 20, 246-249.

Rosa, G., and Lipovetzky, N. 2024. Count-based novelty
exploration in classical planning. In Proceedings of the Eu-
ropean Conference on Artificial Intelligence, volume 392,
4181-4189.

Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward lab.

Wilken, N.; Cohausz, L.; Bartelt, C.; and Stuckenschmidt,
H. 2024. Fact probability vector based goal recognition. In
ECAI 2024. 10S Press. 4254-4261.

