
Published as a conference paper at ICLR 2025

SECOND-ORDER FINE-TUNING WITHOUT PAIN FOR
LLMS: A HESSIAN INFORMED ZEROTH-ORDER
OPTIMIZER

Yanjun Zhao1,∗, Sizhe Dang1,∗, Haishan Ye1,2,†, Guang Dai2, Yi Qian1,†, Ivor W.Tsang3,4
1Xi’an Jiaotong University, China, 2SGIT AI Lab, State Grid Corporration of China, China
3CFAR and IHPC, Agency for Science, Technology and Research, Singapore
4College of Computing and Data Science, Nanyang Technological University, Singapore
{yanjun.zhao, darknight1118}@stu.xjtu.edu.cn
yehaishan@xjtu.edu.cn, yqian@mail.xjtu.edu.cn
guang.dai@gmail.com, ivor_tsang@cfar.a-star.edu.sg

ABSTRACT

Fine-tuning large language models (LLMs) is necessary for specific downstream
tasks, but the classic adaptive first-order optimizer entails prohibitive GPU memory
because of backpropagation. Recent works such as MeZO have turned to zeroth-
order optimizers for fine-tuning, which reduce substantial memory by using just
two forward passes. However, heterogeneous curvatures across different parameter
dimensions in LLMs often cause convergence instability or even failure. In this
work, we propose HiZOO, a diagonal Hessian informed Zeroth-Order Optimizer ,
which is the first to leverage the diagonal Hessian to enhance ZOO for fine-tuning
LLMs. We provide the theoretical proof for HiZOO and visualize the optimiza-
tion trajectories on the test functions. Extensive experiments on various models
(RoBERTa, OPT, Phi-2, and LLama3, with 350M∼66B parameters) indicate that
HiZOO significantly reduces the number of training steps and improves model
accuracy. For example, on the SST2 task, HiZOO achieves an 8× speed-up and
better accuracy. Even when scaled to 66B-model, HiZOO outperforms MeZO
with up to 5.1% absolute improvement. We also propose HiZOO-L, which re-
duces the Hessian memory cost to 10% of the MeZO, while maintaining almost
same performance. Compared with ZO-Adam, HiZOO-L achieves a 4.3% ab-
solute improvement, just using 50% of the GPU memory. Code is available at
https://github.com/Yanjun-Zhao/HiZOO.

Memory efficient ✅
Converge quickly ✅

1 forward pass

1 backward pass

Adam MeZO

HiZOO

2 forward passes

Converge slowly ❌Memory
intensive ❌

updated
parameters

exact grad

m

v

h

first order
moment

second order
moment

Hessian
3 forward passes

projected
grad

h

+𝜖

−𝜖

update with
, , h

projected
grad

+𝜖

−𝜖

Figure 1: (Left) Comparison of HiZOO, MeZO and Adam. (Right) Heterogeneous curvatures
example. HiZOO updates along the direction with greater curvature (X) and converges more quickly
than MeZO. The corresponding loss curves are shown in Section 3.5.

∗ Equal contribution. This work was completed during the internship at SGIT AI Lab, State Grid Corporation
of China. † Corresponding author.

1

Published as a conference paper at ICLR 2025

1 INTRODUCTION

Fine-tuning pre-trained LLMs for specific tasks has gained significant attention recently. As the
number of model parameters increases, full parameter fine-tuning (FT) becomes markedly memory-
intensive. To alleviate GPU memory limitations, parameter-efficient fine-tuning (PEFT) methods (Hu
et al., 2022; Li & Liang, 2021; Dettmers et al., 2023; Zhao et al., 2024b; Pan et al., 2024) have
been developed, which only fine-tune a small number of (extra) model parameters. As a result, they
significantly reduce the computational and storage cost, while achieving performance comparable to
a fully fine-tuned model.

