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A APPENDIX

Theorem 4.3. Assume assumption 4.1 holds, and the attacker applies (5) to perform attack. Then
there exists a constant M > 0 such that the expected number of target arm selections satisfies
E
⇥
NT (a†)

⇤
� T �MT

↵
/⇢, and the expected cumulative attack cost satisfies E [CT ]  MT

↵
/⇢.

Proof. Note that under attack, the bandit player is equivalently facing a new environment with loss
function L̃t. Also note that the target arm a

† is the optimal arm with respect to L̃t, thus the regret of
the bandit player is
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where the second-to-last inequality is due to assumption 4.1. On the other hand, since the player
applies some no-regret algorithm, we must have RT  MT

↵ for some constant M . Therefore, we
have

⇢
�
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†)
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↵
, (14)

which gives E
⇥
NT (a†)

⇤
� T �MT

↵
/⇢.

Next we upper bound the expected attack cost. We have proved that under attack, the target arm a
†

will be selected in T �MT
↵
/⇢ rounds. Then note that by our attack design (5), the attacker only

incurs attack cost when non-target arm is selected. Therefore, we have
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(15)

where we have used |L̃(at)� L(at)|  1.

Theorem 4.6. Assume the attacker applies (6) to perform attack. Then there exists a constant M > 0
such that the expected number of target arm selections satisfies

E
⇥
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†)
⇤
� T � 1

↵+ ✏
T
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, (7)

and the expected cumulative attack cost satisfies
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Proof. Under attack, the bandit player is equivalently facing loss sequence L̃1:T . Note that a† is the
optimal arm with respect to L̃1:T , thus the regret is

RT = E
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where we have used that L̃t(a
†
t)  1 � t

↵+✏�1. Now note that since ✏ < 1 � ↵, t↵+✏�1 is
monotonically decreasing as t grows, thus we have
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Next, by examining the area under curve, we obtain
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Similarly, we can also derive
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Therefore, we have
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The inequality follows from the fact (1� x)c  1� cx for x, c 2 (0, 1). Plug back in (16) we have
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Then note that RT  MT
↵, thus we have
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We now analyze the attack cost. Note that when at 6= a
†, the per-round attack cost is |L̃t(at) �

Lt(at)|  1. On the other hand, when at = a
†, the per-round attack cost is
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Therefore, the expected attack cost is
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where we have used (22).

Theorem 4.9. Let ⇢ 2 (0, 1] be any constant. Define T⇢ = {t | Lt(a†) > 1 � ⇢}, i.e., the set of
rounds where Lt(a†) is within distance ⇢ to the maximum loss value. Let |T⇢| = ⌧ . Also assume that
the attacker applies (6) to perform attack, then there exists a constant M > 0 such that the expected
number of target arm selections satisfies

E
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NT (a

†)
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1
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↵
/⇢, (9)

and the cumulative attack cost satisfies
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/⇢. (10)

Proof. Let t0 = ⇢
1

↵+✏�1 and define T0 = {t | t � t0 and t /2 T⇢}. Note that ✏ < 1� ↵, thus t↵+✏�1

is a monotonically decreasing function of t when t � 1, thus we have
t
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Therefore 8t 2 T0, 1� t
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means Lt(a†)  1� ⇢, thus the loss function prepared by the attacker (6) satifies
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†
,
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As a result, 8t 2 T0, whenever the bandit player selects a non-target arm at 6= a
†, the player incurs at

least regret ⇢. Next note that by our assumption |T⇢| = ⌧ , thus
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Therefore, the total regret after attack is
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Since RT  MT
↵ for some constant M , we have
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Thus we have
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We now upper bound the attack cost.
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where we have used (29) in the last inequality.

We now derive a lower bound on the cumulative attack cost for the Exp3 victim algorithm. The Exp3
algorithm is described in Algorithm 1.

Algorithm 1 The Exponential Weighted Exploration Exploitation (Exp3) Algorithm

1: Parameters: w1 = (1, ..., 1), total horizon T , and a constant learning rate ⌘.
2: for t = 1, 2, . . . , T do

3: Define ⇡t =
wt

||wt||1
4: Draw at ⇠ ⇡t, and observe loss `t = Lt(at)
5: for a = 1, ...,K do

6: if a 6= at then

7: wt+1,a = wt,a

8: else

9: wt+1,a = wt,a exp(�⌘
`t

⇡t,a
)

10: end if

11: end for

12: end for
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Lemma 5.1. Assume the bandit player applies the Exp3 algorithm with parameter ⌘ (see (34) in the
appendix) and initial arm selection probability ⇡1. Let the loss functions be L1:T . Then 8a 2 A, the
total number of rounds where a is selected, NT (a), satisfies

E [NT (a)] � T⇡1(a)� ⌘T

TX

t=1

E [⇡t(a)Lt(a)] , (11)

where ⇡t is the arm selection probability at round t. Furthermore, since ⇡t(a)  1, we have

E [NT (a)] � T⇡1(a)� ⌘T

TX

t=1

Lt(a). (12)

Proof. The Exp3 algorithm maintains a weight wt(a) for each arm a 2 A, which is often initialized
as w1(a) = 1, 8a. The probability of selecting any arm a in round t is computed as

⇡t(a) =
wt(a)P
a0 wt(a0)

. (33)

The player selects an arm at by sampling according to ⇡t. After observing the loss `t = Lt(at), the
Exp3 updates the weights as below.

wt+1(a) = wt(a) exp(�⌘ ˆ̀t(a)), 8a, (34)

where ⌘ is some constant to be selected later.

