
TaskBench

StarsStars 23k23k LicenseLicense Apache 2.0Apache 2.0 arXivarXiv PaperPaper 🤗🤗 DatasetDataset

Benchmarking Large Language Models for Task Automation

Hosted on Hugging Face: microsoft/Taskbench
Croissant metadata: metadata.json

Table of Contents

Table of Contents

Introduction

Metadata

Author Statement

Dataset Distribution

Dataset

Introduction

Processing Statistics

Prompts for Dataset Construction

Evaluation with TaskBench

Setup

Inference

Evaluation

https://github.com/microsoft/JARVIS
https://github.com/microsoft/JARVIS
https://opensource.org/licenses/Apache-2.0
https://opensource.org/licenses/Apache-2.0
https://arxiv.org/abs/2311.18760
https://arxiv.org/abs/2311.18760
https://huggingface.co/datasets/microsoft/Taskbench
https://huggingface.co/datasets/microsoft/Taskbench
https://huggingface.co/datasets/microsoft/Taskbench
https://huggingface.co/datasets/microsoft/Taskbench/raw/main/metadata.json

Reproduce the Leaderboard

Dataset Construction with Back-Instruct

Construct Your Own Tool Graph

Generate the Dataset

Leaderboard

Multimedia Tools Domain

HuggingFace Tools Domain

Daily Life APIs Domain

Introduction

TaskBench is a benchmark for evaluating large language models (LLMs) on task

automation. Task automation can be formulated into three critical stages: task

decomposition, tool invocation, and parameter prediction. This complexity makes data

collection and evaluation more challenging compared to common NLP tasks. To address

this challenge, we propose a comprehensive evaluation framework and a high-quality

dataset for task automation. We also provide a leaderboard of 17 LLMs on TaskBench,

including GPT-4, Claude-2, and other open-source LLMs.

Metadata

URL: TaskBench

Croissant metadata:metadata.json

Version: 1.0.0

License: Apache-2.0

Dataset Size: 17,331

Responsable AI (RAI) metadata

Data collection: The data for TaskBench has been generated by the

proposed method called Back-Instruct. This approach involves creating a

'tool graph' which represents user intent, and then simulating user

instructions and annotations. This is a three-stage process involving tool

graph construction, graph sampling, and then back-instruction where the

sampled tool graph is used to generate the task steps and instruction. Two

verification processes are used to maintain the quality of the dataset: rule-

based critics and LLM -based critics, both of which check alignment

between the generated data and the sampled tool graph. The final dataset

is further verified by human annotators.

Data biases: There could be biases in the dataset; for example, the tool

graph may not represent all possible combinations of tools and

dependencies and is limited by the initial tool library. Also, the analysis and

selection of nodes and edges might be biased. In addition, there might be

biases in the human annotations, as they depend on the individual

perspectives and understanding of the annotators.

Personal sensitive information: The TaskBench dataset does not contain

personal or sensitive information. The dataset was synthesized for the

purpose of benchmarking Large Language Models in task automation and

does not involve user-provided information. However, users of TaskBench

https://huggingface.co/datasets/microsoft/Taskbench
https://huggingface.co/datasets/microsoft/Taskbench/raw/main/metadata.json

should acknowledge the importance of not using the model to generate or

disclose personal or sensitive information. The focus should remain on

generating practical and general solutions for task automation. The

instructions provided for generating data emphasize clarity, practicality,

and non-specificity to individual users' information.

Author Statement

The authors of the TaskBench dataset bear all responsibility in case of violation of

rights, privacy, or any other issues that may arise from the use of the dataset. The

dataset is provided under the Apache-2.0 license, and users are required to comply

with the terms of this license when using the dataset. The authors have taken all

necessary steps to ensure that the dataset is free of personal or sensitive information

and that it is suitable for benchmarking Large Language Models in task automation.

Users of the dataset should acknowledge the license terms and use the dataset

responsibly for research purposes only.

