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Introduction

TaskBench is a benchmark for evaluating large language models (LLMs) on task
automation. Task automation can be formulated into three critical stages: task
decomposition, tool invocation, and parameter prediction. This complexity makes data
collection and evaluation more challenging compared to common NLP tasks. To address
this challenge, we propose a comprehensive evaluation framework and a high-quality
dataset for task automation. We also provide a leaderboard of 17 LLMs on TaskBench,
including GPT-4, Claude-2, and other open-source LLMs.

Metadata

e URL: TaskBench

e Croissant metadata: metadata.json
e Version: 1.0.0

e License: Apache-2.0

¢ Dataset Size: 17,331

¢ Responsable Al (RAI) metadata

o Data collection: The data for TaskBench has been generated by the
proposed method called Back-Instruct. This approach involves creating a
'tool graph' which represents user intent, and then simulating user
instructions and annotations. This is a three-stage process involving tool
graph construction, graph sampling, and then back-instruction where the
sampled tool graph is used to generate the task steps and instruction. Two
verification processes are used to maintain the quality of the dataset: rule-
based critics and LLM -based critics, both of which check alignment
between the generated data and the sampled tool graph. The final dataset
is further verified by human annotators.

o Data biases: There could be biases in the dataset; for example, the tool
graph may not represent all possible combinations of tools and
dependencies and is limited by the initial tool library. Also, the analysis and
selection of nodes and edges might be biased. In addition, there might be
biases in the human annotations, as they depend on the individual
perspectives and understanding of the annotators.

o Personal sensitive information: The TaskBench dataset does not contain
personal or sensitive information. The dataset was synthesized for the
purpose of benchmarking Large Language Models in task automation and
does not involve user-provided information. However, users of TaskBench
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should acknowledge the importance of not using the model to generate or
disclose personal or sensitive information. The focus should remain on
generating practical and general solutions for task automation. The
instructions provided for generating data emphasize clarity, practicality,
and non-specificity to individual users' information.

Author Statement

The authors of the TaskBench dataset bear all responsibility in case of violation of
rights, privacy, or any other issues that may arise from the use of the dataset. The
dataset is provided under the Apache-2.0 license, and users are required to comply
with the terms of this license when using the dataset. The authors have taken all
necessary steps to ensure that the dataset is free of personal or sensitive information
and that it is suitable for benchmarking Large Language Models in task automation.
Users of the dataset should acknowledge the license terms and use the dataset
responsibly for research purposes only.

Dataset Distribution

The TaskBench dataset is hosted on the Hugging Face Datasets platform (TaskBench),
where it is available for download and use by researchers and developers. The dataset
is provided under the Apache-2.0 license, and users are required to comply with the
terms of this license when using the dataset. The dataset is maintained by the authors,
who will ensure that it remains available for research purposes and that any updates or
changes to the dataset are communicated to users in a timely manner.

Dataset

To generate high-quality evaluation datasets, we introduce the concept of Tool Graph to
represent the decomposed tasks in user intent, and adopt a Back-Instruct method to
simulate user instruction and annotations. The data collection process consists of three
stages:

¢ Tool Graph Construction: we first build a tool library and use the tool library to
construct the tool graph. The nodes in the tool graph represent the tools, and the
edges represent the dependencies between the tools, including the resource
dependency and temporal dependency.

e Graph Sampling: we sample the tool graph to generate the tool graph for each
sample. The sampled tool graph is used to generate the tool invocation graph and
the instruction. According to the topology of the sampled tool graph, we sample
the tool graph in three ways: node, chain and DAGs, which represent different
structures of task decomposition for task automation.

e Back-Instruct: we first use the sampled tool graph to generate the task steps
and the instruction. Then, we use the instruction to generate the tool invocation
parameters to complete the tool invocation graph.
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To improve the quality of the dataset, we use LLM-based and rule-based critics to verify
the dataset. The former aims to use LLM to check the alignments between the
generated data and the sampled tool graph. While the latter uses straightforward rules
to determine the alignment between the tool graphs in created data and the sampled
tool graphs. Here, we use the nodes and edges of the sampled graph to determine the
consistency. Details statistics of the processing are shown in the table.

