
A. Experimental design
For each of our experiments reported in Section 3.3, we
recruited N = 200 participants from Prolific (Palan and
Schitter, 2018). Participants were paid $15 per hour ($1.25
total for blocks and grid domains, and $2.00 for the keys
domain), and our experiments were conducted with IRB
approval.

Participants were first familiarized with the environment,
through both text instructions and a sample video of an
agent performing the task in the domain. Then, they were
told that their objective was to infer the agent’s goal from a
single snapshot. They answered several questions to check
their comprehension of both the domain and the task they
were asked to perform, and were not allowed to continue
unless they answered the comprehension questions correctly.
The full experimental design is available in HTML format
upon request. No data was excluded from our analyses.

B. Numerical test of correctness
Programming sophisticated importance sampling routines is
a challenging and bug-prone engineering effort (Cusumano-
Towner et al., 2019; Anderson et al., 2017; Pharr et al.,
2016). To test that our algorithm is unbiased, i.e. that it
produces correct likelihoods in expectation, we compared
likelihoods computed by rejection sampling and our sampler
using converged estimates (25,000 samples each). For this
experiment we used a uniform 4 ⇥ 4 grid-world, with the
prior on start states being uniform along the first row (x =
0) and the goal being the far corner (3, 3). The results
of this experiment are shown in Figure 4. Our estimator
has a dramatically different implementation than rejection
sampling (compare Algorithms 1 and 2). However, the
computed likelihoods are indistinguishable at every cell in
the grid, even in “corner-case” cells such as the goal cell
itself. This provides a strong check that our algorithm
and its implementation are both indeed correct.

C. Additional domains
We used our algorithm to perform inferences in three addi-
tional domains. The purpose of these domains is to show
the remarkable flexibility of our method: how it can make
interesting inferences in a wide variety of settings. Though
we did not collect human subject data for these domains, we
show results for cases where the inference task is relatively
straightforward.

C.1. Food trucks (joint belief/desire inference)

The food trucks domain, taken from the cognitive science lit-
erature (Baker et al., 2017), is a Partially Observable Markov
Decision Process (POMDP). It consists of a 5 ⇥ 10 grid-

world with an opaque wall in the middle. A hungry graduate
student wakes up at home (one side of the wall) and wishes
to eat at a food truck. There are two parking spots where
food trucks usually park, and three kinds of food trucks that
could be parked at each of those spots: Korean, Lebanese,
and Mexican (K, L, and M). The graduate student might
have preferences among the cuisines, but might also be un-
certain about which trucks are parked at each spot today.
Thus, they might engage in information-seeking behavior by
looking behind the opaque wall, and then choosing a food
truck to walk to based on their preferences. The inference
task is to determine (a) the student’s preferences over
food trucks, and (b) the student’s (current) belief state
about which truck is at each parking spot.

Using this domain, Baker et al.’s inverse planning model was
able to jointly infer the student’s beliefs and desires from
an observed trajectory; those inferences closely matched
responses from human subjects. Here, we perform the same
type of inference, but from a single observed snapshot.

For example, in the example in Figure 5, the student is ob-
served moving south next to the wall. A Korean food truck
is parked in the southwest parking spot, and a Lebanese food
truck is parked in the northeast spot. Seeing this scene, a
reasonable inference is that the student went looking around
the wall to see if the Mexican food truck (their favorite) was
parked on the other side. Seeing that it was Lebanese food
instead, the student turns around and makes peace with the
nearby Korean food. Indeed, our model captures this infer-
ence: in the joint posterior distribution over both beliefs and
desires, our model is confident that the student now knows
that the northeast truck has Lebanese food, and furthermore
that the student’s favorite food is Mexican.

A more sophisticated inference emerges if the student is
observed moving north instead of south (Figure 6). Now, a
reasonable inference is that the student dislikes Korean food,
and is going around the wall to check what is at the other
truck. The model captures this: it favors the hypothesis that
the student is unsure what is at the northeast truck, and also
places high weight on Korean being the least favorite food
option.

However, as is visible on the right half of the heatmap, the
model also places some weight on the possibility that the
student knows that there is Lebanese food and prefers it, or
that the student (mistakenly) believes there is Mexican food
and prefers that.

C.2. Heist (multi-agent domain)

In this multi-agent domain inspired by classic stimuli in
cognitive science (Baker et al., 2008; Southgate and Csibra,
2009; Heider and Simmel, 1944), two agents—blue and
pink—occupy a 7⇥7 gridworld representing an art museum.



Figure 4. Our sampler’s likelihoods precisely match rejection sampling, with and without bidirectional path tracing, giving a strong
numerical check of our method’s correctness (Appendix B).

