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Figure 1: An overview of our framework (Figure 3 in the main paper).

1 Implementation Details
This section first presents the adopted local geometric constraints between 2D and projected 3D
bounding boxes in the enhanced baseline. Subsequently, we will elaborate on the details of training
loss and inference procedure.

1.1 Local Geometric Constraints

Our baseline FCOS3D [1] only stiffly adjusts the output of networks to fit the requirements of 3D
detection. There is no relationship or constraints between these predicted attributes, making this
network hard to train, especially when the data is limited. Considering our detector can achieve 90%
accuracy on 2D vehicle detection, we add 2D localization into our targets and use it to regularize
3D outputs. Actually, this closed-loop and self-supervised approach is also consistent with what
humans do in the annotation procedure [2]. In practice, as shown in the Fig. 1, we add a consistency
loss (GIoU loss) between our estimated 2D boxes and the exterior 2D boxes of 3D predictions to
enhance our baseline, which is particularly important on the small KITTI dataset. Note that due to the
difficulty of regressing accurate depth, we use the ground truth depth for deriving the 3D bounding
boxes when computing the consistency loss.

Here we provide an example to show the intuition behind this design. Typically when the data is
limited, it is hard for the network to direct regress different 3D targets (offset, depth, orientation,
etc.) independently. For example, in Fig. 2, the orientation of nearby large objects predicted by our
baseline can be very inaccurate (the top line in the figure) even though it can be easily rectified with
simple verification. So we add the more reliable 2D localization into our targets to regularize our 3D
predictions. It turns out that the simple local constraint could alleviate this problem in the learning
procedure while does not introduce extra computational costs to inference. The improved results after
adding this constraint can be seen in Fig. 2 (the bottom line).

1.2 Loss

Overall Loss Design We basically follow the loss design of FCOS3D except our proposed consis-
tency loss and the adjustments for different datasets.

To have a brief review, firstly, we use the focal loss [3] as the object classification loss:

Lcls = −α(1− p)γ logp (1)
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Figure 2: The top line shows that it is easy to validate the accuracy of 3D predictions according to
its exterior 2D bounding box. So we add the 2D localization into our targets and use the relatively
reliable 2D boxes to regularize 3D predictions. This results in significant improvement as shown by
the bottom line.

where p is the class probability of a predicted box, and we follow the common settings, α = 0.25 and
γ = 2. For attribute classification on nuScenes, we use a simple softmax classification loss, denoted
as Lattr.

For regression branch, we use the smooth L1 loss for each regression target except centerness:

Lloc =
∑

b∈(∆x,∆y,d,w,l,h,θ,vx,vy)

SmoothL1(∆b) (2)

The weights of ∆x,∆y, d, w, l, h, θ error are 1 and the weights of vx, vy on nuScenes are 0.05. We
use the softmax classification loss and binary cross entropy (BCE) loss for direction classification and
centerness regression, denoted as Ldir and Lct respectively. For local geometric constraints, denote
our predicted 2D boxes as B2D, the minimum exterior 2D boxes of projected 3D boxes as Bproj ,
then the consistency loss is:

Lgeo = GIoU(B2D,Bproj) (3)
Finally, the total loss is:

L =
1

Npos
(βclsLcls + βattrLattr + βlocLloc + βdirLdir + βctLct + βgeoLgeo) (4)

Npos is the number of positive predictions and βcls = βattr = βloc = βdir = βct = βgeo = 1.
Note that the attribute loss Lattr and velocity loss in the Lloc are only required in the nuScenes
experiments.

Specific Loss Designs for KITTI experiments Because the KITTI dataset has relatively limited
samples and much more strict metrics, we adopt two specific loss designs for training the networks.
First, we add an auxiliary key-points loss to enhance the local geometric consistency further. Denote
the 2D offsets of eight key-points (eight corners of a 3D bounding box) relative to a foreground point
as k ∈ R1×16, and then we take these offsets as 16 additional dimensions of b in Eqn. 2 and set
their weights to 0.2. To make the FPN-based learning stable, we normalize these offsets just as we
normalize those offsets to four sides of a 2D box.

