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ABSTRACT

Large-scale diffusion models have made significant advances in image genera-
tion, particularly through cross-attention mechanisms. While cross-attention has
been well-studied in text-to-image tasks, their interpretability in image-to-image
(I2I) diffusion models remains underexplored. This paper introduces Image-to-
Image Attribution Maps (I2AM), a method that enhances the interpretability of
I2I models by visualizing bidirectional attribution maps, from the reference image
to the generated image and vice versa. I2AM aggregates cross-attention scores
across time steps, attention heads, and layers, offering insights into how criti-
cal features are transferred between images. We demonstrate the effectiveness of
I2AM across object detection, inpainting, and super-resolution tasks. Our results
demonstrate that I2AM successfully identifies key regions responsible for gener-
ating the output, even in complex scenes. Additionally, we introduce the Inpaint-
ing Mask Attention Consistency Score (IMACS) as a novel evaluation metric to
assess the alignment between attribution maps and inpainting masks, which corre-
lates strongly with existing performance metrics. Through extensive experiments,
we show that I2AM enables model debugging and refinement, providing practical
tools for improving I2I model’s performance and interpretability.

1 INTRODUCTION

Latent diffusion models (LDMs) have recently gained popularity as powerful methods for generat-
ing images from random noise with textual description (text-to-image, T2I) (Ramesh et al., 2022;
Saharia et al., 2022b; Esser et al., 2024), or image (image-to-image, I2I) (Song et al., 2024; Morelli
et al., 2023; Koley et al., 2024). Despite their prevalent adoption, these models have often been
developed without a comprehensive investigation into their reliability and interpretability. As these
methods are increasingly applied in various fields, ensuring their trustworthy and understandable
operation becomes critical. Explainable Artificial Intelligence (XAI) plays a crucial role in address-
ing this need by providing insights into how and why AI models produce their outputs. For LDMs,
XAI methods offer the opportunity to interpret complex internal processes, enabling researchers to
identify and mitigate potential issues, enhance model performance, and build user trust. Recent
XAI efforts Hertz et al. (2022); Tang et al. (2022); Tumanyan et al. (2023) have largely focused on
T2I models, where text inputs are segmented into tokens, allowing for straightforward analysis via
cross-attention maps, i.e., how individual tokens influence different parts of the generated output.
However, applying similar interpretability methods to I2I models, while promising, presents signif-
icant challenges. The spatial and contextual continuity between the input (which we call reference)
image and the output (which we call generated) image complicates this token-wise approach in I2I
models. Unlike T2I models, where tokens have discrete and non-spatial relationships, I2I models
must account for the complex correlations within and between the reference and generated images.
This continuity reveals a considerable gap in our understanding and ability to interpret I2I models
from both perspectives: from reference to generated and vice versa.

Despite the challenges of applying token-based methods to I2I models, the shared image domain
between the reference and generated images opens new possibilities for bi-directional attribution
mapping. Such an approach provides deeper insights into how I2I models capture and transfer vi-
sual information between input and output domains, offering a more comprehensive understanding
of the model’s internal processes. In this paper, we address two key research questions that guide
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our approach to bi-directional attribution. The first question (Q1) asks, “Which regions of the gen-
erated image are influenced most by the reference image?” This focuses on the generated image’s
perspective, exploring how the model utilizes the reference image during generation. The second
question (Q2) asks, “Which parts of the reference image contribute most to the generated image?”
This shifts the focus to the reference image, assessing whether the model captures and effectively
transfers critical specifics from the input for generating the output. To answer these questions, we
introduce the Image-to-Image Attribution maps (I2AM) method. I2AM consolidates cross-attention
maps across various axes - such as time steps, attention heads, and layers - to provide a detailed un-
derstanding of how the LDM operates. This approach allows us to visualize attribution maps from
two perspectives: (i) from the reference to the generated image; and (ii) from the generated image
back to the reference. The distinction between these two maps is crucial: while the former focuses
on how the reference image affects specific parts of the generated image, the latter examines how the
generated image relates back to the reference. This dual approach enhances our ability to interpret
the intricate behavior of I2I diffusion models in various tasks, highlighting the key contributions
from each perspective.

To validate the effectiveness of I2AM method, we conducted extensive experiments across vari-
ous tasks and models, including object detection, inpainting, and super-resolution (Cheng et al.,
2022; Yang et al., 2023a;b). Our results demonstrate that I2AM successfully captures critical
attribution patterns in each task, offering valuable insights into the underlying generation pro-
cess. Fig. 1 provides a clear example of an inpainting task, specifically in a virtual try-on,
illustrating both directions of influence. The top attribution map shows how different areas

t= T t= 1Heat Map

Diffusion Model

Reference image

Q1

Q2

Q2

Generated image

Figure 1: Cross-attention maps using I2AM. The top
map shows how the generated image is influenced by
the reference image (Q1), while the bottom map illus-
trates how the reference image contributes to the gen-
erated image (Q2). The right map highlights specific
reference-to-output patch contributions.

of the generated image are influenced by the
reference image (Q1). Conversely, the bot-
tom map demonstrates how different regions
of the reference image contribute to the gen-
eration process (Q2), and the right map il-
lustrates which reference information was ex-
tracted during the generation of that cell. We
also introduced a new evaluation metric for
reference-based image inpainting tasks, mea-
suring the consistency between the two attri-
bution maps. This metric offers a reliable way
to assess how well the model captures key de-
tails from the reference image, showing strong
consistency with downstream performance. Fi-
nally, we explored the utility of I2AM for de-
bugging and improving I2I models. By exam-
ining bi-directional attribution maps, we identi-
fied instances where the model failed to capture
essential details from the reference or misrepre-
sented certain features in the generated image,
adjusting the I2I model in a targeted manner.

2 RELATED WORK

Perturbation-based attribution methods.
Perturbation-based methods explain model predictions by altering input features and observing
changes in the output, making them suitable for black-box models. Occlusion Sensitivity Zeiler &
Fergus (2014b) occludes parts of the input to evaluate their influence on predictions. LIME Ribeiro
et al. (2016) perturbs inputs and trains an interpretable local model to approximate the model’s
predictions, while RISE Petsiuk (2018) generates pixel-wise saliency maps using randomized input
masking. Although these methods are computationally intensive, they are valuable for analyzing
models without requiring access to internal parameters.

Gradient-based attribution methods. Gradient-based attribution methods determine input feature
importance by analyzing the gradients of the model’s output. Early work (Zeiler & Fergus, 2014a;
Simonyan, 2013) highlighted the significance of individual input pixels in image-based models.
Class activation maps (Zhou et al., 2016; Selvaraju et al., 2016) further improved visualization by
combining gradient and activation maps. Techniques such as SmoothGrad Smilkov et al. (2017) and

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

FullGrad Srinivas & Fleuret (2019) enhanced these visualizations through gradient smoothing and
dual importance scoring, while Score-CAM Wang et al. (2020) emphasized global feature contribu-
tions. Despite their utility, these methods face challenges like gradient noise and handling negative
contributions, which can obscure accurate interpretation.