After LLM-based and rule-based critics, we further verify the dataset with human
annotators, including checking the syntax of the instructions, the correctness of the
tool invocation graph, and the correctness of the tool invocation parameters. The final
dataset contains 28,271 samples in three domains: HuggingFace Tools, Multimedia
Tools, and Daily Life APIs. Details statistics of the human verification are shown in the

table.

Introduction
The TaskBench dataset contains datasets in three areas: HuggingFace Tools,

Multimedia Tools, and Dailylife APIs. Each dataset directory includes three files:

e data. json: the dataset file, which contains the samples in the dataset.

e graph_desc. json: the tool graph description file, which contains the tool graph
of the dataset.

e user_requests. json: contains the user requests of the dataset.

e tool_desc. json: the tool description file, which contains the tool descriptions

of the dataset.
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Processing Statistics

We provide the statistics of the dataset processing in the following tables:

e Overview: we provide the number of samples in each dataset, the number of

samples checked by critics, and the number of samples verified by humans.
Grouped by the tool invocation graph structure, e.g. node, chain, and DAGs, we

also provide the number of samples in each group.

e LLM-based and Rule-based Critics: we provide the number of samples checked

by LLM-based critics, rule-based critics and both critics.

¢ Human Verification: Human verification is built on the samples checked by

critics, which includes three parts: syntax checking, instruction checking, and

tool invocation graph checking. We provide the number of samples in each part,

and along with the number of samples that are discarded or fixed.

#Samples #Samples
Dataset #Samples Checked by Verified by Node Chain DAG
Critics (%) Humans (%)
Huggin
9ging 8,457 7,458
Face 12,217 3,067 3,642 837
(69.22%) (61.76%)
Models
Multimedia 6,281 5,555
8,904 2,037 2982 565
Tools (70.54%) (62.71%)
Dailylife 5,432 4,318
7,150 1,258 2,787 275
APls (75.97%) (60.42%)
#Checked by #Checked by #Checked by
Dataset #Samples LLM-based Rule-based Both Critics
Critics (%) Critics (%) (%)




Hugging 10,289 8,457
12,217 9,042 (74.01%)

Face Models (84.22%) (69.22%)
Multimedia 6,281
8,904 6,959 (78.16%) 7,363 (82.69%)
Tools (70.54%)
o 5,432
Dailylife APIs 7,150 5,694 (79.63%) 6,271 (87.70%)
(75.97%)
#Fixed . #Fixed for
#Samples #Correct . #Fixed for
#Discarded for . Tool
Dataset Checked Samples Instructions )
. (%) Syntax Invocation
by Critics (%) (%)
(%) Graph (%)
Hugging
6,974 911 27 843
Face 8,457 328 (3.87%)
(82.46%) (10.77%) (0.32%) (9.96%)
Models
Multimedia 5,262 697 1 526
6,281 107 (1.70%)
Tools (83.77%) (11.09%) (0.17%) (9.96%)
Dailylife 4,307 714 6 332
5,432 92 (1.68%)
APIs (79.29%) (13.14%) (0.11%) (6.11%)

