
Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 REVISIT TRANSFORMER

In this subsection, we briefly revisit the computation of transformer and introduce some convenient
notations for the future. Let T be a transformer of dimension d with N layers L1, · · · ,LN . At each
layer Li, let the feed-forward network be Fi and multihead-attention be Ai. Given a context sequence
of m tokens, we can express each layer as a mapping from Rm⇥d to Rm⇥d as follows:

Li = (F⇤
i
+ I) �A⇤

i
+ I, (5)

where I represents the identity mapping, � denotes mapping composition, and F
⇤
i
=: Fi � LN,

A
⇤
i
=: Ai �LN (i.e. compositions with layer-normalization). Further, we define Ri = (F⇤

i
+ I) �A⇤

i

so as to write layer mapping as Li = Ri + I.

A.2 DERIVATIONS OF READ

Following the notations in Subsection A.1, we derive an inductive formula for the corrections:
��i = �0

i
� �i

= (R0
i
+ I)(�0

i�1)� (Ri + I)(�i�1)

= R
0
i
(�0

i�1)�Ri(�i�1) + (�0
i�1 � �i�1)

= R
0
i
(�0

i�1)�Ri(�i�1) + ��i�1

=
�
R

0
i�1 �Ri

�
(�0

i�1) +
�
Ri(�

0
i�1)�Ri(�i�1)

�
+ ��i�1

= �Ri(�
0
i�1) + JRi��i�1 + ��i�1.

(6)

Here �Ri denotes the operator difference R0
i
�Ri, and JRi is the Jacobian matrix of Ri(·) evaluated

at some point lying on the line segment from �i�1 to �0
i�1. To simplify our arguments, we (1) assume

that JRi takes value at �i�1, (2) let T 0 be the consequence of fine-tuning with Adapter or LoRA
(applied at FFN layers Fi) 5. We use P to denote a common module adopted by Adapter and LoRA
which consists of a down projection matrix to a lower dimension possibly followed by a non-linear
activation, and then composed with an upper projection back to the original dimension6. Under these
assumptions, the first term of the RHS in (6) now becomes

�Ri(�
0
i�1) =

⇢
Pi � (Pi + I)�1�0

i
(Adapter)

Pi � (Pi + Fi)�1�0
i

(LoRA)
=: Wi(�i + ��i)

(7)

Now plugging (7) back to (6), we obtain
��i = Wi(�i + ��i) + JRi��i�1 + ��i�1. (8)

Notice that both sides of equation (8) contains ��i. Because of the non-linearity of Wi, there is no
straightforward way to extract an inductive formula of ��i from (8).

However, let us rewrite equation (8) as
��i �Wi(�i + ��i)� (JRi��i�1 + ��i�1)

=F (��i,�i, JRi��i�1 + ��i�1) = 0,
(9)

and compute the Jacobian to see that J��iF = I � JWi, which is invertible when Pi (and hence Wi

7) has small norm. Now by Implicit Function Theorem there exists G such that
��i = G(�i, JRi��i�1 + ��i�1). (10)

An alternative argument is to use a first order approximation of Wi(�i + ��i) assuming that ��i is
sufficiently small, which gives us the following inductive formula:

��i = (I � JWi)
�1
�

✓
Wi�i + JRi��i�1 + ��i�1

◆
(11)

5For fine-tuning methods that modify attention, we expect a similar conclusion that demands a more intricate
line of reasoning, which we defer to future research.

6The operator norm of P is small when its two matrices have small weights, and therefore addition with P
will not change the invertibility of an already invertible operator.

13

Under review as a conference paper at ICLR 2023

We take the second approach above and adopt formula (11) as we move forward, because of its
explicit function form. Note that every operation in (11) acts on the column space of � except for
the Jacobian transform JRi, so let us first focus on expanding JRi��i�1. In fact, we will compute
the Jacobian for a general attention mapping that takes 3 arguments �q,�k,�v (i.e. hidden states
of queries, keys, and values), and then apply the results to the special case of self-attention (as in
encoder) and cross-attention (as in decoder) respectively. For the sake of brevity, we assume that the
number of attention head is 1 and omit the output projection, as neither of which is essential to our
conclusion.