Attention-based attribution methods. With the rise of transformers, attention-based attribution
maps have become a key focus for understanding model behavior, particularly in text-to-image tasks.
These methods intuitively capture the relative importance of tokens, leading to practical applications
in areas like image editing (Hertz et al., 2022; Epstein et al., 2023), where object attributes (e.g.,
style, location, shape) are adjusted by manipulating attention maps. Layout guidance methods (Cao
et al., 2023; Kim et al., 2023b; Tumanyan et al., 2023) use structural information encoded in attention
maps to refine image generation layouts, while other approaches (Shi et al., 2024; Tewel et al.,
2024) ensure subject consistency across multiple images by sharing or transferring attention maps.
Semantic correspondence techniques (Zhang et al., 2024; Hedlin et al., 2024) further align cross-
attention maps with image content. DAAM Tang et al. (2022) provides insights into text-conditioned
interactions, while our approach offers a more comprehensive understanding of how cross-attention
mechanisms operate in image-based contexts, addressing gaps left by text-based models. Unlike
the conventional method for calculating attention scores (e.g., DAAM), our approach employs a
different softmax direction, with a comparative analysis provided in the Appendix A.7.

3 PRELIMINARIES

Diffusion models. Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al.
(2022) are probabilistic generative models that progressively denoise a Gaussian noise sample ϵ ∼
N (0, 1) to generate data. Starting with a sample x0 from an unknown distribution q(x0), the goal
is to train a parametric model pθ(x0) to approximate q(x0). These models can be viewed as a
sequence of equally weighted denoising autoencoders ϵθ(xt, t), which operate over a series of time
steps t = 1 . . . T . Each step involves predicting a cleaner version of the noisy input xt, derived from
the original input x0. The training objective is expressed as:

LDM(θ) = Ex,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥22

]
, (1)

Latent Diffusion Models (LDMs) Rombach et al. (2022) function similarly but operate in a com-
pressed latent space rather than in the data space. The encoder E maps the input x to a latent code
z = E(x), where noise is added in the latent space to produce zt := αtE(x) + σtϵ. In image-to-
image tasks, the LDM model ϵθ(zt, t, cI) is trained to denoise zt using a modified objective:

LLDM(θ,ϕ) = Ez,cI,ϵ,t

[
∥ϵ− ϵθ(zt, t, cI)∥22

]
, (2)

where cI = Γϕ(I) is a conditioning vector derived from a so-called reference image I, i.e., input
image, via the image encoder Γϕ. During training, both ϵθ and Γϕ are jointly optimized to minimize
the LDM loss in (2), yielding a reverse process that gradually denoises the noise ϵ to generate the
final output x, referred to as the generated image.

4 METHODOLOGY: I2AM

In this work, we introduce Image-to-Image Attribution Maps, which we call I2AM, a method
aimed at interpreting latent diffusion models using cross-attention maps. Attribution mapping is a
powerful tool for analyzing the relationship between specific parts of an image or text (e.g., patches
or tokens) and output features. Unlike text-to-image models, which rely on token-based representa-
tions, image-to-image generation allows for bidirectional analysis - visualizing two distinct attribu-
tion maps - corresponding to two research questions Q1 and Q2, where embeddings of all patches
from both the reference and the generated images are required. This level of detailed attribution is
challenging for T2I models due to the abstract nature of text tokens. In I2I LDMs, reference and
generated images act as both queries and keys in the cross-attention mechanism, allowing us to map
the flow of information between the reference and generated images.
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Figure 2: Visualization of layer-level attribution maps (LLAM) for each task. (a) LLAMs for StableVITON
and DCI-VTON models at layers 2, 5, and 8 demonstrate how clothing features are progressively incorporated
during the inpainting process. (b) LLAMs for PASD model show the contribution of reference data in refining
image resolution at different layers.
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(a) UNet layer at time t and layer l

Image embedding

Image embeddingEncoder

Image embedding

(b) UNet encoder

Image embeddingEncoder

(c) Image encoder

Figure 3: (a) a U-Net layer at time t and layer l,
where the image embeddings are supplied to the cross-
attention. (b) U-Net encoder providing multi-scale im-
age embeddings c(l)I ; and (c) image encoder supplying
fixed-size embeddings cI to the cross-attention module.

Overview of I2AM. The I2AM method en-
ables the visualization of bidirectional attribu-
tion maps by dividing reference and generated
images into smaller patches and analyzing their
interactions across three key axes: diffusion
time steps, attention heads, and layers. This ap-
proach can be applied to various tasks such as
segmentation, style transfer, colorization, and
depth estimation. By examining each compo-
nent - time, head, and layer - individually, we
gain deeper insights into the model’s behavior
and its task-specific details. For example, Fig. 2
demonstrates how layer-level analysis aggre-
gates information across time steps and atten-
tion heads, revealing broader patterns and atten-
tion flows across layers for different tasks. In
Fig. 2a, attention scores gradually transit from
coarse to fine-grained features as layers deepen,
starting with basic color information and even-
tually capturing intricate details like logos and
buttons. Conversely, in Fig. 2b, since LQ (low-quality) input signals are provided with the initial
noise, the early layers seem to interpret the input as already containing basic information, leading
them to pay less attention to coarse features. Further details are provided in the Appendix A.7. This
analysis applies to generated and reference images, where maps for generated images are denoted
by the subscript g, and those for reference images by r.

4.1 BASIC FUNCTIONS

In this subsection, we describe the core operations involved in our I2AM method.

Attention score. At the core of our approach is the computation of attention score, which quantifies
the interaction between different regions of the reference and generated images. The attention score
is computed as follows:

Attn Score(Q,K) = softmax
(QK⊤
√
dk

)
, (3)

where Q is the query matrix, K is the key matrix, and dk is the dimension of the key vectors. In our
model, both the query and key matrices operate across several axes: time steps t, attention heads n,
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and layers l. To capture how the model processes information at different levels within the cross-
attention module, we define the attribution map at a specific time step t, attention head n, and layer
l as m(l)

t,n, which encapsulates the relationships between the reference and generated images.

Summation operation. To aggregate information across these axes, we introduce a summation
operation allowing aggregation over any subset of the axes {t, n, l}. The summation is defined as:

SumA(m
(l)
t,n) =

∑
A

m
(l)
t,n, (4)

where A ⊆ {t, n, l} represents the axes over which the summation is performed. This operation
enables us to analyze the attention behavior across time steps, heads, and layers, providing a com-
prehensive view of how different patches of reference or generated images contribute to one another.

Threshold-based transformation. After the summation, we apply a threshold-based transforma-
tion to refine the attention maps. The attention map m is normalized to the range [0, 1], and a
threshold δ is applied to filter out lower values. The final attention map m is computed as:

m←m⊙ I(m > δ), (5)

where I(·) is an indicator function that retains values greater than the threshold. This operation
ensures that the most relevant attention regions are highlighted while filtering out insignificant areas.
The threshold δ is typically set to 0.4 to balance visibility and relevance.

4.2 UNIFIED-LEVEL ATTRIBUTION MAPS

Bidirectional attention scores. In our approach, bidirectional attention scores across time steps,
attention heads, and layers form the basis of our operations. As shown in Fig. 3a, the LDM with an
L-layered cross-attention module derives the pre-cross-attention vectors {f (l)t }Ll=1 at each time step
t and layer l. Image embeddings of the reference image I are obtained from various image encoder
Γϕ, which can be multi-scale feature vectors c(l)I from U-Net encoders (as in Fig. 3b) or fixed-size
embeddings cI from CLIP or DINOv2 (as in Fig. 3c). For simplicity, we use notations of fixed-
size embedding cI. We adopt a multi-head cross-attention mechanism with n = 1, . . . , N heads.
Bidirectional attention scores quantify the interactions between the reference and generated images
in two directions. The vectors {f (l)t } and cI are conditioned to each other through a multi-head
cross-attention mechanism.

• Reference-to-Generated (R2G) attention score M
(l)
g,t,n: This score captures the influence of

the query Q (reference patch cI) on the key K (generated patch f
(l)
t ) in the key vectors (gen-

erated image). This corresponds to Q1, measuring how each reference patch influences the
generated image.

