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1 Additional Results Obtained with our Method

We show more results obtained using our mesh-free topology optimization approach.

Top-left: Two point locations are fixed on the right with a point-wise force applied on the left.
Top-right The structure is held on the top and a point-wise force is applied on the bottom right. The
top right of the density field is constrained to be empty. Bottom-left: The structure is held on the
bottom and a distributed force field is applied across a half-circle. Bottom-right: The structure is
held in the middle and four tangential forces are applied on an outer annulus of material. The target
volume ratios in the same order are 30%, 20%, 25% and 40%.
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2 Sensitivity Analysis.

Here we provide the derivation of the total gradient dLcomp/dθ for the density network weights θ,
taking into account that when we change θ the displacement u changes, such that it stays in static
equilibrium.

First, we would like to note that there are two different perspectives on the optimization problem (1)
in the main section of the paper. The difference in formulations is due to the choice of

1. eliminating constraints and keeping just one set of variables (ρ), in this case
u = Simulation(ρ)

2. using separate variables, ρ and u, and introducing explicit equilibrium constraints
∇Lsim = 0

Formulation 1) is used in the main paper, as it is in our opinion more easily readable. Formulation
2) corresponds to the standard formulation of constrained optimization problems using Lagrange
multipliers. In the Lagrangian L, all arguments (u, ρ and the Lagrange multipliers) are independent
and are only coupled through the solution condition ∇L = 0. Here, the derivation of the gradient
will rely on formulation 2).

One way of computing the total gradient of the compliance objective is to solve for the discrete
adjoint variables. Solving the discretized adjoint problem takes the form of

∂2Lsim

∂γ2
λ = −∂Lcomp

∂γ
(1)

however this is a very large dense linear system which would be costly to solve, instead we rely on a
point-wise argument to derive the adjoint gradient. We apply the chain rule with the neural network
to get the total gradient

dLcomp

dθ
=

∫
Ω

de(ω)

dρ(ω)

∂ρ(ω)

∂θ
dω (2)

where de(ω)/dρ(ω) is the point-wise total gradient of the point-wise compliance e. To derive this
point-wise gradient we start by introducing the Lagrangian

L(u, ρ, λ, µ) =

∫
Ω

e+ λT (∇ · σ(u)− f) dω +

∫
∂Ω

µT (σ(u)n) dω (3)

=

∫
Ω

e−∇λ : σ(u) dω − λT f dω +

∫
∂Ω

−λT (σ(u)n) + µT (σ(u)n) dω (4)

=

∫
Ω

e− ε(λ) : C : ε(u)− λT f dω +

∫
∂Ω

(µ− λ)T (σ(u)n) dω (5)

where we used integration by parts and leveraged the fact that ∇λ : σ = ε(λ) : σ due to the
symmetry of the stress tensor σ. C is the stiffness tensor in Hooke’s law, that is, σ = C : ε and
σij =

∑
kl Cijklεkl.

In the case of topology optimization for linear elasticity the adjoint variables are readily available
through λ = µ = u [1, 2]. Here we briefly show the derivation:

We denote the directional derivative of F w.r.t. x in the direction of h as

Dx,hF (x) = lim
t→0

F (x+ th)− F (x)

t
(6)

with which the adjoint variables are defined by [3]

∀h ∈ (H1)2 : Du,hL(u, ρ, λ, µ) = 0 . (7)

and by applying the definition of the directional derivative, this leads to

∀h ∈ (H1)2 : Du,hL(u, ρ, λ, µ) =

∫
ε(h) : C : ε(u)− ε(h) : C : ε(λ) dω = 0 (8)

which is true for λ = u.
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We can then plugin the adjoint variables into the Lagrangian to get the point-wise gradient of the
compliance with respect to the density as

∀δρ ∈ H1 : Dρ,δρL(u, ρ, λ, µ) =

∫
Ω

−δρ 1

2
ε(u) :

∂C

∂ρ
: ε(u) dω (9)

Since this holds for all functions δρ in H1 we can conclude that the point-wise gradient is
de(ω)

dρ(ω)
:= −1

2
ε(ω) :

∂C(ω)

∂ρ(ω)
: ε(ω) = −∂e(ω)

∂ρ(ω)
(10)

which notably has the opposite sign of the partial gradient ∂e/∂ρ where the implicit change in the
displacement u is not taken into account.

Batch density-space gradient By sampling a batch of ωb and ρb = ρ(ωb) we can approximate the
integrals and get a discrete version of the loss

Lcomp =

∫
Ω

e dω ≈ L′comp =
|Ω|
n

n∑
i

e(ωbi ) (11)

using the derivations above we arrive at
dLcomp

dθ
=

∫
Ω

de(ω)

dρ(ω)

∂ρ(ω)

∂θ
dω = −

∫
Ω

∂e(ω)

∂ρ(ω)

∂ρ(ω)

∂θ
dω (12)

≈ −|Ω|
n

n∑
i

∂e(ωbi )

∂ρ(ωbi )

∂ρ(ωbi )

∂θ
= −

∂L′comp

∂ρb
∂ρb

∂θ
(13)

=
dL′comp

dρb
∂ρb

∂θ
. (14)

3 Additional Information for the Results

Here we provide more detailed descriptions of the results in the main paper. See the following table
for the domain sizes and boundary condition enforcements.