Dataset Distribution

The TaskBench dataset is hosted on the Hugging Face Datasets platform (TaskBench),

where it is available for download and use by researchers and developers. The dataset

is provided under the Apache-2.0 license, and users are required to comply with the

terms of this license when using the dataset. The dataset is maintained by the authors,

who will ensure that it remains available for research purposes and that any updates or

changes to the dataset are communicated to users in a timely manner.

Dataset

To generate high-quality evaluation datasets, we introduce the concept of Tool Graph to

represent the decomposed tasks in user intent, and adopt a Back-Instruct method to

simulate user instruction and annotations. The data collection process consists of three

stages:

Tool Graph Construction: we first build a tool library and use the tool library to

construct the tool graph. The nodes in the tool graph represent the tools, and the

edges represent the dependencies between the tools, including the resource

dependency and temporal dependency.

Graph Sampling: we sample the tool graph to generate the tool graph for each

sample. The sampled tool graph is used to generate the tool invocation graph and

the instruction. According to the topology of the sampled tool graph, we sample

the tool graph in three ways: node, chain and DAGs, which represent different

structures of task decomposition for task automation.

Back-Instruct: we first use the sampled tool graph to generate the task steps

and the instruction. Then, we use the instruction to generate the tool invocation

parameters to complete the tool invocation graph.

https://huggingface.co/datasets/microsoft/Taskbench

To improve the quality of the dataset, we use LLM-based and rule-based critics to verify

the dataset. The former aims to use LLM to check the alignments between the

generated data and the sampled tool graph. While the latter uses straightforward rules

to determine the alignment between the tool graphs in created data and the sampled

tool graphs. Here, we use the nodes and edges of the sampled graph to determine the

consistency. Details statistics of the processing are shown in the table.

After LLM-based and rule-based critics, we further verify the dataset with human

annotators, including checking the syntax of the instructions, the correctness of the

tool invocation graph, and the correctness of the tool invocation parameters. The final

dataset contains 28,271 samples in three domains: HuggingFace Tools, Multimedia

Tools, and Daily Life APIs. Details statistics of the human verification are shown in the

table.

Introduction

The TaskBench dataset contains datasets in three areas: HuggingFace Tools,

Multimedia Tools, and Dailylife APIs. Each dataset directory includes three files:

data.json: the dataset file, which contains the samples in the dataset.
graph_desc.json: the tool graph description file, which contains the tool graph
of the dataset.

user_requests.json: contains the user requests of the dataset.
tool_desc.json: the tool description file, which contains the tool descriptions
of the dataset.

├─data_dailylifeapis
│ data.json
│ graph_desc.json
│ user_requests.json
│ tool_desc.json
│
├─data_huggingface
│ data.json
│ graph_desc.json
│ user_requests.json
│ tool_desc.json
│
└─data_multimedia
 data.json
 graph_desc.json
 user_requests.json
 tool_desc.json

Processing Statistics

We provide the statistics of the dataset processing in the following tables:

Overview: we provide the number of samples in each dataset, the number of

samples checked by critics, and the number of samples verified by humans.

Grouped by the tool invocation graph structure, e.g. node, chain, and DAGs, we

also provide the number of samples in each group.

LLM-based and Rule-based Critics: we provide the number of samples checked

by LLM-based critics, rule-based critics and both critics.

Human Verification: Human verification is built on the samples checked by

critics, which includes three parts: syntax checking, instruction checking, and

tool invocation graph checking. We provide the number of samples in each part,

and along with the number of samples that are discarded or fixed.