Prompts for Dataset Construction

1. Back Instruct: Given sampled tool graph, generate task steps and instruction.

Given a tool graph with tools as nodes, and invoking chains between tools as
edges. The following tools (nodes) are available with their corresponding
descriptions and input/outputs types:\n Node 1:{"id": "Image-to-Image", "desc":
"Image-to-image is the task of transforming a source image to match the
characteristics of a target image or a target image domain. Any image manipulation
and enhancement is possible with image to image models.", "input-type":
["image"], "output-type": ["image"]}\n Node 2:{"id": "Image-Enhancement",
"desc": "Image enhancement is the process of adjusting digital images to improve
their quality or make them more visually appealing. It can involve adjusting
brightness, contrast, sharpness, and color balance.", "input-type": ["image"],
"output-type": ["image"]}\n -+ These tools can be connected as follows (the
directed edges are invoking chains among tools):\n Edge: Image-to-Image ->
Image-Enhancement\n ------ Based on the above tool graph, please be skillful to
generate the according task steps, user request and tool invoking graph.
\nRequirements: \n1. the generated user request should be somewhat clear, self-
contained (user-specified text, image, video, audio, content should be contained in
the request) and practical (help users solve a practical problem); \n2. the task
steps must be strictly aligned with the tool graph (nodes and edges) and
reasonable, the tool invoking graph must align with task steps, also with the given
tool graph; \n3. the user request just can be decomposed into task steps solved by
the tool invoking graph; \n4. each task step corresponds to a tool node in the tool
graph and tool invoking graph, and the number of task steps must be same with
the nodes. Each tool node can only be used once; \n5. if need image/audio/video




resources in user request, please use files 'example.[jpg/mp4/wav/png]’; \n6. the
dependencies among task steps must align with the edges of tool graph and tool
invoking graph; \n7. the number and types of tool parameters in the generated tool
invoking graph need to be consistent with the pre-defined input/outputs types of
the tools. \nNow please generate your result (with random seed {seed}) in a
compact JSON format:\n {"task_steps": [ step description of one or more steps ],
"user_request": "your high-quality and self-contained synthesized request",
"invoking_graph": {"nodes": [{"id": "tool name", "input": [ either user-specified text
or resource file 'example.[jpg/mp4/wav/png' ] in the above user request, or the
dependent tool name whose output is required by this node ]}], "links": [{"source":

"tool name i", "target": "tool name j"}]}}
2. LLM-based Critic: Check the correctness of the task steps, user request, and
tool invoking graph.

{"task_steps": [ step description of one or more steps ], "user_request": "your
high-quality and self-contained synthesized request", "invoking_graph": {"nodes":
[{"id": "tool name", "input": [ either user-specified text or resource file 'example.
[ipg/mp4/wav/png' ] in the above user request, or the dependent tool name whose
output is required by this node 1}], "links": [{"source": "tool name i", "target": "tool
name j"}]}, "check_by_teacher": "This field is filled by your strict and well-trained
teacher, minor mistakes are complete intolerable to him. He evaluated whether
your synthesized user request, tool invoking graph are valid and whether they are
aligned with the given tool graph (strictly checked step by step according to the
above requirements). Some comments from him place here (start with 'Let me
check your result step by step, and evaluate the 'Executable' and 'Correct' of the
tool invoking graph (Executable means that the tool invoking graph executed
successfully, regardless of alignment with the given tool graph. While Correct
implies that the tool invoking graph are not only 'Executable’ but also strictly
consistent (with strictly same nodes and same edges) with the given tool graph).
After carefully evaluating, found some mistakes:' and end with a conclusion:

'Conclusion: Executable: no/yes, Correct: nofyes'.)"}

Evaluation with TaskBench

On top of the TaskBench dataset, we provide a comprehensive evaluation framework for
task automation. The evaluation framework consists of three stages: task
decomposition, tool invocation, and parameter prediction. We provide the evaluation
metrics for each stage:

o Task Decomposition: Since task steps are diverse text distributions, we use the
Rouge-1 (R1), Rouge-2 (R2), and Bertscore F1 (BsF) metrics to evaluate the task
decomposition results.

¢ Tool Invocation: We report the F1 of node prediction (n-F1) and edge prediction
(e-F1) in the tool invocation graph to evaluate the tool invocation results. Edge
prediction reflects the correctness of the dependencies between tools, while
node prediction reflects the correctness of the tool prediction.

e Parameter Prediction: For tool parameters prediction, we report the parameter
type (or name) F1 (t-F1) and parameter value F1 (v-F1).