• Generated-to-Reference (G2R) attention score M(l)
r,t,n: This score shows how the query (gen-

erated patch) corresponds to the key (reference patch) in the key vectors (reference image). This
corresponds to Q2, measuring how the generated image relates back to the reference image.

The attention scores are computed as:

M
(l)
g,t,n = Attn Score(W(l)

k,ncI,W
(l)
q,nf

(l)
t ) and M

(l)
r,t,n = Attn Score(W(l)

q,nf
(l)
t ,W

(l)
k,ncI), (6)

where W
(l)
q,n and W

(l)
k,n are projection matrices for queries and keys, respectively. While the size of

the attention scores may vary across layers, for consistency in aggregation, we resize all attention
scores to a common size of (HW,HW ), where H and W denote the height and width of the original
image x0. These bidirectional attention maps allow us to analyze the transfer of information between
the reference and generated images from both perspectives.

Unified-level attribution map (ULAM). To obtain a holistic representation of the attention patterns,
we introduce the unified-level attribution map (ULAM), which aggregates the attention scores in (6)
across {t, n, l}. Before applying the summation, we first perform a column-wise averaging of the
attention scores M

(l)
g,t,n and M

(l)
r,t,n, reducing their dimensions from (HW,HW ) to (HW ). This

5
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step ensures that the attention maps are more compact and interpretable while retaining the key
relationships. The ULAM for R2G and G2R, denoted as Mg and Mr, are computed as:

Mg = Sum{t,n,l}(M
(l)
g,t,n), Mr = Sum{t,n,l}(M

(l)
r,t,n), (7)

where M
(l)
g,t,n,M

(l)
r,t,n are the column-wise averaged scores, and the summation is applied over all

time steps, heads, and layers. This aggregated ULAM captures the overall contribution of different
regions of the reference image to the generated image, and vice versa, measuring relevance loss by
examining the alignment of concentrated attention score distributions. After summation, these maps
are reshaped to the spatial dimensions (H,W ) for visualization, and a threshold-based transforma-
tion (5) is applied to filter out lower values, ensuring that the final maps focus on the most critical
attention regions.

4.3 LAYER/HEAD/TIME-LEVEL ATTRIBUTION MAPS

To fully understand the behavior of diffusion models, it is important to break down the model’s
core components - time steps, attention heads, and layers. To this end, we introduce three types of
attribution maps that offer insights into the role of each of these components in the image generation
process. For detailed formulas, please see Appendix A.3.

Time-level attribution map (TLAM). The time-level attribution map (TLAM) visualizes the gen-
eration process over time. The TLAM for a given time group τ for R2G and G2R directions, de-
noted as Mg,τ and Mr,τ , is obtained by summing over heads and layers for a specific time window
[τ∆t, (τ + 1)∆t]. This results in Tgroup = T/∆t time-level maps. Leveraging the final TLAMs,
being applied reshaping and threshold-based transformation, {Mg,τ ,Mr,τ}

Tgroup−1
τ=0 , we can visualize

the gradual formation of the generated image over time.

Head-level attribution map (HLAM). The head-level attribution map (HLAM) reveals the contri-
butions of different attention heads. Different heads are often responsible for focusing on various
image features, leading to diverse feature detection across heads. For R2G and G2R directions, the
HLAM is computed by summing across time steps and layers, denoted as {Mg,n,Mr,n}Nn=1. After
summation and reshaping, we apply threshold-based transformation to obtain the final HLAM. As
observed in our experiments, while some attention heads may consistently focus on core objects,
others might detect peripheral features.

Layer-level attribution map (LLAM). The layer-level attribution map (LLAM) highlights how
each layer processes and transforms the input features as they propagate through the network. The
LLAMs for R2G direction, denoted as {M(l)

g }Ll=1, with L being the number of layers, are obtained
via summation over time steps and heads. The layer-level maps offer a better indicator of model
performance across different layers and help uncover areas for potential improvement. On the other
hand, analyzing the LLAMs for G2R direction M

(l)
r often proves less informative. This is because

it tends to distribute attention more uniformly across the reference image in most layers, mixing
irrelevant components (e.g., background and unmasked regions) with relevant information.
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Figure 4: Overview of SRAM, showing how attention
scores from all patch embeddings of the reference im-
age (clothing) are calculated to analyze correlation with
a specific generated patch i. The red point on the cloth-
ing indicates the reference patch with the highest influ-
ence on the generated image.

Specific-reference attribution map (SRAM).
Given the challenges associated with interpret-
ing the G2R layer-level attribution map, we
propose a more targeted solution: the specific-
reference attribution map (SRAM). SRAM
shows the regions of the reference image that
contribute to the generated patch. While the
layer-level map M

(l)
r captures the broad inter-

actions from the column-wise averaged scores,
SRAM refines this by selecting the relevant i-
th row from the fundamental attention score
M

(l)
r,t,n in (6) that corresponds to a specific

patch in the generated image. By summing
across time steps and attention heads, we con-
struct the SRAM {M(l)

sr,i}Ll=1, which highlights
how each layer of the model reflects information from the reference image during the generation of
a particular (i-th) patch in the output image. See Fig. 1 and 4 for illustrative examples.
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SRAM provides more concrete positional mapping details between the generated and reference
images, making it a valuable feedback signal for model training. For instance, in object inpainting
tasks, SRAM guides the model in focusing on the relevant object parts without considering irrelevant
background information from the reference image. In super-resolution tasks, it helps improve the
sharpness and structural consistency of the generated image by leveraging spatial correspondences
between the reference and generated images. Leveraging insights from SRAM can guide the model’s
learning process by enhancing the roles of specific layers. For example, in layers responsible for
capturing important features, training can be improved by strengthening attention mechanisms on
patches that are crucial for accurate generation. This focus on critical layers and patches can be used
to introduce useful priors into the model, as further explored in Sec. 5.4.

4.4 INPAINTING MASK ATTENTION CONSISTENCY SCORE

We introduce the Inpainting Mask Attention Consistency Score (IMACS), a metric for evaluating
reference-based inpainting tasks in image-to-image latent diffusion models. IMACS measures the
alignment between attention maps of generated and reference images (Mg and Mr) with their re-
spective masks (xg and xr). For example, in a virtual try-on test, the inpainting masks for generated
or reference images represent, for example, a clothing-agnostic mask and a cloth mask, respectively.
This metric quantifies the consistency between the bidirectional attention maps and the respective in-
painting/reference masks, evaluating the effectiveness of information transfer between two images.
The score for the R2G attention map, denoted as IMACSg, is computed as:

IMACSg =

∑
H,W (Mg ⊙ xg)∑

H,W xg
−λ
∑

H,W (Mg ⊙ (1− xg))∑
H,W (1− xg)

, (8)

where λ is a penalty factor (default 3), penalizing misaligned attention. The score for the G2R atten-
tion map, denoted as IMACSr, is defined similarly. The higher values of IMACSg/r indicate better
alignment between the attention maps and the corresponding masks, and thus, superior performance
as an XAI metric. As λ increases, greater penalties are applied to attention that strays from the
regions specified by the inpainting or reference mask, allowing for the identification of issues such
as overfocusing on incorrect areas or neglecting relevant ones.

5 EXPERIMENTAL RESULTS

We conducted extensive experiments using I2AM across multiple tasks, including object detection,
inpainting, and super-resolution, to evaluate its effectiveness in interpreting image-to-image LDMs.
These experiments demonstrate the ability of I2AM to enhance interpretability and reveal underlying
model behavior across tasks. Experiment details are in Appendix A.4 and A.5. The ablation study
of δ and λ for clear map visualization and IMACS consistency is provided in Appendix A.6.