In addition, we use a much stronger uncertainty formulation for this multi-task learning problem as
presented in [4]. Specifically, referring to its formulation of maximum likelihood and homoscedastic
uncertainty, we formulate the depth loss as:

Ldepth =
L1(D̂,D)

2σ2
+ logσ (5)

Here D̂ and D are the targets and predictions of depth, L1 represents the original smooth L1 loss with
δ = 3.0 and σ is the variable for uncertainty. In practice, to make the learning easier, we train the
network to predict the log variance s = logσ2 only for depth estimation, which is more numerically
stable than directly predicting the variance. Correspondingly, exp(−s) serves as the weight of depth
loss. In this way, the depth loss will be adaptively weighted relative to other regression losses.
Additionally, the uncertainty exp(−s) can also be used as another confidence score to be multiplied
when inference, such that predictions with more accurate depths will have particularly higher scores.
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Note that this strong uncertainty indicator can only bring a significant gain on KITTI experiments
while seriously hurting the general performance as evaluated on the nuScenes dataset.

Alternative Depth Loss Designs Considering we have several intermediate depth predictions, such
as DR, DP and DL in Fig. 1, a natural idea is to add intermediate supervisions for these predictions
to guarantee that each branch can learn meaningful information. So we further defined several depth
L1 losses for these predictions and tried to replace the original depth loss in the Lloc with their
weighted summation. It turns out that although this approach can make the training procedure more
stable, it does not bring any performance gain. We also find that the framework never overfits to
only relying on one kind of estimation even with only supervision for the final prediction, as to be
shown in Sec. 3.2. It indicates that these predictions and components indeed work together from
complementary aspects.

1.3 Inference

The inference procedure is to forward the input image through the framework and obtain bounding
boxes with their class scores, attribute scores (if necessary) and centerness predictions. We multiply
the class score, the predicted centerness and the depth confidence score as the overall confidence for
each prediction and conduct rotated Non-Maximum Suppression (NMS) in the bird view as most 3D
detectors to get the final results.

2 Explanation of Oracle Analyses
In this section, we will explain more about our empirical analysis, from the specific settings to more
details in the results.

2.1 Reason for Replacing Dense Predictions

First, we would like to emphasize one detail in our analysis, i.e., we replace the dense predictions
from the direct output of detection head with oracles to purely observe the problems of our networks.
In comparison, other alternatives exist, such as replacing the decoded dense output or predictions
after post-processing, which can not reveal some entangling problem lying in the formulation. One
example to show the difference between these two implementations is that we replace the offset with
corresponding ground truth while the latter approach replaces the decoded X,Y in the 3D space with
targets.

2.2 Comparison of Different Metrics

As mentioned in the main paper, KITTI and nuScenes adopt different evaluation metrics. The former
is relatively strict and the latter is more comprehensive. Specifically, for mAP of these two datasets,
we regard predictions with 3D IoU larger than a threshold (0.7 or 0.5) as positive samples on KITTI
while define the match by 2D center distance d2D in the bird eye view on nuScenes. The latter is a
simpler criterion as it decouples the detection from object size and orientation. Therefore, we only
plot points with category/location related oracles (classification, depth and offset) in the mAP analysis
on nuScenes (Fig. 3). In addition, to be more specific, mAP is computed over several different
matching thresholds, D = {0.5, 1, 2, 4} meters, and all categories C on nuScenes:

mAP =
1

|C||D|
∑
c∈C

∑
d2D∈D

APc,d2D (6)

Then we can see that it will also consider predictions with relatively inaccurate locations (like objects
with the distance error larger than 2 meters but smaller than 4 meters). This difference is especially
notable when discussing the improvements from depth score, which will be detailed in Sec. 3.2.

Finally we basically describe how the NuScenes Detection Score (NDS) is calculated. To begin with,
we first define that predictions with center distance from the matching ground truth d2D ≤ 2m will
be considered as true positives (TP) and thus introduce 5 True Positive metrics, Average Translation
Error (ATE), Average Scale Error (ASE), Average Orientation Error (AOE), Average Velocity Error
(AVE) and Average Attribute Error (AAE). Given these metrics, we compute the mean TP metric
(mTP) over all categories:

mTP =
1

|C|
∑
c∈C

TPc (7)
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Figure 3: Oracle analyses with different datasets and metrics (Figure 2 in the main paper). From
left to right: 3D IoU based mAP on KITTI, NuScenes Detection Score (NDS) and distance-based
mAP on nuScenes. We replace our predictions with ground truth values step by step and observe the
performance improvements. It can be seen that an accurate depth can bring significant performance
improvement (green lines), and only with accurate depth can the improvements brought by other
oracles be realized.