To evaluate the task automation performance of LLMs on TaskBench we provide the
evaluation code and data, please follow the instructions below:

Setup

conda create -n taskbench python=3.8
conda activate taskbench
pip install -r requirements.txt

Additionally, if you wish to evaluate open-source large language models, you will also
need to deploy the LLMs locally using an OpenAl-compatible API. We recommend
using the fastchat tool to deploy the service to the Llocalhost: 8000 endpoint.

pip install fastchat
pip install vllm
pip install "fastapi[all]"

python3 -m fastchat.serve.controller
python3 -m fastchat.serve.vllm_worker --model-path 1msys/vicuna-7t
python3 -m fastchat.serve.openai_api_server --host localhost --por

Inference

For convenience, it is recommended to deploy all LLMs to the same endpoint, such as
localhost:8000. To generate the prediction file on TaskBench, specify the name of
the LLM using the following command:

python inference.py \
--11m gpt-4 \
--data_dir data_multimedia \
--temperature 0.2 \
--top_p 0.1 \
--api_addr localhost \
--api_port 8000 \
--multiworker 5 \
--use_demos @ \
--reformat true \
--reformat_by self \
--log_first_detail true \
--use_demos 2 \
--dependency_type resource \
--tag true

Evaluation

With the predictions in place, you can now evaluate the LLMs. The predictions file is
saved by default in the dataset's folder under the name predictions. Execute the
following command to calculate the evaluation metrics (saved in the metrics folder):



python evaluate.py \
--data_dir data_multimedia \
--prediction_dir $prediction_dir \
--11m gpt-4 \
--splits all \
--n_tools all \
--mode add \
--dependency_type resource \
-m all

Reproduce the Leaderboard

To reproduce the leaderboard in Multimedia Tools domain, you can use the script
run_leaderboard. sh. The script will evaluate the performance of each LLM. The
results will be saved in the metrics folder.

./run_leaderboard.sh data_multimedia predictions 3

Dataset Construction with Back-Instruct

We have provided the dataset for three domains: Hugging Face Tools
(data_huggingface), Multimedia Tools (data_multimedia), and Daily Life APIs
(data_dailylifeapis). If you want to generate your own dataset, please follow the
instructions below:

Construct Your Own Tool Graph

First, you need to build your own tool library. The tool library is a JSON file that contains
the description of the tools and tool parameters. Two formats of the tool are supported:



/7 Tool with type-specific parameters

{
"id": "Image-to-Image",
"desc": "Image-to-image is the task of transforming a source imc
"input-type": [
"image"
15
"output-type": [
"image"
1
}
/7 API with request parameters
{
"id": "send_sms",
"desc": "Send an sms to a specific phone number",
"parameters": [
{
"name": "phone_number",
"type": "string",
"desc": "The phone number to send the sms to"
})
{
"name": "content",
"type": "string",
"desc": "The content of the sms"
}
1
}

Then based on the tool library, you can use the script generate_graph.py to generate
the tool graph. Now we support two type of tool graph: resource dependency graph and

temporal dependency graph. For type-specific parameters, we use the resource

dependency graph. For API with request parameters, we use the temporal dependency

graph. You can specify the tool graph type by the parameter --dependency_type. In

the future, we will support more types of tool graphs.

python generate_graph.py \

--tool_desc tool_desc.json \
--dependency_type resource \
--data_dir data_multimedia

Note: The auto-generated tool graph may not be perfect. You can manually modify
the tool graph to make it more reasonable. You can check the tool graph through

the visualization tool visualize_graph.py. We recommend that you manually

create the tool graph thoroughly, which will help you to generate a high-quality

dataset.