5.1 OBJECT DETECTION

In this experiment, we evaluate I2AM’s capability in object detection using images generated by the
Paint-by-Example (PBE) model on the COCO Lin et al. (2014) dataset. The goal is to assess how
effectively I2AM captures and visualizes critical object features in both reference and generated im-
ages, even in unseen scenarios. We utilize the unified-level R2G attribution map Mg to analyze how
I2AM retrieves key object regions responsible for object formation and object boundaries obtained
by PBE, particularly in complex scenes with multiple objects (Fig. 5).

The comparison with baseline object detection models is shown in Tab. 1. The metric mIoU>0.5
GT

computes the mean Intersection over Union for COCO images where the baseline category score
exceeds 0.5, evaluating the baseline’s object detection ability on real images. For PBE-generated
images, we use mIoU>0.5

gen to assess detection performance. While there is a performance drop for
generated images compared to ground truth, the PBE-generated images still capture key object fea-
tures from the reference image, and furthermore, the baselines such as YOLOv3, trained on COCO
data, successfully reveal regions critical for object formation. To assess performance in unseen sce-
narios, we use three baselines: DAAM Tang et al. (2022) is an attention-based T2I method. The
main difference from I2AM is in the softmax direction, producing the same results as ‘overall’ in
PBE. See the Appendix A.7 for details. The ‘overall’ assumes bounding boxes cover the entire
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COCO dataset
(image, category, bbox)

[48, 81, 271, 239]pizza( (, ,

Inpainting Model

Source image Reference image

Generated image

IoU

Unified-Level

O
ve

rla
y

Ground truth

np.percentile()

cv2.findContours()

cv2.boundingRect()

10~30% image bboxes

Figure 5: Object detection pipeline using PBE and
I2AM. ULAM for R2G direction highlights key regions
for object detection in the generated image.

Method mIoU>0.5
GT mIoU>0.5

gen
Supervised manner & Seen dataset

Faster-RCNN Ren et al. (2016) 0.3225 0.2658
Mask-RCNN He et al. (2017) 0.3294 0.2706
YOLOv3 Redmon (2018) 0.2448 0.1978
MaskFormer Cheng et al. (2022) 0.3568 0.2932
RTMDet Lyu et al. (2022) 0.3228 0.2516

Unsupervised manner & Unseen dataset
DAAM Tang et al. (2022) 0.1807
Overall 0.1807
Random10∼30% 0.2028
Ours – 0.2416

Table 1: Performance comparison of object detec-
tion methods, with significant results highlighted in
yellow .

image, while the ‘random10∼30%’ compares results with randomly generated bounding boxes cov-
ering 10 ∼ 30% of the image. Although COCO is a seen dataset for existing baseline methods and
unseen for PBE and our method, I2AM achieves a competitive mIOU of 0.2416 and even outper-
forms YOLOv3 in certain cases. This highlights I2AM’s ability to extract relevant knowledge from
reference images, even in challenging environments with generated content.

5.2 IMAGE INPAINTING

We evaluate I2AM’s interpretability in image inpainting tasks using models like PBE Yang et al.
(2023a), DCI-VTON Gou et al. (2023), and StableVITON Kim et al. (2023a). Image inpainting
involves filling masked regions of an image by referencing another image, making cross-attention
maps essential for understanding how the reference image influences the inpainting process.

Generated image Unified-Level
t= T t= 1

Pa
in

t-b
y-

Ex
am

pl
e

D
CI

-V
TO

N

Time-Level Attribution Map

(a) Time-Level Attribution Map Mg,τ

Head-Level Attribution MapGenerated image Unified-Level

D
CI

-V
TO

N

(b) Head-Level Attribution Map Mg,n

Figure 6: Attribution maps for R2G. (a) TLAM Mg,τ visualizes changes in attention patterns over time from
t = T to t = 1, highlighting where the model focuses at each step. (b) HLAM Mg,n shows the contributions
of the 8 attention heads, comparing how each head focuses on specific regions of the image.
To address Q1, we first analyze the R2G map, focusing on the areas where the reference image
contributes most to the filled-in regions in the generated output. The time-level attribution map
(TLAM) Mg,τ , illustrated in Fig. 6a, shows how the model progressively refines object structure
over time, assigning higher attention to crucial details like facial features and clothing logos. As the
inpainting process unfolds, the model transitions from low-frequency to high-frequency features.
The head-level map (HLAM) Mg,n, displayed in Fig. 6b, reveals variations across attention heads,
with some attention extending beyond the masked area. Integrating information beyond the masked
region may result in the loss of certain features but also improves contextual understanding, enabling
semantically consistent outputs. Since HLAM was expected to capture diverse information, this
behavior is seen as a positive outcome. Fig. 6 demonstrates the capacity of the LDM to recognize
and integrate key patterns throughout the inpainting process.

Next, we extent this analysis in Fig. 7 for StableVITON model, using bidirectional attribution maps.
The time-level G2R maps Mr,τ , shown on the left, indicate minimal changes over time, while the
head-level G2R maps Mr,n highlight diversity across heads, with a common focus on logos. In
contrast, the R2G maps in the middle panel show how details such as clothing patterns and textures
are progressively transferred from the reference to the generated image, as reflected in Mg,τ . Finally,
the SRAM M

(5)
sr,i, shown on the right, provides positional mapping at layer 5, indicating how clothing

8
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Clothing Generated image SRAM

t= T
Time-Level Attribution Map

t= T t= 1
Time-Level Attribution Map

Head-Level Attribution MapHead-Level Attribution Map Agnostic map

 Q2: G2Rt= 1
 Q2: G2R  Q1: R2G

Figure 7: Generation flow of StableVITON through I2AM. The traits derived from G2R maps are shown
(left), and the usage is displayed in R2G maps (middle). (right) We visualize M

(5)
sr,i, capturing key blending

features that link basic properties with finer details.

colors and patterns from the reference image are integrated into the final output. Additional results
are provided in the Appendix for further details.

5.3 SUPER-RESOLUTION

In this section, we evaluate the PASD Yang et al. (2023b) model for super-resolution tasks, where
the goal is to enhance the resolution of a low-resolution image by progressively refining it. Unlike
inpainting, which reconstructs specific masked regions, super-resolution aims to improve the overall
image resolution while preserving key details from the input. First, Fig. 8 provides insights into both
Q1 and Q2 using bidirectional (R2G and G2R) maps. The HLAMs (Mg,n,Mr,n) reveal that dif-
ferent heads handle distinct regions of text descriptions from the reference image but work together
to enhance fine details in the final output. The TLAMs (Mg,τ ,Mr,τ ) show that the PASD model
consistently focuses on critical image features, e.g., text descriptions, throughout the process, main-
taining stable attention across time steps. The consistent attention distribution across time and heads
highlights the model’s reliance on detailed information from the low-resolution input to improve the
high-resolution image.

Fig. 9 extends this analysis to a layer-level view using the SRAMs (M(l)
sr,i), illustrating how patches

at similar positions across different layers contribute to super-resolution. Layers 2 to 7 show precise
attention alignment, indicating the model’s effectiveness in preserving critical image features from
the low-resolution input at appropriate locations. However, attention scores in higher layers (e.g.,
layers 9 and 11) display slight misalignments. This suggests that while the lower layers focus on
refining key structural features and capturing accurate positional information, the higher layers may
struggle with processing more abstract and challenging patterns. As also shown in Fig. 2, each layer
performs a distinct function, with some layers prioritizing fine details while others focus on higher-
level semantics. Similar trends to PASD are observed in another super-resolution model, SeeSR
(See Appendix A.7).