Then the NDS is calculated as follows:

NDS =
1

10
[5mAP +

∑
mTP∈TP

(1−min(1,mTP ))] (8)

Therefore, NDS is a combination of several decoupled metrics and could reflect the performance of
3D detectors from another perspective. See more details about the intermediate computation in its
original paper [5].

2.3 Detailed Explanations and Conclusions

Due to the space limitation in the main paper, we do not discuss much about the results shown in
Fig. 3. Next, we will analyze it in detail and summarize a series of important conclusions.

Basic Observations As shown in Fig. 3, we replace the predicted attributes with their ground truth
values step by step and observe the performance improvements. We can see that:

1. With only one oracle (circle dots), only depth can bring a considerable improvement (green
lines). It shows that with current depth estimation, other predicted attributes do not drag down the
performance, while with other predictions, the current accuracy of depth estimation is far not enough.

2. With accurate depth, other oracles (triangle dots in the figures) could bring the expected perfor-
mance gains. While with current depth estimation, even all the other predictions are accurate (green
rhombus dots), the results are always disappointing, even almost like the baseline.

3. Although KITTI and nuScenes are different in terms of category variety and metrics, the trend of
these curves is the same. The difference is reflected in the importance of localization and classification
oracles. Localization is more important on the KITTI, which has less category variety and more strict
metrics. Classification is another important factor apart from depth on nuScenes, e.g., our monocular
predictions with location oracle is still not better than the best LiDAR-based methods. In contrast,
with an accurate depth and classification map, the performance is almost ideal.

From these observations, we can conclude that the inaccurate depth blocks all the other sub-task
predictions from improving the overall detection performance. Hence, as mentioned in the main
paper, the current monocular 3D detection, especially 3D localization, can be actually reduced to the
dominating instance depth estimation problem.

Comparison with Best LiDAR-Based Methods There is an interesting phenomenon not much
related to depth estimation in the above analysis, i.e., the comparison with best LiDAR-based methods
on nuScenes. We can see that classification is particularly important on nuScenes, and our monocular
predictions with location oracles are still not better than the state-of-the-art LiDAR-based methods.
This result is a little dataset-specific. We conjecture it is because the classification for ten categories
on nuScenes is relatively hard, or the annotation is mainly conducted in the point clouds, leading to
missing objects in the images.
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Figure 4: Inconsistent bottoms of different instances. Although all the objects in an image share
similar heights for bottoms most of the time, corner cases still exist. Here we mark the heights of
bottoms in the camera coordinates (down is the positive direction). This problem can be caused by
the actual topography, e.g., pedestrians are on the step. It can also be caused by annotation noises,
especially for different categories and distant objects. This observation is the foundation of our
proposed edge pruning/gating scheme in the depth propagation.

Figure 5: Comparison of PR curves for models with (solid line) and without (dotted line) depth score.
The depth score encourages predictions with accurate depth while suppresses those with inaccurate
depth, which results in higher precision under low recall and strict matching thresholds while lower
precision under high recall. This problem is more notable for large objects like cars.

3 Supplementary Experimental Results
In this section, we will show more experimental results to help further understand our approach. First,
we will provide toy examples to explain and validate our derived pairwise perspective relationship in
the depth propagation. Subsequently, we make more detailed analyses in quantitative and qualitative
ways to reveal the working mechanism and effect of our method.

3.1 Basic Validation of Depth Propagation

As shown in Fig. 4, we provide two samples with many objects in one image. We first have a brief
review of the perspective relationship derived in the main paper. Given two objects 1 and 2, the
relationship between their centers strictly satisfies:

d2 =
v1

v2
d1 +

f

v2
(y2 − y1) (9)

Considering two objects share the same ground (bottom height), we can get the approximate relation-
ship as follows:

d2 =
v1

v2
d1 +

f

2v2
(h3D

1 − h3D
2 ) (10)

where d denotes the depth, v denotes the distance between the projected 2D object cen-
ter and the horizon line in the image, y is the 3D height of object center and h3D

is the height of the 3D bounding box. Taking the left sample in Fig. 4 as an exam-
ple, the depths of the 8 cars are {5.23, 11.80, 16.50, 22.05, 23.64, 28.53, 29.07, 42.85}. With
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Table 1: Average precision for each class on the nuScenes test benchmark. CV and TC are abbreviation
of construction vehicle and traffic cone in the table.