ˆ̀
t(a) =

⇢
`t

⇡t(at)
= Lt(at)

⇡t(at)
if a = at

0 otherwise
(35)

Note that 8a 2 A, we have
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= ⇡t(a) exp(�⌘ ˆ̀t(a)).
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Now using the inequality e
�x � 1� x, we have

⇡t+1(a) � ⇡t(a)(1� ⌘ ˆ̀t(a)). (37)

Taking expectation on both sides of (37), we have
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h
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i

= E [⇡t(a)]� ⌘E
h
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Now by telescoping, we have 8a 2 A
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� ... � ⇡1(a)� ⌘

t�1X
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17



Published as a conference paper at ICLR 2023

For all a, the total number of rounds where a is selected is NT (a) =
PT

t=1 1 [at = a]. We have

E [NT (a)] =
TX

t=1

E [⇡t(a)]

� T⇡1(a)� ⌘
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t=1

t�1X
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� T⇡1(a)� ⌘T
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(40)

Theorem 5.2. Assume some victim-agnostic attack algorithm achieves E
⇥
NT (a†)

⇤
= T � o(T ) on

all victim bandit algorithms that has regret rate O(T↵), where ↵ 2 [ 12 , 1). Then there exists a bandit
task such that the attacker must induce at least expected attack cost E [CT ] = ⌦(T↵) on some victim
algorithm. Specifically, one such victim is the Exp3 algorithm with parameter ⌘ = ⇥(T�↵).

Proof. Since we want to derive a lower bound on the expected attack cost for victim-agnostic
attackers, it suffices to choose a special bandit task, and a victim bandit algorithm that guarantees
O(T↵) regret, such that any victim-agnostic attacker must induce at least ⌦(T ) expected attack cost
on the chosen task and the victim algorithm. The proof consists of three steps as below.

(1). We first construct the following special bandit task. The player has two arms s a1, a2. The loss
functions are the following.

Lt(a) =

⇢
0 if a = a1

0.5 if a = a2
(41)

The attacker target arm is a† = a2. Note that this is an easy attack scenario since Lt(a†) = 0.5 <

1, 8t. Let the loss functions manipulated by the attacker be L̃t. Suppose the attack is successful, i.e.,
E
h
ÑT (a2)

i
= T � o(T ), where ÑT is the number of arm selections under the manipulated loss L̃t.

Then it must be the case that E
h
ÑT (a1)

i
= o(T ).

Using the lower bound (11) in Lemma 5.1, we have that for arm a1,
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E
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i
, (42)

where ⇡̃t is the arm selection probability under attack. Therefore, we must have
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TX
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E
h
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= o(T ) (43)

which results in
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⌘
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Note that in the RHS of (44), as T ! 1, we have
✓
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◆
/

✓
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Therefore, as T ! 1, we have
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⌘
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(2). We now choose a particular victim bandit algorithm that guarantees O(T↵) regret rate. Specifi-
cally, we choose the Exp3 algorithm that uses learning rate ⌘ = �T

�↵ for some constant � > 0 and
↵ � 1

2 . In the standard analysis of Exp3 algorithm, the regret bound is RT  1
⌘ logK + ⌘

2TK. Plug
in ⌘ = �T

�↵, the regret of the chosen victim Exp3 algorithm is

RT  1

�
T

↵ logK +
�

2
T

1�↵
K = O(T↵) +O(T 1�↵) = O(T↵), (47)

where the last equality is due to ↵ � 1
2 and thus O(T 1�↵) is negligible compared to O(T↵).

Therefore, the victim bandit algorithm guarantees regret rate O(T↵).

(3). Finally, we prove a lower bound on the attack cost if some victim-agnostic attacker performs
attack on the bandit task and the victim algorithm chosen above. Note that since Lt(a1) = 0 and
L̃t(a1) � 0, thus we always have L̃t(a1) = |L̃t(a1)�Lt(a1)|. Therefore, the expected attack cost is

E

"
TX

t=1

X

a

⇡̃t(a)|L̃t(a)� Lt(a)|
#

� E

"
TX

t=1
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#

=
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E
h
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i
! ⇡̃1(a)

⌘

=
⇡̃1(a)

�
T

↵ = ⌦(T↵),

(48)

where we have used (46).
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