R
2G

 Q
2:

 

Head-Level Attribution Map

High-resolution Unified-Level

Time-Level Attribution Map
t= T t= 1

Time-Level Attribution Map
t= T t= 1

 Head-Level Attribution Map

Unified-LevelLow-resolution

 Q
1:

 G
2R

Figure 8: Improvement process of super-resolution, showing how content from the G2R map is meaningfully
incorporated into the R2G map. Progressive refinement of details from low to high resolution is visualized
through head- and time-level maps.

Layer 2 Layer 8Layer 5 Layer 7 Layer 9 Layer 11

Figure 9: Gradual change in attention within SRAM M
(l)
sr,i, at corresponding positions in multiple layers.

Lower layers achieve intuitive position alignment, while higher layers manage more complex contexts. Zoom
in to check for position alignment.
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Method FID ↓ KID ↓ LPIPS ↓ SSIM ↑ IMACSg ↑ IMACSr ↑
DCI-VTON Gou et al. (2023) 13.0953 0.0334 0.0824 0.8612 0.0785 –
StableVITONKim et al. (2023a) 10.6755 0.0064 0.0817 0.8634 0.3083 0.3388
Custom 11.6572 0.0042 0.1020 0.8396 0.0833 0.0403
Refined custom 11.5420 0.0022 0.0964 0.8644 0.2215 0.0948

Table 2: Quantitative comparison on VITON-HD dataset. Evaluation metrics include FID, KID, LPIPS, and
SSIM for downstream tasks, alongside our proposed XAI evaluation metric, IMACS (with δ = 0.4, λ = 3).
Bold and underline indicate the best and second-best result, respectively.

5.4 APPLICATIONS: IMACS AND MODEL DEBUGGING

This section explores the utility of our proposed metrics IMACSg/r for model debugging and per-
formance improvement. IMACS, alongside traditional metrics like FID, KID, LPIPS, and SSIM,
provides deeper insights into attention alignment between reference and generated images.

Our analysis highlights variations in attention dispersion within LDMs, particularly in ULAMs
(Mg,Mr) during inpainting tasks, where mask alignment is critical. For example, DCI-VTON
exhibited scattered attention scores, leading to color discrepancies, information loss from the ref-
erence, and unnecessary patterns (see Fig. 6), degrading the model’s consistency with the refer-
ence image. In contrast, StableVITON showed better alignment, producing more accurate and
consistent results. This improved alignment was reflected in higher IMACS scores (Tab. 2),
which directly correlated with other metrics. StableVITON achieved the highest alignment,

Clothing Custom model Refined Custom model

Specific-Reference Attribution Map

Figure 10: Comparative analysis of the custom
model before and after improvements based on
SRAM debugging. The orange box highlights color
confusion in the initial model, while the black box
shows improved color consistency in the refined
model. The SRAM illustrates how debugging im-
proved performance.

followed by the refined custom model, the original
custom model, which will be discussed below, and
DCI-VTON. These results demonstrate a clear re-
lationship between higher IMACS scores and bet-
ter task performance, confirming the metric’s ef-
fectiveness in evaluating model accuracy.

We also used IMACS for model debugging. Our
experiments confirmed that each layer plays dis-
tinct roles in inpainting (Fig. 2). As illustrated in
Fig. 7, specific layers in well-trained models like
StableVITON effectively map spatial information.
In our custom model, detailed in Appendix A.5,
layer 2 exhibited similar capabilities but suffered
from score dispersion and geometric misalignment
SRAM M

(2)
sr,i. To address this, we applied loss

functions aimed at i) densifying attention distribu-
tions and ii) improving semantic alignment. As
shown in Fig. 10, the refined custom model cor-
rected color inconsistencies and enhanced atten-
tion accuracy, resulting in better overall perfor-
mance, as also observed in Tab. 2.

6 CONCLUSION

We propose the Image-to-Image Attribution Maps (I2AM), a method for bi-directional analysis of
how I2I models transfer visual information between input and output domains. By aggregating
cross-attention maps across time steps, attention heads, and layers, I2AM generates two attribution
maps: one capturing the influence of the reference image on the generated image, and another
showing how the generated image relates back to the reference. Our experiments across object
detection, inpainting, and super-resolution tasks demonstrate that I2AM effectively enhances model
interpretability and captures critical attribution patterns. Moreover, I2AM provides valuable insights
for model debugging and refinement.

However, our approach has limitations: it has mainly been tested in a paired setting, and while
Fig. 21 shows promising results in an unpaired setting, further analysis is needed. Additionally, it
was primarily applied to tasks with cross-attention using reference images, limiting the scope of
experiments. Future work should explore its extension to tasks like colorization or style transfer.
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A APPENDIX

A.1 RELATED WORK

Image inpainting with text-to-image diffusion models. Beyond traditional image inpainting tech-
niques that employ noisy backgrounds outside mask regions, text-to-image diffusion models such as
GLIDE Nichol et al. (2021) integrate masked images with text prompts. This innovation enhances
the diffusion process, using information from outside the mask to improve both contextual relevance
and visual consistency. Similarly, Blended diffusion Avrahami et al. (2022) utilizes CLIP scores to
align generated images with text prompts, and SmartBrush Xie et al. (2023) is proposed to predict
object shapes within a masked area, thus preserving the integrity of the surrounding background.

Image-to-image diffusion-based image inpainting. Image-to-image diffusion models for inpaint-
ing are less common than text-to-image models. Notable examples include Palette Saharia et al.
(2022a) and Paint-by-Example (PBE) Yang et al. (2023a). Palette serves as a general framework for
image-to-image translation, yielding accurate results for inpainting but cannot be visualized with our
proposed method due to its concatenated image input. To reduce self-referencing in image genera-
tion, PBE uses strong augmentation and only the CLS token from the CLIP image encoder Radford
et al. (2021) to focus on relevant objects while ignoring background noise. Since PBE provides im-
age embeddings with cross-attention, our method can be applied. Additionally, StableVITON Kim
et al. (2023a) and DCI-VTON Gou et al. (2023) excel in the specialized task of virtually dressing
clothes and can also utilize our methodology by integrating ControlNet Zhang et al. (2023) structures
and warping networks Ge et al. (2021).

A.2 PRELIMINARIES

Image inpainting. This task involves controlling image editing using semantic masks. While tra-
ditional image inpainting Lugmayr et al. (2022) focused solely on filling masked areas, recent ap-
proaches, like multi-modal image inpainting Xie et al. (2023); Nichol et al. (2021); Avrahami et al.
(2022); Couairon et al. (2022); Yu et al. (2023), use guidance such as text or segmentation maps
to fill masked regions. The main focus of this paper, VITON, is a type of image inpainting where
clothes are virtually worn on a person. The unique aspect is that while maintaining the pose, body
shape, and identity of the person, the clothing product must seamlessly deform to the desired cloth-
ing area. Additionally, preserving the details of the clothing product is a requirement.

Classfier-free guidance. Classifier-free guidance Ho & Salimans (2022) (CFG) is a method for
trading off the quality and diversity of samples generated by diffusion models. It is commonly used
in text, class, and image-conditioned image generation to enhance the visual quality of generated
images and create sampled images that better match the conditions. CFG effectively shifts probabil-
ity towards data achieving high likelihood for the condition cI . Training for unconditional denoising
involves setting the condition to a null value at regular intervals. At inference time, the guide scale
s is set to s ≥ 1, extrapolating the modified score estimate ϵ̂ towards the conditional output ϵc while
moving away from the unconditional output ϵuc direction.