Dataset #Samples

#Samples

Checked by

Critics (%)

#Samples

Verified by

Humans (%)

Node Chain DAG

Hugging

Face

Models

12,217
8,457

(69.22%)

7,458

(61.76%)
3,067 3,642 837

Multimedia

Tools
8,904

6,281

(70.54%)

5,555

(62.71%)
2,037 2,982 565

Dailylife

APIs
7,150

5,432

(75.97%)

4,318

(60.42%)
1,258 2,787 275

Dataset #Samples

#Checked by

LLM-based

Critics (%)

#Checked by

Rule-based

Critics (%)

#Checked by

Both Critics

(%)

Hugging

Face Models
12,217 9,042 (74.01%)

10,289

(84.22%)

8,457

(69.22%)

Multimedia

Tools
8,904 6,959 (78.16%) 7,363 (82.69%)

6,281

(70.54%)

Dailylife APIs 7,150 5,694 (79.63%) 6,271 (87.70%)
5,432

(75.97%)

Dataset

#Samples

Checked

by Critics

#Correct

Samples

(%)

#Discarded

(%)

#Fixed

for

Syntax

(%)

#Fixed for

Instructions

(%)

#Fixed for

Tool

Invocation

Graph (%)

Hugging

Face

Models

8,457
6,974

(82.46%)

911

(10.77%)

27

(0.32%)
328 (3.87%)

843

(9.96%)

Multimedia

Tools
6,281

5,262

(83.77%)

697

(11.09%)

11

(0.17%)
107 (1.70%)

526

(9.96%)

Dailylife

APIs
5,432

4,307

(79.29%)

714

(13.14%)

6

(0.11%)
92 (1.68%)

332

(6.11%)

Prompts for Dataset Construction

1. Back Instruct: Given sampled tool graph, generate task steps and instruction.

Given a tool graph with tools as nodes, and invoking chains between tools as

edges. The following tools (nodes) are available with their corresponding

descriptions and input/outputs types:\n Node 1:{"id": "Image-to-Image", "desc":

"Image-to-image is the task of transforming a source image to match the

characteristics of a target image or a target image domain. Any image manipulation

and enhancement is possible with image to image models.", "input-type":

["image"], "output-type": ["image"]}\n Node 2:{"id": "Image-Enhancement",

"desc": "Image enhancement is the process of adjusting digital images to improve

their quality or make them more visually appealing. It can involve adjusting

brightness, contrast, sharpness, and color balance.", "input-type": ["image"],

"output-type": ["image"]}\n ······ These tools can be connected as follows (the

directed edges are invoking chains among tools):\n Edge: Image-to-Image ->

Image-Enhancement\n ······ Based on the above tool graph, please be skillful to

generate the according task steps, user request and tool invoking graph.

\nRequirements: \n1. the generated user request should be somewhat clear, self-

contained (user-specified text, image, video, audio, content should be contained in

the request) and practical (help users solve a practical problem); \n2. the task

steps must be strictly aligned with the tool graph (nodes and edges) and

reasonable, the tool invoking graph must align with task steps, also with the given

tool graph; \n3. the user request just can be decomposed into task steps solved by

the tool invoking graph; \n4. each task step corresponds to a tool node in the tool

graph and tool invoking graph, and the number of task steps must be same with

the nodes. Each tool node can only be used once; \n5. if need image/audio/video

resources in user request, please use files 'example.[jpg/mp4/wav/png]'; \n6. the

dependencies among task steps must align with the edges of tool graph and tool

invoking graph; \n7. the number and types of tool parameters in the generated tool

invoking graph need to be consistent with the pre-defined input/outputs types of

the tools. \nNow please generate your result (with random seed {seed}) in a

compact JSON format:\n {"task_steps": [step description of one or more steps],

"user_request": "your high-quality and self-contained synthesized request",

"invoking_graph": {"nodes": [{"id": "tool name", "input": [either user-specified text

or resource file 'example.[jpg/mp4/wav/png'] in the above user request, or the

dependent tool name whose output is required by this node]}], "links": [{"source":

"tool name i", "target": "tool name j"}]}}

2. LLM-based Critic: Check the correctness of the task steps, user request, and

tool invoking graph.

{"task_steps": [step description of one or more steps], "user_request": "your

high-quality and self-contained synthesized request", "invoking_graph": {"nodes":

[{"id": "tool name", "input": [either user-specified text or resource file 'example.

