
A Notations and mathematical proofs436

A.1 Notations437

Table 3: Notations.
Notation Description

K The knowledge base
E The entity set
R The relation set

O,H The set of observed and unobserved facts
x,y The assignments of O and H, respectively

{Fq,Wq}mq=1 The set of logic rules and attached weights
I−
q , I+

q The index set of premise atoms and conclusion atoms of rule Fq , respectively
A,B, ... Variables in logic rules

{G(j)
q , j ∈ tq} All ground formulas created by the qth logic rule
Φq(y,x) The sum of potentials of all ground formulas of Fq

θ The embedding parameters

A.2 Derivation of rule weight gradient438

Given439
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we have440
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The partial derivative in the left side of Eq. (9) is a summation of n terms, each term represents the441

partial derivatives of the pseudo-log-likelihood for each yi, conditioned on its Markov blankets. Each442

term can be further simplified as follows:443
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Here, we can easily get444
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To make the writing concise, we replace the right term of Eq. (10) with the following notation:445

Ψq,MB(i) =
∑
j

1{yi→G
(j)
q }d(G

(j)
q ).
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In this way, we can deduce that:446
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The partial derivative and the integration in Eq. (11) can be swapped using Lebesgue’s dominated447

convergence theorem, the Eq. (11) thus becomes:448
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Therefore, the partial derivative of pseudo-log-likelihood with respect to rule weight Wq is computed449

by:450
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A.3 Calculation of number of ground formulas for Kinship datasets451

We present a detailed calculation of the number of ground formulas considered by PSL in Kinship452

datasets as follows.453

Given454

• a first-order logical rule Fq containing |I−
q | premise atoms, and455

• a knowledge base containing |E| number of entities,456

the number of variables in Fq is |I−
q |+ 1.457

PSL grounds each rule by substituting the variables with all possible entities. The number of ground458

formulas created by this logic rule Fq on the knowledge base is:459

|E||I
−
q |+1.

Thus the overall ground formulas created by the rule set {Fq}mq=1 is:460

m∑
q=1

|E||I
−
q |+1.

Given the statistics of Kinship datasets in Table 6, rules statistics are shared across different sizes of461

Kinship datasets, each dataset contains 12 rules that contain two variables and 9 rules that contain 3462

variables. The number of ground formulas considered by PSL is thus computed by:463
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12× |E|2 + 9× |E|3. (12)

By applying the Eq. (12), we can get the ground formula number for each size of the Kinship dataset,464

as presented in Table 4:465

Table 4: Number of ground formulas of Kinship datasets created by classical grounding method.
Kinship Size S1 S2 S3 S4 S5
Number of 1,373,601 10,853,976 35,798,376 74,671,320 172,162,935ground formulas

B Experimental details466

B.1 Dataset statistics467

We list the statistics of the real-world knowledge graph datasets in Table 5 and the synthetic Kinship468

dataset in Table 6. We present detailed descriptions for each dataset below.469

CodeX. The CodeX dataset, recently proposed for knowledge graph completion tasks, is a compre-470

hensive collection extracted from both Wikidata and Wikipedia. This challenging dataset comes in471

three versions: small (S), medium (M), and large (L), allowing for comprehensive evaluation.472

YAGO3-10. YAGO3-10 is a subset of YAGO3 (Suchanek et al., 2007), a large knowledge base473

completion dataset, with the majority of triples describing attributes of persons, including their474

citizenship, gender, and profession.475

WN18. WordNet 18 (WN18) dataset is one of the most commonly used subsets of WordNet.476

WN18RR. WN18RR is a modified version of WN18 designed to be more challenging for knowledge477

graph reasoning algorithms by removing reverse relations in the knowledge graph.478

Kinship. A synthetic dataset, widely used (Zhang et al., 2020; Fang et al., 2023) for evaluating479

the statistical relational learning ability and the scalability of reasoning algorithms. We use five480

different sizes of the dataset for evaluating its run time efficiency and parameter scalability, namely481

Kinship-S1/S2/S3/S4/S5, respectively.482

Table 5: Statistics of real-world knowledge base datasets.

Dataset #Ent #Rel #Train/Valid/Test #Rules
CodeX-s 2,034 42 32,888/1,827/1,828 35
CodeX-m 17,050 51 185,584/10,310/10,311 52
CodeX-l 77,951 69 551,193/30,622/30,622 57

YAGO3-10 123,182 37 1,079,040/5,000/5,000 22
WN18 40,943 18 141,442/ 5,000/ 5,000 140

WN18RR 40,943 11 86,835/ 3,034/ 3,134 51

Table 6: Statistics for Kinship datasets of varied sizes (S1-S5).

S1 S2 S3 S4 S5
Number of rules containing 1 premise atom 12 12 12 12 12
Number of rules containing 2 premise atoms 9 9 9 9 9

Number of predicates 15 15 15 15 15
Number of entities 52 106 158 202 267

B.2 Probabilistic logic reasoning on Kinship Dataset483

We assess performance on the Kinship dataset across five different sizes. Due to the full confidence484

of rules, we only perform inference in this experiment and do not need to update weights. We include485
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Table 7: Comparative evaluation of reasoning performance on the Kinship dataset.
Ground AUC-ROC

Algorithms iteration S1 S2 S3 S4 S5
PSL - .976±.011 .980±.005 .991±.003 .982±.005 .972±.004
ExpressGNN - .957±.002 .921±.001 .959±.004 .940±.001 .989±.004

1 .841±.005 .895±.001 .922±.001 .901±.001 .903±.000
DiffLogic-RotatE 2 .931±.005 .994±.001 .998±.001 .985±.001 .993±.001

3 .937±.005 .987±.001 .995±.001 .978±.001 .989±.001
1 .567±.099 .537±.041 .507±.024 .503±.018 .504±.014

DiffLogic-MLP 2 .956±.032 .997±.002 .999±.003 .999±.001 .999±.000
3 .982±.014 .997±.001 .999±.001 .999±.000 .999±.000

DiffLogic using two different embedding models, i.e., RotatE and MLP, and evaluate their reasoning486

performance using RGIG with varied iterations (i.e., 1, 2, 3) for grounding. We include PSL and487

ExpressGNN as baselines, but we exclude pLogicNet due to its inability to utilize handcrafted rules.488

Given that the Kinship dataset lacks a validation set, we run each model ten times and report the489

AUC-ROC statistics from the final epoch of each run on the test set. The results are presented in490

Table 7, with the best results shown in bold.491

B.3 Comparing inference time on Kinship492

We evaluate the inference time on the Kinship dataset across five different sizes. We include models493

in Appendix B.2 for this experiment. For two DiffLogic variants, we only evaluate their inference494

time when using 3 iterations of RGIG for grounding. All the runtime experiments are conducted in495

the same machine with configurations as in Table 8. All of these models are implemented in Python,496

thereby ensuring a fair comparison. The inference time results are displayed in Table 9, with the best497

results shown in bold.498

Table 8: Machine configuration.
Component Specification

GPU NVIDIA GeForce RTX 3090
CPU Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz

Table 9: Comparison of runtime of inference on Kinship.
Grounding Runtime

Algorithms iteration S1 S2 S3 S4 S5
PSL - ∼3.6min ∼7.9min ∼12.9min ∼13.5min ∼32min
ExpressGNN - ∼18.4min ∼19.1min ∼18.9min ∼19.4min ∼20.2min
DiffLogic-RotatE 3 37s ∼1.5min ∼3.2min ∼3.6min ∼4min
DiffLogic-MLP 3 21.8s 41.5s 45s 54.4s ∼1.2min
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