ϵ̂ = ϵuc + s(ϵc − ϵuc), (9)
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Unified-Level Attribution Map Unified-Level Attribution Map

Figure 11: R2G visualization results with and without CFG, using PBE. The dispersion of attention
scores exceeded the inpainting mask’s range when CFG was not used.

The diffusion model relies on Classifier-free Guidance (CFG) technology, as shown in Fig. 11,
depicting the time-and-head integrated attribution map based on the presence of CFG. CFG assigns
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a higher likelihood to the reference image, shifting the output accordingly. This shifted output is
repeatedly utilized as input for the model, resulting in a shift in the distribution of the attribution
map. With the application of CFG, the model better reflects the reference image, facilitating the
synthesis of images in appropriate regions.

A.3 LAYER/HEAD/TIME-LEVEL ATTRIBUTION MAPS

This subsection presents the derivation of the omitted equations and additional samples.

Time-level attribution map. TLAM for each group {Mg,τ ,Mr,τ}
Tgroup−1
τ=0 ∈ R(H,W ) provide how

the model gradually constructs the image by monitoring its generation process over time.

Mg,t =Sum{n,l}(M
(l)
g,t,n), Mr,t = Sum{n,l}(M

(l)
r,t,n) (10)

Mg,τ =

(τ+1)·∆t∑
t=τ ·∆t

Mg,t, Mr,τ =

(τ+1)·∆t∑
t=τ ·∆t

Mr,t (11)

Head-level attribution map. HLAM {Mg,n,Mr,n}Nn=1 ∈ R(H,W ) reveals the contributions of
each attention head to different regions of the generated image. A varied distribution of heads
suggests effective detection and emphasis on multiple features, with the primary object consistently
scoring high.

Mg,n = Sum{t,l}(M
(l)
g,t,n), Mr,n = Sum{t,l}(M

(l)
r,t,n) (12)

Layer-level attribution map. LLAM {M(l)
g } ∈ R(H,W ) provides insights into how each layer

captures, transforms, and interacts with features, highlighting their impact on the final generated
image while revealing potential areas for improvement.

M(l)
g = Sum{t,n}(M

(l)
g,t,n) (13)

Specific-Reference Attribution Map. SRAM {M(l)
sr,i}Ll=1 ∈ R(H,W ) identifies which areas of the

reference image a specific patch of the generated image examines, utilizing M
(l)
r,t,n, represented as a

matrix with dimensions (HW,HW ).

M
(l)
sr,i = Sum{t,n}(M

(l)
r,t,n[i, :]) (14)

Specific-Reference Attribution MapGenerated image & Condition

Figure 12: Specific-Reference Attribution Map M
(5)
sr,i visualization. The information from the refer-

ence image that the small red box during synthesis referenced is indicated by the red arrows.

A.4 IMPLEMENTATION DETAILS

Datasets. Paint-by-Example (PBE) was trained on the OpenImages Kuznetsova et al. (2020). It con-
sists of 16 million bounding boxes for 600 object classes across 1.9 million images. StableVITON
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t= T t= 1
Time-Level Attribution Map Head-Level Attribution Map

Low-resolution High-resolution Unified-Level

Figure 13: Attribution maps for generated image (R2G) in super-resolution.

and DCI-VTON were trained on VITON-HD Choi et al. (2021). It is a dataset for high-resolution
(i.e., 1024 × 768) virtual try-on of clothing items. Specifically, it consists of 13, 679 frontal-view
woman and top clothing image pairs are further split into 11, 647/2, 032 training/testing pairs.

Evaluation. We evaluated DCI-VTON, StableVITON, and a custom model using IMACS. To
demonstrate the consistency of IMACS with downstream tasks, we additionally employ evaluation
metrics from the VITON task: FID, KID, SSIM, and LPIPS. Specifically, we use paired settings,
where person images wearing reference clothing are available, and unpaired settings, where person
images wearing reference clothing are not available. In paired settings, we apply SSIM and LPIPS
to measure the similarity between the two images, while in unpaired settings, we use FID and KID
to measure the statistical similarity between real and generated images. Lower scores for FID, KID,
and LPIPS, and higher scores for SSIM and IMACS, indicate better performance. We conduct all
evaluations on images of size 512 × 384 and all figures are visualized using I2AM introduced in
Section 4.

Existing models. We studied the three inpainting models: Paint-by-Example (PBE) Yang et al.
(2023a), StableVITON Kim et al. (2023a), and DCI-VTON Gou et al. (2023). While PBE and
DCI-VTON follow the architecture in Fig. 3c, StableVITON follows Fig. 3b. Unlike PBE and
DCI-VTON, which rely on the CLS token, StableVITON utilizes all patch embeddings from the
reference image, allowing for bidirectional visualization. Similarly, the super-resolution models
PASD Yang et al. (2023b) and SeeSR Wu et al. (2024) adopt the structure in Fig. 3b and enable
bidirectional visualization through cross-attention on all patch embeddings. The number of cross-
attention layers (L) is determined by the decoder blocks, as interactions between input and reference
data are primarily learned during the decoding stage. PBE, StableVITON, DCI-VTON, SeeSR, and
our custom model have 9 cross-attention layers, while PASD has 15. Each model used T = 50
and Tgroup = 5 with DDIM Song et al. (2022) sampler, except for PASD, which had T = 20 and
Tgroup = 4. Most models used 8 attention heads, while SeeSR had varying attention heads: 20
for resolution 16, 10 for resolution 32, and 5 for resolution 64. CFG scales s of 5, 5, 1, 5.5, 5 and
9, respectively. We visualized the reverse SRAM M

(l)
sr for layer 5 in StableVITON. Pre-trained

models were obtained from their respective GitHub repositories. However, due to limited samples
for IMACSr measurement, demonstrating its consistency with downstream task performance was
challenging. This led to the development of a custom model utilizing all patch embeddings from
reference images, extending the approach of StableVITON and PASD to other image-to-image latent
diffusion models.

A.5 CUSTOM MODEL

The custom model, based on Stable Diffusion v1.5, replaces the CLIP text encoder with a large
image encoder that uses all patch embeddings. It follows the architecture in Fig. 3c and was fine-
tuned on the VITON-HD dataset. The model takes a person image x ∈ R(H,W,3), a clothing-
agnostic person representation xa ∈ R(H,W,3), a dense pose xd ∈ R(H,W,3), and a clothing image
I ∈ R(H,W,3), filling the agnostic map xa with the clothing image (reference image) I. The input to
the U-Net expands the initial convolution layer to 12 channels (4+4+4 = 12), initialized with zero
weights. All components except z and I pass through the encoder E . The custom model overview is
shown in Fig. 14. The model was trained for 90 epochs with a batch size of 64. DDIM was used for
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Figure 14: An overview of custom model. For VITON task, the model takes three inputs: the
noisy image, agnostic map, and dense pose. Image embeddings serve as the key and value for the
cross-attention.

50 steps with Tgroup = 5, and a CFG scale (s) of 5. The custom model has 8 attention heads (N = 8)
and 9 cross-attention layers (L = 9), with SRAM visualizations focusing on layer 2.

We observed that similar to StableVITON in layer 2, spatial mapping occurs between reference
patches and generated patches. However, we identified misalignment in the SRAM’s attention scores
for each patch and incorporated this into the loss function for training. The goal is to improve color
consistency by accurately matching the semantic correspondence of each patch. The proposed loss
function consists of three components: LDCML, LTV, and LCWG. Given the standard attention map
A ∈ R(H′,W ′,h′,w′) (where the query is the generated image and the key is the reference image),
2D coordinate map D ∈ R(h′,w′,2), and ground truth warped clothing mask W ∈ {0, 1}(H′,W ′), the
loss functions are computed as follows. Note that these loss functions are applied exclusively to the
warped clothing region.