Let �q,�k,�v be matrices in Rmq⇥d,Rmk⇥d,Rmk⇥d, which stand for Rd-vector representations of
the query, key, and value token sequences with length mq,mk,mk respectively. We use an upper
index ↵ to denote the vector associated to the ↵th token, and omit the lower layer index i when no
ambiguity is present (e.g. A↵ is the ↵th column of A’s output.). First, we have

JRi��i�1 = (JF⇤ + I) � JA � JLN(��i�1) (12)
by chain rule. Next we expand JA, as every other operation in (12) acts on the column space of �;
especially, up to composing with a feed-forward neural network, let us replace JLN by an identity to
simplify our notations. A straightforward computation gives the following:

J�qA
↵(��q) =

 mqX

�=1

�↵�
·
(v� �A

↵) · k�
T

p
d

·WQ

�
��↵

q
,

J�kA
↵(��k) =

mkX

�=1

�↵�
·
(v� �A

↵) · q↵T

p
d

·WK��
�

k
,

J�vA
↵(��v) =

mkX

�=1

�↵�
·WV ��

�

v
.

(13)

Here WQ,WK ,WV denote the query, key, and value projection matrices of A, q↵ = WQ�↵q ,
k↵ = WK�↵k , and �↵� = softmax(q↵T

· k�/
p
d).

Case 1, A is self-attention Upon setting �q,�k,�v to �, and ��q, ��k, ��v to �� in (13), we obtain:

JA↵�� =

 mqX

�=1

�↵�
·
(v� �A

↵) · k�
T

p
d

·WQ

�
��↵

+

mqX

�=1

�↵�
·

(v� �A

↵) · q↵T

p
d

·WK +WV

�
��� .

(14)

Note the two quantities in the square brackets are Rd⇥d-matrix-valued linear functions of values that
can be computed from the cached results at Li, which we shall denote by �, from now on:

JA↵�� = � · ��↵ +

mqX

�=1

�↵� · ��� . (15)

Now, upon inserting (15) to the ↵th-column of (12) by setting � as �i, and then plugging (12) back in
(11), we obtain the iterative formula for outputs hi:8

>><

>>:

 ↵

i
= �i · Fi��↵i�1 +

P
m

�=1 �
↵�

i
 i · Fi��

�

i�1

x↵

i
= [�↵

i

T , ↵

i

T]T

��↵
i
= Gi(Hix↵

i
+ ��↵

i�1)

(16)

where �i, i are defined as in (15), and Fi,Gi,Hi are FNNs that simulate JLN, (I � JWi)�1, and
[Wi, JF⇤

i
+ I] respectively; see (11) and (12). Note (16) is exactly (1) upon replacing �� by h.

Case 2, A is cross-attention Since the decoder’s correction iterative formula follows from a similar
line of reasoning as self attention, we present the final results while omitting the details:8

>><

>>:

 ↵

i
= �i · F

D

i
��D,↵

i�1 +
P

m

�=1 �
↵�

i
 i · F

E

i
��E,�

x↵

i
= [�↵

i

T , ↵

i

T]T

��D,↵

i
= Gi(Hix↵

i
+ ��D,↵

i�1)

(17)

14

Under review as a conference paper at ICLR 2023

Table 4: Efficiency results of LST, READ, and Full-tuning. We report the training GPU energy
usage summed over all tasks, and the peak training memory (per batch) averaged over all tasks. For
inference memory/time, we use MNLI and report the average per batch (with test batch size 1).

Training GPU
Energy (kWh)

Training
Memory (GB)

Trainable Params
(Million/%)

Inference
Time (s)

Inference
Memory (GB)

Full-tuning 12.52 17.86 247.58/100.00 0.083 0.943
LST 10.59 5.77 5.04/2.00 0.165 1.358

READ 2.07 6.90 1.97/0.80 0.093 0.966
READ-large 6.62 17.74 11.17/1.4 0.175 2.943

where an upper index D\E are used to distinguish between the hidden states of decoder and encoder,
and ��E is the final correction of encoder.

B ARCHITECTURE

B.1 ARCHITECTURE CHOICES

The matrix functions ,� in equation (16) and (17) requires computing dot products for m2 pairs of
vectors (13) with time complexity as large as O(m2d2). To reduce latency cost in practice, we make
substantial reductions to the first equation in both (16) and (17) for READ experiments in this paper,
as listed below:

• Indices is are removed and learnable parameters are fused across all layers;
• In self-attention, we set ,� to be constantly zeros; in other words, only hidden states are

cached and used for encoder corrections;

• In cross-attention, we set � to zero and · F
E

i
h�

i�1 =: Lh�

i�1, where L is a learnable linear
projection, so besides decoder hidden states we also need to cache the cross-attention scores
for computing decoder corrections. Furthermore, we use a simple addition operation to
combine �i and i in (17) instead of a learnable layer.

