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1 INITIALIZATION ANALYSIS
In this section, we will meticulously contrast and analyze our Edge-
constant initialization with the original CLIPasso [11] initialization
method.

As described in CLIPasso [11], it utilizes the ViT-32/B CLIP [9]
to obtain the salient regions of a target image. This is achieved by
averaging the attention outputs from all attention heads across each
self-attention layer, generating a total of 12 attention maps. These
maps are further averaged to derive the relevancy map, obtained by
examining the attention between the final class embedding and all
49 patches. Subsequently, this relevancy map is combined with the
edge map obtained through XDoG [12] extraction. The resulting
attention map is then utilized to determine the locations for the
initial strokes. In the process of determining the initial positions of
strokes, CLIPasso[11] utilizes random seeds on the saliency map to
sample positions for the first control point of each curve. Following
this, it randomly selects the subsequent three control points of each
Bezier curve within a small radius (0.05) of the initial point.

Such random initialization methods often result in the initial
points of strokes being inadequately distributed around the criti-
cal features of mechanical components during sketch generation,
leading to the loss of substantial modeling information. Moreover,
this approach frequently results in an excessive placement of initial
stroke points in certain prominent feature areas, causing confusion
in generating sketch strokes and preventing accurate representation
of modeling features. To address this issue, we propose the edge-
constant initialization to deterministically sample. We utilize SAM
[4] to perform feature segmentation on the input contour sketch.
Based on the segmentation results, we predefine four stroke ini-
tialization points evenly spaced along the edge of each segmented
feature. Subsequently, we dynamically change the initialization
points based on the comparison with the manually required num-
ber of generated strokes. If the requested number of strokes is less
than the total predefined initialization points, we evenly discard
points contained within each segmented feature. Conversely, if the
requested number of strokes exceeds the total predefined initializa-
tion points, we employ a greedy algorithm on the saliency map of
the target image to determine additional stroke initialization points
in the most salient regions [5]. This initialization method not only
ensures the precise generation of mechanical component features
but also optimizes the distribution of generated strokes, resulting
in clearer generated sketches.

As shown in Figure 1, we conduct experiments using three sam-
pling strategies of random seeds provided by CLIPasso[11]. It is
evident that in the first instance, no stroke initialization points are
placed at the three through-holes of the input flange contour sketch,
resulting in the loss of this important feature in the result. In the sec-
ond instance, the placement of three stroke initialization points on
the upper right through-hole is unnecessary, as it is a simple feature
that does not require three strokes to depict. In the third instance,

three stroke initialization points are clustered around the edge con-
tour of the flange, while only two initialization points are placed
on the structurally complex cylindrical section. These illustrate the
irrational distribution of stroke initialization points caused by the
random seed sampling method, ultimately leading to unsatisfactory
sketch generation results. In contrast, our proposed edge-constant
initialization optimizes the placement of stroke initialization points,
ensuring their rational distribution on modeling feature edges. It
can be observed that sketches generated through our improved
method adequately preserve crucial modeling features, with a clear
and rational distribution of strokes.

O
u
r
s

C
L
IP
a
ss
o

Method Input Output(a) (b) (c)

Figure 1: Strokes Initialization. All sketches are produced
with 20 strokes. Left to right: input contour sketches, (a) the
saliency maps generated from CLIP ViT activations, (b) and
(c) are initial stroke locations (in red) in final distribution
maps and inputs, output freehand sketches.

2 STABILITY ANALYSIS
In this section, we will evaluate the stability of our transformer-
based [5, 6, 10] stroke generator.

In Stage-Two, our improved initialization method has enhanced
the guidance sketch generator to produce informative freehand
sketches. However, the guidance sketch generator employs an op-
timizer to create sketches through thousands of optimization it-
erations during sketch generation, leading to uncertainty in the
outcomes. Each step of this optimization-based process is guided
by CLIP [9] in terms of both semantic and geometric similarities
to create strokes. This optimization process is uncontrollable and
the optimized result from each step exhibits variability. It results in
unstable and uncontrollable quality performance of the generated
sketches. In order to consistently generate high-quality sketches,
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we adopt a transformer-based [5, 6, 10] generative framework. We
extract intermediate sketches from the optimization process of the
guidance sketch generator as ideal guides for process sketches from
each intermediate layer in the stroke generator. we utilize guidance
loss during training to ensure that the stroke generator learns fea-
tures from corresponding intermediate process guidance sketches.
We employ CLIP-based [9] perceptual loss to ensure the similarity
between the generated freehand sketches and contour sketches in
both geometry and semantic information. Through training, all
learned features are fixed into determined weights. During the in-
ference phase, our model can rapidly infer freehand sketches based
on the trained weights. This generation approach ensures output
consistency and achieves satisfactory generation quality.