• Weighted Center Coordinate Map: Calculate the weighted center coordinates C ∈
R(H′,W ′,2) by combining the attention map and coordinate map at each position:

Cijn =
1

h′w′

h′∑
k=1

w′∑
l=1

(Aijkl ⊙Dkln), (15)

• Distance-Centering Maximization Loss (LDCML): Lx adjusts the coordinate x by pushing
the centers to the right within the same row, whileLy adjusts y by pushing the centers below
within the same column. This aligns the relative positions of patch centers, promoting
semantic correspondence and spatial consistency:

Lx =

H′∑
i=1

W ′−1∑
j=1

W ′∑
k=j+1

max(0, Ci,j,0 − Ci,k,0), (16)

Ly =

W ′∑
j=1

H′−1∑
i=1

H′∑
k=i+1

max(0, Ci,j,1 − Ck,j,1), (17)

LDCML= Lx + Ly, (18)

• Total Variation Loss (LTV): Mitigates abrupt changes caused by LDCML, ensuring smooth
transitions and maintaining appropriate spacing between patches:

LTV = ∥∇C∥22, (19)

• Center-weighted Gaussian Loss (LCWG): Encourage the attention scores for each gener-
ated patch to focus on the center coordinates using a Gaussian-based distance calculation.
The standard deviation σ is set to 1:

∆i,j,k,l =
√

(Ci,j,0 − k)2 + (Ci,j,1 − l)2, ∆i,j,k,l ∈ R(H′,W ′,h′,w′), (20)

LCWG = − 1

H ′W ′h′w′

H′∑
i=1

W ′∑
j=1

h′∑
k=1

w′∑
l=1

exp

(
−
∆2

i,j,k,l

2σ2

)
⊙Ai,j,k,l, (21)
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These loss functions help learn the precise correspondence between patches and improve the consis-
tency and quality of the generated image. LDCML aligns semantic correspondence between patches,
LTV enhances spatial consistency, and LCWG ensures the attention map focuses on the center coor-
dinates, ultimately yielding more accurate and consistent results. Finally, the overall loss function
L combines these components along with the baseline latent diffusion model loss LLDM to optimize
all aspects of the model’s performance jointly:

L = LLDM + λDCMLLDCML + λTVLTV + λCWGLCWG, (22)

Where λDCML = 0.01, λTV = 0.0001, and λCWG = 2, these values represent the strength of each
loss term during training.
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Figure 15: Example of a refined custom model with the IMACSg/r metric. Each attribution map
shows high attention scores aligned with its mask region. The scores below the figures are IMACSg/r
values measured with λ set to 3.

A.6 ABLATION STUDY

An ablation study was conducted to find the optimal threshold for filtering small values to improve
I2AM’s clarity and accuracy. Tab. 3 shows the results of adjusting the threshold values while per-
forming object detection with I2AM on PBE. A threshold δ = 0.2 sets values below 0.2 to zero
in a [0, 1]-normalized map, with the highest mIoU>0.5

gen achieved at the values of 0.4 (default) and
0.5. Additionally, we examined the effect of changing the IMACS penalty factor λ on the corre-
lation with downstream task metrics, as shown in Tab. 4. A larger λ resulted in a greater decrease
in IMACS for models with significant information loss from the reference image, as observed in
DCI-VTON. Furthermore, we confirmed that the correlation remained stable even with changes in
the penalty factor λ.

A.7 ADDITIONAL RESULTS

Comparison with DAAM.

The primary difference between I2AM and T2I attention map visualization methods like
DAAM Tang et al. (2022) and prompt-to-prompt Hertz et al. (2022) lies in the direction of softmax
application. T2I models allow visualization only of the R2G attribution map, which we compare
with M

(l)
g,t,n from equation 3. DAAM uses a standard approach to calculate attention scores, treat-

ing the generated image as the Query and the prompt as the Key. This approach separates tokens,
highlighting those with the most influence on the generated patches, while automatically reducing
the values of less important tokens. In contrast, the contextual continuity of the reference image
makes it impossible to separate, so we focus on how it influences the generated patches as a whole.
We treat the reference image as a single token and reverse the softmax direction, using it as the

Method mIoU>0.5
gen

δ = 0.2 0.3 0.4 0.5 0.6
Ours 0.2413 0.2413 0.2416 0.2416 0.24

Table 3: Ablation study of the threshold δ in the attention maps. The default δ is 0.4
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Method λ = 1 3 (default) 5 10
IMACSg ↑ IMACSr ↑ IMACSg IMACSr IMACSg IMACSr IMACSg IMACSr

DCI-VTON 0.4291 – 0.0785 – −0.3051 – −1.2155 –
StableVITON 0.5376 0.3534 0.3083 0.3388 0.07 0.3211 -0.1219 0.301
Custom 0.2352 0.0677 0.0833 0.0403 −0.1901 0.0091 −0.4579 −0.0527
Refined custom 0.4675 0.1249 0.2215 0.0948 0.029 0.0513 −0.3105 0.0112

Table 4: Ablation study of the penalty factor λ on the IMACS metric. As λ increases, the punishment for
attention scores outside the masked region intensifies. A larger λ indicates that the model loses more informa-
tion, as the value drop becomes more significant. Bold and underline indicate the best and second-best result,
respectively.

Query in equation 3. This allows us to understand its influence on the generated patches holistically.
However, this approach does not identify which specific reference patches contribute information.

To assess the relevance of the reference information, we visualize the G2R attribution map by treat-
ing the generated image as a single token. G2R provides a similar analysis to T2I by comparing
reference patches and complements R2G. However, if irrelevant areas dominate the generated im-
age, distortions may arise in G2R. To address this, we propose SRAM M

(l)
sr,i, which identifies which

generated patches extract meaningful information from the reference. SRAM can be computed for
all generated patches and aids in interpreting their significance.

Applying softmax in DAAM’s direction to I2I models cannot produce interpretable maps. Using
DAAM’s softmax on the generated image results in uniform attention values across pixels, as the
row sums of the softmax are 1 (see Fig. 16). Fig. 16a shows ULAM Mg computed with Sta-
bleVITON using all patch embeddings. While attention scores should theoretically be identical,
cumulative errors from resizing, normalization, and floating-point inaccuracies introduce discrep-
ancies, resulting in a meaningless map. Fig. 16b shows ULAM Mg computed with only the CLS
embedding, which eliminates these errors and assigns identical scores across all regions. This result
matches the “overall” row in Tab. 1 for object detection tasks. In contrast, by reversing the softmax
direction, our approach can visualize the R2G attribution map using only the CLS embedding (e.g.,
PBE and DCI-VTON).

StableVITON
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(a) All patch embeddings

DCI-VTON

(b) Only CLS embedding

Figure 16: Unified-Level Attribution Map Mg results using DAAM. (a) In the process of aggregating all
patch embeddings from the reference image, error accumulates, resulting in a meaningless attention map. (b)
Visualization using the reference image’s CLS embeddings. In the error-free case, all attention values are the
same.