Ω V̂ dx(ω) dy(ω) dz(ω)

Short Beam 1.5× 0.5 0.5 ωx ωx —
Distributed 1.5× 0.5 0.4 ωx ωx —
Long Beam 1.0× 0.5 0.4 ωx(ωx − 1.0) ωx —

Bridge 1.0× 0.5 0.4 ωx(ωx − 1.0) ωx —
3D Beam 1.0× 0.5× 0.25 0.2 ωx ωx ωx(ωz − 0.25)
3D Bridge 1.0× 0.5× 0.25 0.2 ωx(ωx − 1.0) ωx ωx(ωz − 0.25)

We apply a concentrated force at the bottom right corner for the Short Beam example and distributed
forces on the top boundary for the Distributed example, all along the negative y-axis. A concentrated
force is applied at the bottom right corner of the new design domain for the Long Beam example and
distributed loading forces are added to the bottom boundary for the Bridge example.

The design domains for both the Long Beam and the Bridge are 2.0 × 0.5, however, due to the
symmetric configuration, we only perform simulation and optimization on half of the domain to avoid
unnecessary computations. The domains are then 1.0× 0.5. For visualization, we mirror the other
half. We use the term ωx(ωx − 1) in dx(ω), this enforces the left boundary to have no displacement
in x direction and the normal displacements of the right boundary to vanish, similar constructions are
used in the other examples.

For the 3D Beam example, we run our method only on half of the design domain along z-axis, due
to symmetry and the actual design domain is 1.0 × 0.5 × 0.25. Distributed forces are applied at
x = 1.0, y = 0 and z ∈ [0.0, 0.25].

For the 3D Bridge example our method is only performed on a quarter of the design domain
2.0× 0.5× 0.5, where both x and z dimension are reduced to half. Forces are applied to the bottom
plane where y = 0, x ∈ [0.0, 1.0] and z ∈ [0.0, 0.25]. All forces applied are along the negative
y-axis.
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Figure 1: Left: Length factor d(ω) of the curved boundary example. Right: Norm of gradient of
length factor, ‖∂d/∂ω‖

3.1 Curved Boundaries

We have used two additional types of constraints in these examples, constraining densities and
constraining displacements on curved boundary. Since derivatives of the density field ρ(ω) do no
appear in the objectives directly, constraining densities is rather straight forward. We just overwrite
the density when the point ω falls into a constraint region Ωcρ:

ρ̃(ω) =

{
ρ(ω) if ω /∈ Ωcρ
ρc(ω) if ω ∈ Ωcρ

(15)

and use the resulting field ρ̃ in place of ρ. For the displacement u, applying constraints is more
difficult since its derivatives appear in the objectives, requiring that the field u is sufficiently smooth
inside the domain. We use a length factor d [4], to define the constrained displacement field

u(ω) = d(ω)Φu(ω) (16)

where d has to be zero on the boundary and have non-zero first-order derivatives on the boundary
(otherwise the first-order derivatives are also constrained to zero on the boundary, which we do not
want). Here we show a simple analytic method for defining the length factor and is accurate on the
whole primitives not only on sampled points: we allow for n primitives that require the ability to
compute a C1 continuous distance function, giving d2

1, . . . d
2
n squared distances. We then combine

them to construct a smooth length factor

d(ω) =
√

mix(d2
1, . . . , d

2
n) (17)

where mix repeatedly merges two distances by applying a function m(·, ·) in a tree like fashion,
where we use the following function

m(d2
1, d

2
2) =

d2
1d

2
2

d2
1 + d2

2 + ε
ε = 10−4 (18)

This function is basically the power smooth min [5] with k = 2 plus ε, notably this function is zero
when either distance d1 or distance d2 is zero and seems to have nice first-order derivative properties.

Data of curved boundary examples The domain for both examples is 1.5× 0.5.

Three-hole-design: The bottom left of the domain is [0, 0]. The holes have inner radius 0.035 and
outer radius 0.075, they are located at {[0.075, 0.425], [0.075, 0.075], [1.425, 0.075]}. The force is
applied at [1.425, 0.04]. The length factor of one circle was defined using

d(ω) =

{
0 if ‖c− ω‖ < r

‖c− ω‖ − r otherwise
(19)

where c is the center and r is the radius, and then the length factors of two circles were combined
using the procedure explained above.

Hole in the middle-design: The radius of the circle is 0.2 and the center of the circle is at the center of
the domain.
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