Note some reductions we made above might be over-simplified but this paper does not explore other
more sophisticated7 while still computationally efficient options, such as a gated neural network:

(
� · Fi(h↵

i�1) = Gate(�↵
i
)� FFN(h↵

i�1),

 · Fi(h
�

i�1) = Gate(�↵
i
)� FFN(h�

i�1),
(18)

where v �X = diag(v) ·X . We leave the pertinent explorations to future works.

B.2 READ ALGORITHM

Algorithm 1 outlines a forward pass during READ fine-tuning. Let T be a transformer with NE

encoder layers and ND decoder layers, and X\Y be source\target sequences of length m\n:

C EXPERIMENTAL DETAILS

C.1 GPU ENERGY ANALYSIS

To provide a comprehensive understanding, we include an analysis below to show the mean and
standard deviation for the sums of GPU energy, epochs to convergence, and training time across
all GLUE tasks. While this analysis does reveal some variations in energy/time levels, they are
not significantly substantial to alter the general trend, as READ continues to stand out as the most
energy-efficient approach, with faster convergence than most baselines except for full-tuning.

7A more sophisticated choice potentially introduces more dependency on cached results and likely to improve
performance at a trade-off of higher number of computation flops.

15

Under review as a conference paper at ICLR 2023

Algorithm 1 READ Fine Tuning Algorithm
Initialize RNNs NE , ND and a learnable projection .

{�E,↵

i
}
N

E
,m

i=1,↵=1, {�
D,↵

j
}
N

D
,n

j=1,↵=1, {�
E,↵�

i
}
N

E
,m,m

i=1,↵=1,�=1, {�
D,↵�

j
}
N

D
,n,m

j=1,↵=1,�=1 T (X,Y)

hE,0 0 . We assume embeddings need no corrections.

for i in 1, · · · , NE do . Iteratively compute encoder corrections.

hE,↵

i
= N

E(�↵
i
, hE,↵

i�1), 8↵

hD,0 0

for j in 1, · · · , ND do . Iteratively compute decoder corrections.

 ↵

j
=

P
m

�=1 �
↵�

D,j
 hE,�

NE , 8↵

x↵

j
= �↵

j
+ ↵

j
, 8↵

hD,↵

j
= N

D(x↵

j
, hD,↵

j�1), 8↵

�D
ND

0
 �D

ND + hD

ND . Obtain adapted outputs.

Full Adapter LoRA Prompt BitFit LST READ
Energy 12.520.44 6.990.62 10.581.9 6.450.24 7.680.06 10.590.3 2.060.18

Epoch 7.00 13.010.58 25.843.9 34.852.4 23.611.3 23.581.5 12.311.4

Time 472.7412.77 485.251.12 409.419.52 315.535.01 292.894.03 984.5519.07 155.118.4

Table 5: GPU Energy Consumption and Training Time across 3 trials.

C.2 DATASET AND MODEL DETAILS

GLUE Datasets In Table 6, we list the dataset size, number of GPU nodes, and training batch size
per GPU node for every task in GLUE. Note the total batch size (summed over all nodes) are fixed as
96 across all tasks and all methods.

T5 models Table 7 gives architecture-related numbers for four sizes of T5 model. Note for all
experiments T5BASE we use the original archtectures, while for READ experiments with T5LARGE,
we drop the last 4 layers from both encoder and decoder.

C.3 HYPERPARAMETERS

Architecture search For fine-tuning methods that have tunable architectural hyperparameters (e.g.
RNN hidden dimensions in READ, ranks in LoRA, etc), we do hyperparameter search as follows:
first, we fix the architecture A (e.g. in READ, take RNN-dim = 128 and side-net type to be LSTM),
and do learning rate search for every dataset D. Among each hyperparameter sweep H (D) there
exists a run R

⇤(D) that has the best validation score S (D). Then we calculate the average of S (D)
across all datasets D as the quality score of A, denoted as S (A). Now we move on to the next
architecture (e.g. in READ, take RNN-dim = 256 and side-net to be GRU) and repeat the above
process. After iterating through all architecture candidates, we choose the architecture A

⇤ that has
the best score S (A⇤), and report the test scores of each best run R

⇤(D) of A⇤. Therefore, each
method in Table 1 adopts the same architectures throughout all datasets. For Full-tuning and BitFit
where no architectural hyperparameters are present, we do the learning rate search once to obtain the
test scores.