Comparison of PASD and SeeSR. This paper investigates whether the attribution map trends ob-
served in the super-resolution model PASD Yang et al. (2023b) are also present in the SR model
SeeSR Wu et al. (2024). The SR models discussed here provide low-resolution signals during infer-
ence. As mentioned in previous works (Choi et al., 2022; Lin et al., 2024), the noise schedule used
in the representative latent diffusion model, Stable Diffusion, does not guarantee an SNR (signal-
to-noise ratio) of zero at the final time step during training, leading to residual signals and train-test
discrepancies. SeeSR and PASD combine low-quality (LQ) input with pure noise during inference
to address the mismatch. Specifically, when independent Gaussian noises zT and z′T are present,
conventional inference starts the denoising process from zT , whereas SeeSR and PASD proceed as
follows:

zseesr
T =

√
ᾱT zLR +

√
1− ᾱT zT (23)
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zpasd
T =

√
ᾱaᾱT zLR +

√
1− ᾱaᾱT z

′
T (24)

where T is the terminal time step, zLR is the LQ latent, ᾱT is the noise magnitude, and ᾱa controls
the residual signal zLR. In PASD, ᾱa is set to 0.1189. Therefore, both PASD and SeeSR, as ex-
perimented with in this paper, receive low-frequency information along with the input, allowing the
initial layers to remain less influenced by coarse features, as shown in 2a.

While PASD introduces ᾱa to reduce excessive interference from zLQ, SeeSR relies on a higher
volume of LQ data. As shown in Fig. 17, our visualization method highlights the differences in gen-
eration processes based on initial noise. Fig. 17 presents SeeSR results for the prompt “close-up,
electronic, clean, high-resolution, 8k” on the same sample. SeeSR uses differ-
ent numbers of attention heads depending on resolution (16 resolution: 20 heads, 32 resolution: 10
heads, 64 resolution: 5 heads), totaling 35 attention heads, with 8, 4, and 2 heads extracted from
16, 32, and 64 resolutions, respectively, for visualization. Additionally, SeeSR uses 50 time steps
(Tgroup = 5) compared to PASD’s 20 (Tgroup = 4), leading to longer generation times. The nar-
rower attention score range in SeeSR likely reflects either distortion due to strong LQ signals or
sufficient information being provided. HLAMs (Mg,n,Mr,n) show that each attention head learns
different information tailored to diverse parts of the input image, similar to PASD, and this trend
is also observed in TLAM Mg,τ . In TLAM Mr,τ , differences in LQ input levels during inference
impact visualization and lead to less consistent attention scores. This indicates that SeeSR’s longer
time steps and stronger LQ signals offer more information early in the process, with consistency
decreasing over time. Similarly, as shown in Fig. 18, we observe that low involvement in coarse
features of the early layers and positional alignment weakens from low-resolution to high-resolution
layers through SRAM M

(l)
sr,i, following the same trend as PASD.

 Q
1:

 

High-resolution Unified-Level

Time-Level Attribution Mapt= T t= 1

Head-Level Attribution Map Head-Level Attribution Map

Unified-LevelLow-resolution

 Q
2:

 

Figure 17: Visualization of SeeSR super-resolution results across 35 attention heads: 8 heads at 16 resolution,
4 heads at 32 resolution, and 2 heads at 64 resolution. The prompt used for this visualization is “close-up,
electronic, clean, high-resolution, 8k”. HLAMs (Mg,n,Mr,n) show each head learning
and adapting to different parts of the input image. Mg,τ aligns with PASD patterns, while Mr,τ displays less
consistency in attention scores over time, likely due to SeeSR’s longer time steps and stronger low-quality
signals. The prominent low-quality signal also results in a narrower distribution of attention scores.

Layer 2 Layer 5 Layer 7

SR
AM

Layer 2 Layer 4 Layer 5 Layer 7 Layer 8

LL
AM

Figure 18: LLAM M
(l)
g : Strong low-quality signal in initial noise results in lower attention score on coarse

features; SRAM M
(l)
sr,i: Lower layers exhibit geometric correspondence, but this trend diminishes as the reso-

lution increases.

Insights into SRAM. SRAM provides mapping information between each patch of the generated
image and the reference image, addressing distortions caused by unnecessary patches. In Fig. 1,
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ULAM Mg effectively uses reference image data, while ULAM Mr struggles to extract critical de-
tails, such as clothing logos, leading to potential detail loss. This distortion arises from the G2R
attribution map, which treats the generated image as a single token. SRAM, however, provides
attribution maps for each patch (e.g., the red box around the logo), confirming that semantic infor-
mation is accurately extracted from the reference patches. Notably, the first row, the second column
of the grid highlights the retrieval of logo details from the reference image, ensuring precise logo
generation.

Heat Map SRAM

Q1

Q2

Q2

Figure 19: SRAM M
(l)
sr,i shows the alignment between the specific generated patch and reference image,

enabling verification of effective information transfer. This figure, an enlarged view of Fig 1, illustrates the
concept. While the bottom map in the first column appears to miss critical details (e.g., a clothing logo),
SRAM reveals that the generated patches in the red box, including the logo area, are correctly matched to
regions of the reference image.

A.8 LIMITATION

We calculate the attention map by considering the characteristics of the diffusion model, segmenting
it by time step t, attention heads n, and layer l. Based on this, we propose ULAM, which combines
all axes, as well as TLAM (segmented by time step), HLAM (segmented by attention head), and
LLAM (segmented by layer). However, it is also possible to calculate the map by considering two
axes simultaneously, rather than just one. This can be achieved by modifying the aggregation in
equations 10, 12, and 13. For example, as shown in Fig. 2, we can examine the roles of layers at
different resolutions in the inpainting model, considering both the layer and other axes. The results
are shown in Fig. 20.

Fig. 20a shows the TLAM for each layer at different resolutions (16, 32, 64), where we observe
minor changes in attention scores, but the result is similar to the original TLAM Mg,τ . Fig. 20b
presents the HLAM for each layer at different resolutions, highlighting the varying distribution of
attention scores across heads for each layer. However, since we expected the HLAM to capture
the extraction of information from diverse regions by each head, this characteristic is sufficiently
confirmed through the original HLAM Mg,n, which integrates all layers.

We conducted experiments in a paired setting. Previous study Jia et al. (2021) has shown that in
an unpaired setting, image-to-image translation leads to semantic flip to maintain the distribution
of transformed images, often reversing the meaning of the input despite visually plausible outputs.
Although we do not provide a deep analysis of the unpaired setting, the results of StableVITON
in the unpaired setting, shown in Fig. 21, maintain similar consistency to the paired setting. This
suggests the potential to extend I2AM to unpaired setups. Finally, while we intended to apply our
method to tasks like colorization, depth estimation, and style transfer, due to the lack of models
that use cross-attention with reference images, we only present results for object detection, image
inpainting, and super-resolution. Visualization of attribution maps for more tasks remains a direction
for future work.
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(a) TLAM Mg,τ by layers
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(b) HLAM Mg,n by layers

Figure 20: The R2G attribution map aggregated by layer resolution is shown. It consists of 9 layers grouped
into three sets with 16, 32, and 64 resolutions. (a) Compared to TLAM, the attention scores differ in detail but
maintain the same overall pattern over time. (b) The HLAM shows 3 of the 8 heads. Each layer has a different
attention distribution, and even the same head index does not focus on the same perspective. This observation
indicates that each head attends to different regions, allowing the model to process diverse types of information
effectively.
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Figure 21: Visualization results of I2AM in an unpaired setting. The attribution map shows similar trends
to the paired setting, suggesting the model’s robustness in the unpaired environment. ULAM Mg: A map
that reveals the overall trend, with scores evenly distributed within the masked region. HLAM Mg,n: Each
head exhibits rich expressiveness and considers global relationships, even in the unpaired setting. TLAM
Mg,τ : Detailed attention scores are consistently maintained. SRAM M

(l)
sr,i: Mapping information for generated

patches works correctly in the unpaired setting.
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