[jpg/mp4/wav/png'] in the above user request, or the dependent tool name whose

output is required by this node]}], "links": [{"source": "tool name i", "target": "tool

name j"}]}, "check_by_teacher": "This field is filled by your strict and well-trained

teacher, minor mistakes are complete intolerable to him. He evaluated whether

your synthesized user request, tool invoking graph are valid and whether they are

aligned with the given tool graph (strictly checked step by step according to the

above requirements). Some comments from him place here (start with 'Let me

check your result step by step, and evaluate the 'Executable' and 'Correct' of the

tool invoking graph (Executable means that the tool invoking graph executed

successfully, regardless of alignment with the given tool graph. While Correct

implies that the tool invoking graph are not only 'Executable' but also strictly

consistent (with strictly same nodes and same edges) with the given tool graph).

After carefully evaluating, found some mistakes:' and end with a conclusion:

'Conclusion: Executable: no/yes, Correct: no/yes'.)"}

Evaluation with TaskBench

On top of the TaskBench dataset, we provide a comprehensive evaluation framework for

task automation. The evaluation framework consists of three stages: task

decomposition, tool invocation, and parameter prediction. We provide the evaluation

metrics for each stage:

Task Decomposition: Since task steps are diverse text distributions, we use the

Rouge-1 (R1), Rouge-2 (R2), and Bertscore F1 (BsF) metrics to evaluate the task

decomposition results.

Tool Invocation: We report the F1 of node prediction (n-F1) and edge prediction

(e-F1) in the tool invocation graph to evaluate the tool invocation results. Edge

prediction reflects the correctness of the dependencies between tools, while

node prediction reflects the correctness of the tool prediction.

Parameter Prediction: For tool parameters prediction, we report the parameter

type (or name) F1 (t-F1) and parameter value F1 (v-F1).

To evaluate the task automation performance of LLMs on TaskBench we provide the

evaluation code and data, please follow the instructions below:

Setup

conda create -n taskbench python=3.8
conda activate taskbench
pip install -r requirements.txt

Additionally, if you wish to evaluate open-source large language models, you will also

need to deploy the LLMs locally using an OpenAI-compatible API. We recommend

using the fastchat tool to deploy the service to the localhost:8000 endpoint.

pip install fastchat
pip install vllm
pip install "fastapi[all]"

python3 -m fastchat.serve.controller
python3 -m fastchat.serve.vllm_worker --model-path lmsys/vicuna-7b
python3 -m fastchat.serve.openai_api_server --host localhost --por

Inference

For convenience, it is recommended to deploy all LLMs to the same endpoint, such as

localhost:8000. To generate the prediction file on TaskBench, specify the name of
the LLM using the following command:

python inference.py \
 --llm gpt-4 \
 --data_dir data_multimedia \
 --temperature 0.2 \
 --top_p 0.1 \
 --api_addr localhost \
 --api_port 8000 \
 --multiworker 5 \
 --use_demos 0 \
 --reformat true \
 --reformat_by self \
 --log_first_detail true \
 --use_demos 2 \
 --dependency_type resource \
 --tag true

Evaluation

With the predictions in place, you can now evaluate the LLMs. The predictions file is

saved by default in the dataset's folder under the name predictions. Execute the
following command to calculate the evaluation metrics (saved in the metrics folder):

python evaluate.py \
 --data_dir data_multimedia \
 --prediction_dir $prediction_dir \
 --llm gpt-4 \
 --splits all \
 --n_tools all \
 --mode add \
 --dependency_type resource \
 -m all

Reproduce the Leaderboard

To reproduce the leaderboard in Multimedia Tools domain, you can use the script

run_leaderboard.sh. The script will evaluate the performance of each LLM. The

results will be saved in the metrics folder.