Figure 5. The student is observed heading south around the wall. A rational inference is that the student started at home, and went around
the wall to check what the far food truck was. Seeing that it was Lebanese and not Mexican (their favorite), the student disappointedly
turns around to make peace with the nearby Korean food. As shown on the heatmap to the right, our model captures this joint
belief-desire inference, predicting that the student now knows what is at both trucks, and reconstructing the student’s likely
preference ordering over the three cuisines. Note: the belief label “K \ ?” means that the student thinks the south-west parking spot
has a Korean food truck parked, but is unsure about the north-east parking spot. See Appendix C.1.

Figure 6. Here, the student is observed going north instead of south. A more sophisticated inference emerges, showing that the student is
likely uncertain about which truck is parked behind the wall. See Appendix C.1



Figure 7. Two agents are observed by a security camera in an art
museum. Who is the guard, who is the thief, and where is the thief
trying to escape to? Our model predicts that the guard is the
blue agent, the thief is the pink agent, and that the exit is in
the bottom right. See Appendix C.2.

One of the agents is a “thief,” whose objective is to escape
the museum by reaching the exit, and the other is a “guard,”
whose objective is to catch the thief. There are four doors in
the room, only one of which is an exit, and the rest of which
are dead ends. Both agents know which door is the exit, but
this information is not visible to the observer (all doors are
rendered identically). The inference tasks are to look at
a snapshot of the two agents and jointly infer (a) which
agent is the thief and which is the guard, and (b) which
door is the exit.

In the example in Figure 7, it is clear from the snapshot that
the blue agent is the guard and is chasing the pink agent,
the thief, to the bottom-right corner. The model reproduces
this inference, though also acknowledges the possibility
that the thief might actually be heading onward past the
bottom-right, to the bottom-left corner instead.

The next two examples (Figure 8) are ambiguous cases: the
two agents are in symmetric positions, so it is unclear who
is who. Here, the model can determine with high confidence
where the exit is, but remains uncertain about who is the
thief and who is the guard.

Finally, in the last example (Figure 9), it is unclear whether
a blue guard is blocking a pink thief from heading to the
top-right corner, or whether a pink guard is blocking the
blue thief from heading the the bottom-right corner. Indeed,
the model reproduces this ambiguity.

C.3. Cart-pole (continuous state space with physical
dynamics)

The cart-pole domain is a classic problem in reinforcement
learning and optimal control. The goal is to balance a pole
in an upright position, by moving the cart left or right. The
state space of this domain consists of four continuous num-
bers: the horizontal position of the cart and its velocity, and

Figure 8. In these examples, it is unclear who the guard and thief
are—however, it is clear where the exit is. The model reproduces
this uncertainty as desired. See Appendix C.2.

Figure 9. In this example, it is unclear whether a blue guard is
blocking a pink thief from heading to the top-right corner, or
whether a pink guard is blocking the blue thief from heading
the the bottom-right corner. The model reproduces this joint
uncertainty as desired. See Appendix C.2.



the angle of the pole along with its angular velocity. The
inference tasks are to look at a snapshot image—which
only shows the cart position and the pole angle—and de-
termine the velocity of the cart and the angular velocity
of the pole. Note that rejection sampling cannot solve this
task because the probability of a randomly-sampled trace
passing through the observed state is zero.

We use an off-the-shelf pre-trained Proximal Policy Op-
timization (PPO) controller (Schulman et al., 2017) from
stable-baselines3 (Raffin et al., 2019) to compute a proba-
bility distribution over actions. Inference in this domain is
complicated by the fact that computing backward dynamics
in physical simulation is challenging and often ill-posed.
While previous work has proposed analytic approaches
(Twigg and James, 2008), we instead train a neural net-
work to approximate the reverse physical dynamics. We
place a unit Gaussian prior over the velocities, and use a
Von-Mises distribution as a prior over the initial pole angle.
We infer the velocities of the system by sampling candidate
pairs of cart and pole velocities (stratified in an 11⇥11 grid)
and computing likelihoods using our algorithm.

The inferred posteriors are intuitive and track the relative
stability of the position in each snapshot (Figure 10). For
example, in part (a), the pole has almost completely fallen
over, and so our method infers that the pole has a large
negative angular velocity, and is falling fast towards the
ground. At the same time, it infers that the cart is moving
fast to the left, in an attempt to re-balance. In comparison,
for part (f), the pole is nearly upright, so the model predicts
that the pole is not rotating, and that the cart might be
moving left or right to keep the pole balanced.



Figure 10. In each pair, the left image shows the cart-pole snapshot given to the algorithm, and the overlaid arrows summarize the model’s
predictions about how the system might evolve. The right heatmap shows our model’s full joint distribution of inferred cart velocity
(positive means moving to the right) and pole angular velocity (positive means clockwise), and the white stars mark posterior expectations.
When the pole is near-horizontal, our algorithm infers that the pole is falling, and the cart is moving left to re-balance. When the
pole is near-vertical, the algorithm infers that the pole is stationary, and the cart is making minor adjustments to keep the pole
balanced.
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