We design comparative experiments to validate the numerical
stability of our generative framework. Using the same inputs, we
conduct five rounds of sketch generation experiments separately
with only the guidance sketch generator (GSG) and the complete
generative framework (trained on the collected mechanical compo-
nent dataset). As shown in Figure 2, the outcomes produced by the
guidance sketch generator (GSG) for mechanical freehand sketches
vary each time, and some of them exhibit suboptimal performance.
For instance, in the case of the first instance, the distribution of the
gear teeth slots varies significantly in each generated result, and due
to the instability of the optimization-based generation method, is-
sues arise such as chaotic stroke composition in the second round’s
results and erroneous connections between teeth slot strokes and
through-hole strokes in the fifth round’s generated sketches. Simi-
lar situations are also evident in the second and third instances. For

example, in the second instance, the distribution of continuous sec-
tions of the flat-head screws differs in each round of the experiment.
And results occasionally are accompanied by contour loss such as
the loss of the bottom circle of the screw in the second round of
experiments, and the loss of connection at the head of the screw in
the fourth round. In the third instance, involving a complex motor
model, the strokes creating the main body of the motor within the
area marked by the red rectangle exhibit significant variations in
distribution across each experimental round. Additionally, some
results accurately depict small through-holes on the motor surface,
while others fail to capture this information. The reason for these is-
sues arises from the uncontrollable nature of the optimization-based
generation process. Despite our efforts to accurately position stroke
initialization points on features during preprocessing, deviations in
geometric and semantic guidance during optimization may result
in inadequate representations of certain details in the generated
sketches. In contrast, our comprehensive generation framework,
after being trained on a large and diverse dataset of mechanical
components, fixes learned features into weights. This ensures con-
sistent outputs in each round of testing, and stable representations
of modeling features for the components.

Input Method Round 1 Round 2 Round 3 Round 4 Round 5

Ours

Ours

Ours

GSG

GSG

GSG

Figure 2: Stability analysis for our generative framework. All sketches are produced with 20 strokes. "GSG" refers to the method
of directly generating sketches through the guidance sketch generator, while "ours" represents the method of inferring sketches
by our trained complete framework. The region marked by the red rectangle represents the area of significant variation in the
sketches generated by the GSG.
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Table 1: Quantitative comparison results by metrics using real human-drawn sketches as standard data.

Simple Moderate Complex

Method FID↓ GS↓ Prec↑ Rec↑ FID↓ GS↓ Prec↑ Rec↑ FID↓ GS↓ Prec↑ Rec↑

Han et al. [3] 12.66 9.54 0.48 0.75 13.83 11.44 0.39 0.69 14.68 17.22 0.35 0.68

Manda et al. [7] 14.51 9.71 0.47 0.74 15.17 12.73 0.41 0.70 15.43 18.80 0.33 0.66

CLIPasso [11] 12.75 7.59 0.42 0.71 13.67 10.61 0.32 0.67 14.51 13.94 0.29 0.65

LBS [5] 12.40 7.53 0.43 0.73 13.19 9.24 0.30 0.65 14.03 12.60 0.28 0.63

Ours 8.35 4.77 0.51 0.83 8.83 5.43 0.46 0.81 9.26 6.57 0.40 0.78

3 IMPLEMENTATION DETAILS
In order to tailor our method specifically for freehand sketch gen-
eration in engineering freehand sketch modeling, we build a CAD
dataset exclusively comprising mechanical components in the STEP
format. we invite numerous mechanical modeling researchers to
collect mechanical components from the TraceParts [1]. They are
asked to encompass a diverse array of categories to enhance the
inference generalization of our generative model. In the end, we ob-
tain a Raw dataset including nearly 2,000 mechanical components.
For the collected raw dataset, we employ hashing techniques for
deduplication, ensuring the uniqueness of models in the dataset.
Subsequently, we removemodels with poor quality, which are exces-
sively simplistic or intricate, as well as exceptionally rare instances.
Following this, we classify these models based on the International
Classification for Standards (ICS) [2] into 24 main categories, com-
prising 180 corresponding subcategories. Ultimately, we obtained a
clean dataset consisting of 926 models.

We implement the methods of Stage One using Python3 with
PythonOCC and PyTorch, where PyTorch supports the viewpoint
selector. For Stage Two, PyTorch and DiffVG are used to implement
the model, where DiffVG is used for the differentiable rasterizer.

4 ADDITIONAL QUANTITATIVE EVALUATION
Metrics Evaluation In section 4.3 of this paper, we employ evalua-
tion metrics for image generation to assess the quality of generated
sketches. Given the absence of benchmark datasets specifically for
mechanical component freehand sketcheswithin the sketch commu-
nity, we utilize component outlines processed through PythonOCC
[8], which encapsulate the most comprehensive engineering infor-
mation, as the standard data. The experiment results demonstrate
the superiority of our method over existing freehand sketch gener-
ation methods in preserving the modeling features of mechanical
components. In this section, we will conduct quantitative metric
evaluations on our method and other competitors using real human-
drawn sketches of mechanical components collected by ourselves.