Methods car truck bus trailer CV ped motor bicycle TC barrier mAP

LRM0 0.467 0.21 0.17 0.149 0.061 0.359 0.287 0.246 0.476 0.512 0.294
MonoDIS [6] 0.478 0.22 0.188 0.176 0.074 0.37 0.29 0.245 0.487 0.511 0.304

CenterNet [7] (HGLS) 0.536 0.27 0.248 0.251 0.086 0.375 0.291 0.207 0.583 0.533 0.338
Noah CV Lab 0.515 0.278 0.249 0.213 0.066 0.404 0.338 0.237 0.522 0.49 0.331
PGD (Ours) 0.561 0.299 0.285 0.266 0.134 0.441 0.397 0.314 0.605 0.561 0.386

our derived relationship, we can estimate them with only the first 2 accurate depths:
{5.23, 11.74, 16.78, 22.92, 21.13, 26.59, 25.78, 36.51}. We can see that similar to the general case
of depth estimation, our propagation mechanism also yields more notable errors for distant objects,
which has been analyzed in the main paper (The effect of δ over ∆d will be enlarged as the v2

decreases.)

Next, we can further observe the inconsistent bottoms problem shown in Fig. 4. We mark some
representative instances in the figure. It can be seen that it is sometimes caused by the actual
topography, like pedestrians and cars in the second sample. Nevertheless, the noise only exists
between objects far away from each other most of the time. We conjecture this is related to the
annotation pipeline, e.g., we tend to make use of nearby annotations when the information for labeling
the current instance is inadequate. Alternatively, sometimes it is just because the LiDAR only sweeps
the top part of the distant objects such that the annotator can not determine its bottom accurately.

In conclusion, although the ground constraint holds most of the time, it is still important to design
mechanisms to avoid these possible noises and incorporate the geometric depth adaptively, such as
the edge pruning/gating scheme and location-aware integration in the main paper.

3.2 Quantitative Analysis

Difference Between Datasets Here we mainly show the observation in the ablation study to explain
the different effects from the same component on these two datasets. We take the depth score as an
example. First, Tab. 7 in the main paper has shown the especially important role of depth score on
the KITTI. However, it does not contribute much to the improvements on nuScenes. Specifically, it
only brings about 0.3% increase on NDS by reducing the mATE instead of boosting the mAP. To
figure out the reason, we take a closer look at the performance from the Precision-Recall (PR) curve.
As shown in Fig. 5, we can see that the depth score (solid line) significantly improves the precision
under low recall and strict matching thresholds (like 0.5 and 1.0 meters, blue and yellow lines) while
influences the performance under high recall and less strict cases (like 2.0 and 4.0 meters, green
and red lines). This problem is especially notable for large objects. It reveals the effect of depth
score from another perspective, i.e., it can overly suppress those predictions with inaccurate depth, of
which we should be tolerant under some circumstances, like distant and small objects. Therefore,
designing a more suitable depth score with better interval division methods or other approaches can
be a direction worthy of further exploration.

Mean AP for Multi-Class Detection on nuScenes To present the multi-class detection results
more comprehensively, we provide the mean AP results (over all the matching thresholds) for each
category on nuScenes in Tab. 1. We can see that our method shows the superiority especially on small
(from pedestrian to barrier) and quite large objects (bus). Firstly, the better capability of handling
objects with different scales should partly come from the leveraged well-developed backbone and FPN.
Furthermore, our probabilistic and geometric depth also improves the accuracy of depth estimation,
which is especially important for small objects.

Contributions of Each Depth Estimation To understand the role of each component for depth
estimation more clearly, we make statistics about the fusion weights. Firstly, for local depth estimation,
we find that the direct regression accounts for about 25.6% in the results, i.e., σ(λ) is about 0.256. It
implies that the direct regression may be responsible for regressing the residual of the probabilistic
estimation, which plays an auxiliary but important role according to the ablation study in the main
paper (Tab. 7). On the other hand, for final integration, we make statistics for the location-aware
weights σ(α) of predictions with matching ground truths before NMS on the validation set, and
plot its distribution in Fig. 6 (higher value means more contribution from local estimation). We can
see that although the preliminary local estimation plays a more important role in many cases, the
propagated geometric depth does contribute a lot to the overall estimation. In addition, we also plot
the scatter diagram of these weights with respect to the estimated depth and different categories (Fig. 7
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Figure 6: Distribution of weights for the final
integration in our PGD module.

Figure 7: Scatter plot of location-aware weights
with respect to depths.