16

Under review as a conference paper at ICLR 2023

Table 6: Split sizes, training GPU number, and training batch size per GPU node for all GLUE tasks.
CoLA MNLI QNLI MRPC QQP SST-2 STS-B

Training
Samples (k) 8.5 392.7 99.3 3.7 323.4 66.5 5.8

Test
Samples (k) 0.52 9.8 5.4 0.2 40.4 0.9 0.8

Validation
Samples (k) 0.52 9.8 1.0 0.2 1.0 1.0 0.8

GPUs 2 8 8 1 8 8 1

Batch Size
per GPU 48 12 12 96 12 12 96

Table 7: Model architectures for four different sized T5 models.
Params

(Million)
Encoder
Layers

Decoder
Layers Heads Embedding

Dimension
Head

Dimension
FFN

Dimension

T5SMALL 77 6 6 8 512 64 2048
T5BASE 248 12 12 12 768 64 3072

T5LARGE 771 24 24 16 1024 64 4069
T53B 2885 24 24 32 1024 128 16384

Table 8: Final archtecture choices for all PEFT experiments reported in Section 4.

READ READ
large Adapter LoRA Prompt

tuning LST

Architecture
HP Names

RNN-type/
RNN-dim

RNN type/
RNN-dim

Bottleneck
size Rank Number of

prompts Sidenet-dim

Architecture
Candidates

{GRU/256,
GRU/128,
LSTM/128}

{GRU/256,
GRU/128,
LSTM/128}

{32, 64, 128} {8, 16, 32} {10, 20, 30} {64, 96, 128}

Final
Choices GRU/256 GRU/256 64 32 20 96

Table 9: Final learning rates for all fine-tuning methods and GLUE datasets
CoLA MNLI QNLI MRPC QQP SST-2 STS-B

Full-tuning 9⇥ 10�6 7.16⇥ 10�5 3.76⇥ 10�4 3.59⇥ 10�5 1.75⇥ 10�4 4.6⇥ 10�6 1.30⇥ 10�4

Adapter 1.16⇥ 10�3 7.47⇥ 10�4 4.6⇥ 10�6 1.95⇥ 10�3 4.6⇥ 10�6 1.46⇥ 10�4 2.83⇥ 10�3

LoRA 1.75⇥ 10�4 3.05⇥ 10�5 9⇥ 10�6 1.75⇥ 10�4 9⇥ 10�6 7.16⇥ 10�5 1.15⇥ 10�4

BitFit 3⇥ 10�3 2.83⇥ 10�3 2.83⇥ 10�3 2.83⇥ 10�3 2.83⇥ 10�3 3⇥ 10�3 2.83⇥ 10�3

Prompt-tuning 2.83⇥ 10�3 1.40⇥ 10�3 7.47⇥ 10�4 3⇥ 10�3 2.83⇥ 10�3 3⇥ 10�3 2.74⇥ 10�3

LST 2.51⇥ 10�4 1.75⇥ 10�4 7.16⇥ 10�5 7.47⇥ 10�4 3.7⇥ 10�4 1.75⇥ 10�4 1.45⇥ 10�3

READ 3.29⇥ 10�4 3.67⇥ 10�4 1.75⇥ 10�4 7.8⇥ 10�5 1⇥ 10�6 2.5⇥ 10�6 4.6⇥ 10�5

READ-large 8.5⇥ 10�5 1.46⇥ 10�4 1.75⇥ 10�4 1.43⇥ 10�3 2.13⇥ 10�4 2.04⇥ 10�4 7.1⇥ 10�5

17

Under review as a conference paper at ICLR 2023

Learning rate search For each learning rate sweep, we do learning rates search in between [1 ⇥
10�6, 3⇥ 10�3] at log-scale for up to 32 rounds, where we employ Bayesian optimization for faster
convergence of hyperparameter sweeps at lower computation costs.

Hyperparameter choices Table 8 and 9 summarize our final choices of architectural hyperparameters
and learning rates.

18