Generate the Dataset



After generating the tool graph, you can use the script data_engine.py to generate
the dataset. You need to specify the tool graph description file to --graph_desc and
the tool description file to --tool_desc

# specify the graph and tool description file
python data_engine.py \

--graph_desc data_multimedia/graph_desc.json \

--tool_desc data_multimedia/tool_desc.json \

--11m gpt-4 \

--temperature 1.0 \

--top_p 1.0 \

--dependency_type resource \

--save_figure false \

--api_addr localhost \

--api_port 8002 \

--check true \

--use_async true \

--multiworker 5

python format_data.py \

--data_dir data_multimedia \
--dependency_type resource

Leaderboard
Based on the evaluation framework and the TaskBench dataset, we provide a

leaderboard of task automation performance of 17 LLMs. We provide the evaluation
results of each LLM in the following tables:

Multimedia Tools Domain

LLM R1 R2 BsF n-F1 e-F1 t-F1 v-F1

gpt-4 60.84 40.08 9119 90.90 69.27 8706 72.31
claude-2 4885 2359 8922 8094 53.01 7163 5158
gpt-3.5-turbo 4966 2851 8954 7283 4402 6591 4080

text-davinci-003 49.23 2797 8921 7397 4581 68.48 40.70

codellama-13b 4446 2330 8866 6278 2461 4819 2913
codellama-7b 4376 2293 88.81 53.29 1476 38.04 24.45
vicuna-13b-v1.5 4475 2375 8894 60.61 1478 4162 23.62

nous-hermes-13b 3573 1611 8753 5897 8.90 4360 21.69
wizardim-13b 35.87 1755 8729 5124 482 3910 18.74
vicuna-7b-v1.5 3946 19.83 8853 46.06 4.26 29.72 13.74

longchat-7b-v1.5 3785 1814 8764 43.08 3.95 2789 13.41



baichuan-13b-chat 20.41  3.77 83.31 4251 519 28.04 177
llama-2-13b-chat 2616 788 84.82 4387 163 2999 11.32
internim-chat-7b 16.64 3.56 8291 2360 114 13.75  6.09
llama-2-7b-chat 3451 1591 8756 26.47 0.91 18.27 584
mpt-7b-chat 3094 1190 86.08 8.68 0.18 3.19 1.02

vicuna-33b-v1.3 3127 1337 86.17 6.40 0.01 247 1.09

HuggingFace Tools Domain

LLM R1 R2 BsF n-F1 e-F1 t-F1 v-F1
gpt-4 52.42 30.38 9012 8154 5470 77.31 60.86
claude-2 4421 2112 88.71 79.00 4351 63.00 43.08

text-davinci-003 36.68 17.61 87.03 59.38 29.37 5253 36.04
gpt-3.5-turbo 4299 2158 8847 6949 3336 5588 36.32
codellama-13b 38.75 1837 8832 5316 14.64 32.06 18.87
nous-hermes-13b 3736 16.91 88.18 53.62 8.29 37.51 17.66
wizardim-13b 34.47 15.38 8738 5440 2.05 38.76 15.35
llama-2-13b-chat 39.37 18.64 88.67 48.47 730 31.61 15.38
longchat-7b-v1.5 2709 897 85.50 48.18 0.56 3357 1394
baichuan-13b-chat 19.93 5.97 83.85 5385 7.65 3317 13,53
vicuna-13b-v1.5 3712 1703 8790 5082 728 28.34 11.85
vicuna-7b-v1.5 27147  10.02 85.61 4287 276 2465 10.81
vicuna-33b-v1.3 3352 1475 86.73 43.40 4382 22.71  10.07
codellama-7b 38.97 18.62 88.46 3759 535 2250 9.20

internim-chat-7b 20.53 716 8374 2439 083 15.41 6.64

[lama-2-7b-chat 2412 8.68 85.43 2730 0.74 13.05 2.79

mpt-7b-chat 33.21 1273 8723 2086 0.2 9.61 1.83

Daily Life APIs Domain

LLM R1 R2 BsF n-F1 e-F1 t-F1 v-F1
gpt-4 856.07 7236 9691 9691 8053 9702 7114
claude-2 8226 69.88 96.64 9352 7531 9271 6472

codellama-13b 89.86 83.27 9790 8773 6316 84.26 62.38
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More details can be found in our paper: TaskBench: Benchmarking Large Language

Models for Task Automation.
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