./run_leaderboard.sh data_multimedia predictions 3

Dataset Construction with Back-Instruct

We have provided the dataset for three domains: Hugging Face Tools

(data_huggingface), Multimedia Tools (data_multimedia), and Daily Life APIs

(data_dailylifeapis). If you want to generate your own dataset, please follow the

instructions below:

Construct Your Own Tool Graph

First, you need to build your own tool library. The tool library is a JSON file that contains

the description of the tools and tool parameters. Two formats of the tool are supported:

// Tool with type-specific parameters
{
 "id": "Image-to-Image",
 "desc": "Image-to-image is the task of transforming a source ima
 "input-type": [
 "image"
],
 "output-type": [
 "image"
]
}
// API with request parameters
{
 "id": "send_sms",
 "desc": "Send an sms to a specific phone number",
 "parameters": [
 {
 "name": "phone_number",
 "type": "string",
 "desc": "The phone number to send the sms to"
 },
 {
 "name": "content",
 "type": "string",
 "desc": "The content of the sms"
 }
]
}

Then based on the tool library, you can use the script generate_graph.py to generate

the tool graph. Now we support two type of tool graph: resource dependency graph and

temporal dependency graph. For type-specific parameters, we use the resource

dependency graph. For API with request parameters, we use the temporal dependency

graph. You can specify the tool graph type by the parameter --dependency_type. In
the future, we will support more types of tool graphs.

python generate_graph.py \
 --tool_desc tool_desc.json \
 --dependency_type resource \
 --data_dir data_multimedia

Note: The auto-generated tool graph may not be perfect. You can manually modify

the tool graph to make it more reasonable. You can check the tool graph through

the visualization tool visualize_graph.py. We recommend that you manually

create the tool graph thoroughly, which will help you to generate a high-quality

dataset.

Generate the Dataset

After generating the tool graph, you can use the script data_engine.py to generate

the dataset. You need to specify the tool graph description file to --graph_desc and

the tool description file to --tool_desc.

specify the graph and tool description file
python data_engine.py \
 --graph_desc data_multimedia/graph_desc.json \
 --tool_desc data_multimedia/tool_desc.json \
 --llm gpt-4 \
 --temperature 1.0 \
 --top_p 1.0 \
 --dependency_type resource \
 --save_figure false \
 --api_addr localhost \
 --api_port 8002 \
 --check true \
 --use_async true \
 --multiworker 5

python format_data.py \
 --data_dir data_multimedia \
 --dependency_type resource

Leaderboard

Based on the evaluation framework and the TaskBench dataset, we provide a

leaderboard of task automation performance of 17 LLMs. We provide the evaluation

results of each LLM in the following tables:

