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A DETAILED EXPERIMENTAL SETTINGS

A.1 MODELS AND DATASETS

In this paper, we use a lightweight version VGG11 for SVHN. Specifically, we halve the output
channels of its convolutional layers and the number of output nodes in its fully connected layers. The
implementations of ResNet-18 and ResNet-34 follow the same structure as described in the original
paper. ReLU is used as the activation function, and batch normalization (BN) loffe & Szegedy|(2015)
is also used to improve the stability of training. For each dataset, we split the training set to 10 clients
and use the test set to verify the accuracy of the aggregated global model on the server.

A.2 BASELINES

In this part, we introduce the implementation and tuning of the baseline methods in as much detail as
possible. The tuning results are shown in Table

SignSGD only transfers the signs of the model updates and aggregates the signs by majority vote.
Specifically, for a parameter @, z!™1 = z* + 7 - sign(3", .. sign(Az} 1)), where Azt is the
parameter update from the k;, client and C* is the set of selected clients. We tune the hyperparameter
1 in (0.0001, 0.0005, 0.001) to achieve best test accuracy.

FedPAQ is to quantize the model updates by a given quantization bitwidth while FedDQ is to quantize
the model updates with a given step size. We tune the bitwidth in (2,4,8) for FedPAQ and the step
size in (0.02, 0.01, 0.005) for FedDQ to ensure similar accuracy to FedAvg.

DAdaQuant dynamically adjusts the bitwidth used by each client in each round by monitoring
the local training loss and the local dataset size. DAdaQuant consists of two parts, time-adaptive
quantization and client-adaptive quantization. We first denote the set of selected clients in the ¢y,
round as C?, the proportion of the k;, client’s data quantity to the total data quantity as p; and the
training loss of the kyj, client as ;. In time-adaptive quantization, server tracks a running average
loss F' = ¢ F'! + (1 — ¢)G*, where G* = Y, .. pi - I},. The server determines training to
converge whenever F* > F!*1=¢_On convergence, the quantization bitwidth will be doubled and
then fixed for at least ¢ rounds. Referring to the original paper, we set ) to 0.9, ¢ to 1/10 of the
number of rounds. Also, the quantization bitwidth starts at 1 and will not exceed 4. In client-adaptive
quantization, assuming the bitwidth of time-adaptive quantization is m, the bitwidth of the k,;, client

will be set to pi/ 3. \/ D okect pi/?’ /> ket Pr/m?2. We do not consider extra encoding compression
techniques used in DAdaQuant since it is not required for nor part of quantization.

Table 2: Hyperparameters of baseline methods used for different models.
SignSGD  FedPAQ FedDQ DAdaQuant

n bitwidth  step size ¥ 0]
SVHN 0.0001 4 0.005 09 10
CIFAR-10 0.0001 4 0.01 0.9 20
CIFAR-100  0.0005 4 0.01 0.9 20

B ADDITIONAL EXPERIMENT RESULTS

Table 3: The average sparsity of VGG11, ResNet-18 and ResNet-34 trained by FedBiF.
Models 11D) Non-IID (¢ = 0.5) Non-IID (¢ = 0.1)

VGGL11 24.7% 24.1% 24.0%
ResNet-18  34.1% 26.0% 24.6%
ResNet-34  33.8% 30.4% 28.9%
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B.1 CONVERGENCE CURVES

As shown in Figure [7]and 8] we report the convergence curves of all methods on Non-IID datasets. In
both Non-IID settings, the experimental results and conclusions are similar to those of the IID setting.
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Figure 7: Convergence curves of baseline methods and FedBiF on Non-IID (1 = 0.5) datasets
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Figure 8: Convergence curves of baseline methods and FedBiF on Non-IID (;z = 0.1) datasets

B.2 MODEL SPARSITY

As shown in Table [3] we report the average sparsity of each model trained by FedBiF. We find
that higher sparsity is generally achieved with larger models and more even data distribution. It is
quite intuitive, as larger models often tend to have more redundant parameters, whereas simpler data

distributions typically require fewer parameters for effective learning.

C LipscHITZ CONTINUTY

In this paper, we consider the Lipschitz continuity to verify the generalization of the trained models
Definition 1. A function f : R™ — R is Lipschitz continuous on X C R™, if there exists a constant
)

L > 0 and a distance metric d that satisfies:
|f(X1) - f(Xj)| <L- d(Xi7Xj)aVXi7Xj eX

Generally, norm is used as the distance metric, i.e., d(X;, X;) = ||X; — Xj||,. The smallest L is
called the Lipschitz constant, which can be denoted as:
[f(Xi) = f(X))]
X3 = Xy

®)

sup

L.
X4, X;€X

L. represents the maximum ratio between variations in the model’s output and variations in its input
which can be used to measure Lipschitz Continuity. Usually, smaller Lipschitz constants represent
better Lipschitz continuity and improved generalization. As suggested in|Virmaux & Scaman|(2018);
Weng et al.| (2018), the Lipschitz constant in Equation [§]can be computed using the gradient norm as

in Lemmal[Il
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Lemma 1. If a function f : R™ — R is Lipschitz continuous on X C R™, the Lipschitz constant in
Eql8|can be calculated by:

1 1
L, = VX))o, st~ + = =1, 9
e[|V £(X) g8+ ©)

where V f(X) = (%cg), agg) sy ag;ﬁf))‘

A common setting is that p = ¢ = 2. In this paper, we calculate L. of the aggregated models on the
test set. The inputs of the aggregated model are the pixels of an image and the output is a vector
Y = (y1,¥2, .., yn) representing class probabilities, where n is the number of classes. Note that
there are n functions in the model as each element in Y is the output of an independent function. We
only calculate L. of the function corresponding to its real label for each test data.

D LIMITATIONS AND BROADER IMPACTS

Limitations. In this paper, we propose FedBiF to improve bidirectional communication efficiency
for federated learning. Extensive experiments have proved that FedBiF enjoys much better com-
munication efficiency and test accuracy than recent state-of-the-art methods. However, we point
out that FedBiF has certain limitations. Since a weight in local models is replaced by some virtual
bits, the local models may take more memory and a little extra computation to restore the weight.
Nonetheless, the extra memory and computation can also be mitigated to some extent by alternately
activating each bit, as FedBiF does by default. Specifically, when activating one bit in each round,
we can calculate the sum of the frozen bits in advance and add the value of the activated bit in the
forward pass. In this way, FedBiF incurs one more virtual bit store and one extra summation for each
weight. Furthermore, virtual bits determine the value of their binary bits through signs and do not
require exact representations. Thus, we believe that setting virtual bits in FP16 or FP8 format can
also satisfy numerical precision and further reduce memory usage.

Broader Impacts. Another challenge of federated learning is the data privacy. Generally, locally
trained models can be stolen when uploaded to the server, resulting in leakage of local data information.
FedBiF can enhance the privacy protection ability of federated learning to a certain extent, by
uploading only several activated bits. Even if the activated bits uploaded by clients are stolen, the
parameters or the gradients of the local model remain unknown to the attackers.
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