We firstly introduce the construction process of the real human-
drawn sketch dataset of mechanical component. From our collec-
tion of 926 three-dimensional mechanical component dataset, we
randomly select 500 components. We invite 58 researchers with
sketching expertise in the mechanical modeling domain, requesting
them to draw a sketch for each component from a given perspective.
We then obtain a test dataset comprising 500 mechanical sketches

drawn by human engineers. As shown in the Figure 3, we showcase
the collection of real human-drawn sketches. Sketches of compo-
nents drawn by researchers in the mechanical modeling domain
preserve crucial modeling features which are essential for freehand
sketch modeling. Correspondingly, certain minor details for mod-
eling may be simplified, or overlooked by the researchers and not
drawn. Moreover, it is evident that sketches crafted by humans
exhibit a distinctive freehand style.

Figure 3: Our collection of real human-drawn sketches for
mechanical components.

In this experiment, we utilize real human-drawn sketches of
mechanical components as benchmark data, which balances main-
taining crucial modeling features with exceptional freehand style
well. We employ the same 500 components which are randomly
selected during the construction of our real human-drawn sketches
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dataset as a test dataset for this experiment. Consistent with our
previous approach, we generate sketches for components using
different strokes based on their complexity, and categorize the gen-
erated sketches into three levels according to the number of strokes
(𝑁𝑜𝑆): Simple (16 ≤ 𝑁𝑜𝑆 < 24 strokes), Moderate (24 ≤ 𝑁𝑜𝑆 < 32
strokes), and Complex (32 ≤ 𝑁𝑜𝑆 < 40 strokes). We continue to
evaluate the generated sketches using metrics such as FID, GS, and
so on. As shown in Table 1, we compare our method with methods
designed for generating engineering sketches as well as methods
for producing freehand sketches. It is evident that our generation
method achieved the most favorable metric scores across three
different levels of complexity, demonstrating the superiority of our
approach in generating freehand sketches for mechanical compo-
nents. In the experimental results, our outcomes obtain lower FID
and GS scores and higher Prec and Rec scores. It indicates that
our sketches more closely resemble real human-drawn sketches,
exhibiting a higher level of consistency in preserving key modeling
features and maintaining the freehand style between our results
and real ones.

Details for User Study. In the user study conducted in this
paper, we invited 47 mechanical modeling researchers to rate the
generated mechanical component sketches based on two dimen-
sions: "information" and "style." In this part, we provide detailed
explanations of the specific criteria represented by these two di-
mensions. In the "information" dimension, we ask the researchers
to evaluate the completeness of modeling features contained in
the sketches. This means that the higher the number of accurate
modeling features retained in the generated sketches, the higher
the score obtained. In the "style" dimension, we ask the researchers
to assess the overall hand-drawn style of the sketches. Specifically,
they were required to consider whether the generated sketches
exhibit a hand-drawn style, whether the distribution of strokes in
the generated sketches is reasonable, and whether it is more similar
to the distribution structure of strokes drawn by humans.

From the results of the user study, it can be observed that Han
et al. [3] and Manda et al. [7] perform better in the "information"
dimension. This is because their sketches are generated by contour
extraction from components, nearly retaining all modeling features.
However, it is worth emphasizing that, to meet the requirements of
improving modeling efficiency and lowering the modeling thresh-
old, sketches used for freehand sketch modeling should mimic
human-drawn characteristics as closely as possible that preserving
key modeling features while simplifying or disregarding minor
ones. Therefore, although Han et al. [3] and Manda et al. [7] re-
tain relatively comprehensive features, they fail to meet the data
requirements for freehand sketch modeling and they results lack
a hand-drawn style, which fundamentally does not align with the
demands of the task. Meanwhile, It can be observed that our gen-
eration results outperform in preserving key features of modeling
among methods for generating freehand sketches. It demonstrates
the effectiveness of themodules designed in our framework to retain
crucial features. In terms of "style" dimension, our sketches perform
best because they exhibit a hand-drawn style while maintaining a
more reasonable stroke distribution, resembling the stroke distri-
bution habits of human drawings. Considering both dimensions,
our method achieved the highest overall scores, indicating that
our approach performs better than existing methods in balancing

the retention of key component modeling features and mimicking
human hand-drawn style.

5 ADDITIONAL QUALITATIVE RESULTS
Figure 4, Figure 5, and Figure 6 show a large number of excellent
freehand sketches of mechanical components generated by our
method.
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Figure 4: Robust performance across abundant categories.
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Figure 5: Robust performance across abundant categories.
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Figure 6: Robust performance across abundant categories.
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