Multimedia Tools Domain

LLM R1 R2 BsF n-F1 e-F1 t-F1 v-F1

gpt-4 60.84 40.08 91.19 90.90 69.27 87.06 72.31

claude-2 48.85 23.59 89.22 80.94 53.01 71.63 51.58

gpt-3.5-turbo 49.66 28.51 89.54 72.83 44.02 65.91 40.80

text-davinci-003 49.23 27.97 89.21 73.97 45.81 68.48 40.70

codellama-13b 44.46 23.30 88.66 62.78 24.61 48.19 29.13

codellama-7b 43.76 22.93 88.81 53.29 14.76 38.04 24.45

vicuna-13b-v1.5 44.75 23.75 88.94 60.61 14.78 41.62 23.62

nous-hermes-13b 35.73 16.11 87.53 58.97 8.90 43.60 21.69

wizardlm-13b 35.87 17.55 87.29 51.24 4.82 39.10 18.74

vicuna-7b-v1.5 39.46 19.83 88.53 46.06 4.26 29.72 13.74

longchat-7b-v1.5 37.85 18.14 87.64 43.08 3.95 27.89 13.41

baichuan-13b-chat 20.41 3.77 83.31 42.51 5.19 28.04 11.77

llama-2-13b-chat 26.16 7.88 84.82 43.87 1.63 29.99 11.32

internlm-chat-7b 16.64 3.56 82.91 23.60 1.14 13.75 6.09

llama-2-7b-chat 34.51 15.91 87.56 26.47 0.91 18.27 5.84

mpt-7b-chat 30.94 11.90 86.08 8.68 0.18 3.19 1.02

vicuna-33b-v1.3 31.27 13.37 86.17 6.40 0.01 2.47 1.09

HuggingFace Tools Domain

LLM R1 R2 BsF n-F1 e-F1 t-F1 v-F1

gpt-4 52.42 30.38 90.12 81.54 54.70 77.31 60.86

claude-2 44.21 21.12 88.71 79.00 43.51 63.00 43.08

text-davinci-003 36.68 17.61 87.03 59.38 29.37 52.53 36.04

gpt-3.5-turbo 42.99 21.58 88.47 69.49 33.36 55.88 36.32

codellama-13b 38.75 18.37 88.32 53.16 14.64 32.06 18.87

nous-hermes-13b 37.36 16.91 88.18 53.62 8.29 37.51 17.66

wizardlm-13b 34.47 15.38 87.38 54.40 2.05 38.76 15.35

llama-2-13b-chat 39.37 18.64 88.67 48.47 7.30 31.61 15.38

longchat-7b-v1.5 27.09 8.97 85.50 48.18 0.56 33.57 13.94

baichuan-13b-chat 19.93 5.97 83.85 53.85 7.65 33.17 13.53

vicuna-13b-v1.5 37.12 17.03 87.90 50.82 7.28 28.34 11.85

vicuna-7b-v1.5 27.17 10.02 85.61 42.87 2.76 24.65 10.81

vicuna-33b-v1.3 33.52 14.75 86.73 43.40 4.82 22.71 10.07

codellama-7b 38.97 18.62 88.46 37.59 5.35 22.50 9.20

internlm-chat-7b 20.53 7.16 83.74 24.39 0.83 15.41 6.64

llama-2-7b-chat 24.12 8.68 85.43 27.30 0.74 13.05 2.79

mpt-7b-chat 33.21 12.73 87.23 20.86 0.12 9.61 1.83

Daily Life APIs Domain

LLM R1 R2 BsF n-F1 e-F1 t-F1 v-F1

gpt-4 85.07 72.36 96.91 96.91 80.53 97.02 71.14

claude-2 82.26 69.88 96.64 93.52 75.31 92.71 64.72

codellama-13b 89.86 83.27 97.90 87.73 63.16 84.26 62.38

gpt-3.5-turbo 58.53 39.90 91.29 85.37 60.67 81.97 55.66

text-davinci-003 68.27 50.30 93.59 80.42 54.90 78.37 53.40

nous-hermes-13b 78.49 68.04 95.61 73.45 3.50 64.47 47.22

vicuna-13b-v1.5 81.76 71.76 96.31 75.67 12.48 64.27 47.31

wizardlm-13b 82.02 72.43 96.36 69.34 14.18 55.00 40.53

codellama-7b 56.98 38.83 91.31 59.33 27.23 52.99 34.81

vicuna-33b-v1.3 54.96 39.71 91.40 52.49 16.37 39.95 29.64

vicuna-7b-v1.5 40.26 21.19 87.27 52.73 14.23 36.30 24.67

baichuan-13b-chat 49.43 27.25 88.32 52.55 10.61 37.48 23.77

llama-2-13b-chat 45.39 22.42 87.74 55.77 17.02 35.11 22.94

longchat-7b-v1.5 29.05 14.84 83.90 47.26 14.44 25.73 18.18

internlm-chat-7b 42.94 21.02 86.14 29.14 6.63 19.21 13.48

llama-2-7b-chat 37.06 16.49 86.31 30.17 4.27 14.94 9.34

mpt-7b-chat 44.54 20.98 87.17 15.95 1.69 5.34 3.45

More details can be found in our paper: TaskBench: Benchmarking Large Language

Models for Task Automation.

https://arxiv.org/abs/2311.18760
https://arxiv.org/abs/2311.18760