Figure 8: Location-aware weights of predictions from different categories.

and 8). We can see that the geometric depth contributes more to the estimation of very nearby (can be
truncated in the image) and small objects like pedestrians, which is consistent with our common sense
that these two cases are relatively hard such that we need to incorporate some contextual information
in the reasoning procedure.

Table 2: Ablation study for the depth unit setting
with our lightweight model on nuScenes.

U (meters) mAP mATE mASE mAOE mAAE NDS
5 0.298 0.79 0.266 0.563 0.164 0.371
10 0.303 0.775 0.265 0.548 0.164 0.376

Table 3: Ablation study for alternative depth
division methods.

Methods Easy Mod. Hard
Log 9.91 8.68 7.95

Linear 18.63 14.49 13.25
Uniform Log 8.62 13.48 13.28

Uniform 19.10 16.04 14.83

Ablation Studies for Alternative Depth Division Methods We also made ablation studies for al-
ternative probabilistic depth settings, including the different settings for the depth unit U and different
division methods to bucket the depth value into intervals. First, Tab. 2 shows that more fine-grained
division can not bring performance gains. As for the division methods, we test several alternatives as
shown in Tab. 3, among which Log and Linear refer to the spacing-increasing discretization (SID) [8]
and linear-increasing discretization (LID) [9], respectively. We directly take their split points and
compute the depth estimation with Eqn. 1 in the main paper. In contrast, Uniform Log means that we
take the split points that are uniformly distributed in the log space as the base to compute the depth
estimation in the log space with Eqn. 1, and then apply the exponential transformation to get the final
result. We can see that although the simplicity, our adopted uniform division method achieves the
best performance. Note that this ablation study is conducted with U = 10m. There may be different
conclusions if we exploit more fine-grained divisions or use classification and residual regression to
implement the probabilistic depth estimation.

Ablation Studies for Geometric Depth Recall that we select three important factors for edge
pruning and gating in the depth propagation graph. We also tried other alternatives for the distance
score, including the height difference between 3D bottoms, the distance of 3D centers and our adopted
2D centers (Tab. 4). It can be observed that using the 2D centers yields the best performance. We
conjecture that it is because the 3D criteria are based on the inaccurate depths such that they are less
reliable than the disentangled 2D distance.

Depth Error Analysis We have validated the efficacy of our method in the main paper by compar-
ing the detection performance of our method and the baseline, especially in terms of the improved
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Figure 9: Qualitative analysis of detection results. 3D bounding box predictions are projected onto
images from six different views and bird-view, respectively. Boxes from different categories are
marked with different colors. We can see that the detection results of FCOS3D and PGD are both
reasonable. However, from the bird-eye-view, the depth accuracy is remarkably improved by our
method, especially for those objects marked with red circles.

Table 4: Ablation study for alternative distance
scores in the edge gating scheme on KITTI.

Method AP3D IOU≥ 0.7 AP3D IOU≥ 0.5
Easy Mod. Hard Easy Mod. Hard

3D bottoms 15.18 11.96 10.72 46.27 37.99 33.09
3D centers 21.04 16.07 14.89 47.03 37.58 32.97
2D centers 21.36 16.60 15.60 50.57 39.78 34.18

Table 5: Depth error statistics for predictions
having corresponding matching ground truths.

Methods Mean Abs. Error (m) ↓ Mean Rel. Error ↓
FCOS3D 0.0528 4.27%

PGD (Ours) 0.0483 3.63%
Rel. Delta -8.5% -15.0%

mean average precision (mAP) and the mean translation error (mATE). Here we further prove its
effectiveness with the depth error analysis. We make depth error statistics for the predictions (before
NMS) which have corresponding ground truths on the KITTI validation set (Tab. 5). We can observe
that our method significantly reduces the mean error of depth estimation, both on the absolute error
and relative error ((Abs. and Rel. in Tab. 5).

3.3 Qualitative Analysis

Then we show some qualitative results on nuScenes in Fig. 9 by drawing the predicted 3D bounding
boxes in the six-view images and the top-view point clouds. We compare the results predicted by
our model and the baseline FCOS3D to demonstrate the improvements in terms of depth estimation
intuitively. We can see that from the perspective of images, both detection results are appealing,
especially for some small objects that are not labeled. For example, the barriers in the rear right
camera are not labeled but detected by these two models. However, from the bird-eye-view, the depth
accuracy of the two methods is notably different, especially for those objects marked with red circles:
The accuracy is significantly improved by our proposed method. It is also in line with the quantitative
results (the mATE is reduced remarkably) and further validates the efficacy of our method.
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