Adaptive first-order optimizers such as Adam (Kingma & Ba, 2015) and AdamW (Loshchilov &
Hutter, 2019) are widely used to fine-tune LLMs. However, using these optimizers still leads to
substantial memory consumption, primarily due to the inherent backpropagation process to calculate
the gradient. To address these limitations, MeZO (Malladi et al., 2023) proposed to utilize a zeroth-
order optimizer (ZOO) to estimate the gradient with just two forward passes per step, no need for
backpropagation anymore. This achieves numerous memory reductions and makes it accessible to
train and store LLMs on consumer hardware.

However, the parameters of LLMs often exhibit heterogeneous curvatures across different dimensions,
as documented in recent studies (Sagun et al., 2017; Ghorbani et al., 2019; Zhang et al., 2020). This
significant difference of second derivative makes the MeZO converge towards saddle point, slowing
down the convergence speed, as shown in Figure 1 (right). Since the incorporation of Hessian to
measure the curvature properties of the loss landscape, second-order methods (Liu & Li, 2023; Yao
et al., 2021; Anil et al., 2021) can solve this suboptimal behavior. Unfortunately, in the context of
zeroth-order optimization, one cannot directly compute the Hessian atop first-order derivatives.

Figure 2: Performance of MeZO, HiZOO and HiZOO-L on SST2 task, when fine-tuning RoBERTa-
large, OPT-13B, Llama3(8B) models. HiZOO can achieve 8× speedup and 1.55% absolute accuracy
improvement compared with MeZO.

In light of above, we propose HiZOO, as shown in Figure 1 (left), which estimates the diagonal
Hessian by one more forward pass. HiZOO can act as a pre-conditioner, directly adjusting the
update size of different parameters according to their curvatures. So that it can improve the model
convergence when encountered with heterogeneous curvatures. As shown in Figure 2, HiZOO can
significantly reduce number of training steps and improve model accuracy. Here we summarize our
key contributions as follows:

1. In this work, we estimate the Hessian in zeroth-order optimizer to fine-tune LLMs for the
first time. Our HiZOO reduces the total number of forward passes required for model
convergence and achieves better accuracy. By utilizing diagonal Hessian, HiZOO reduces
the corresponding memory cost from O(d2) to O(d). Furthermore, we propose HiZOO-L,
reducing the memory usage of Hessian to 10% of the MeZO.

2. We provide theoretical analysis to prove that HiZOO provides an unbiased estimation of
the Hessian. Also, we illustrate how HiZOO utilizes Hessian to improve the convergence
process by visualizing the optimization trajectories on test functions.

3. We conduct extensive experiments across different models (RoBERTa-large, OPT, Llama3
and Phi-2) with scales from 350M to 66B, different methods (FT, LoRA, prefix), and
different downstream tasks (classification, multiple-choice, and generation) to verify the
effect of the HiZOO. For example, on SST2 task HiZOO achieves a better accuracy and

2

Published as a conference paper at ICLR 2025

8× speedup over MeZO on average across different models. Even on OPT-66B, HiZOO
outperforms better than MeZO with up to 5.1% absolute improvement.

4. Further exploration in Section 4.3 showcases that HiZOO can achieve better performance in
optimizing non-differentiable objectives such as F1 score. Specifically, HiZOO significantly
outperforms MeZO ’s results with 6.5% absolute on average.

2 RELATED WORKS

Here we present a concise overview on optimizers used in fine-tuning LLMs(details in Appendix A).

First-Order adaptive optimizer used in fine-tuning LLMs Optimization methods have consis-
tently been a popular research domain. Adaptive first-order optimizer, such as Gradient Descent
(GD), Momentum, Adagrad (Duchi et al., 2011), are fundamental in many areas like computer vision,
natural languagle processing (NLP). Among them, Adam (Kingma & Ba, 2015) plays a dominant
role due to its fast convergence and is often chosen for training and fine-tuning LLMs. AdamW
(Loshchilov & Hutter, 2019) improves upon Adam by adding the weight decay to alleviate overfitting.
But both of them requires lots of memory cost due to the backpropagation process. This issue has
become increasingly critical as the number of LLM parameters skyrockets.

Enhanced optimizers with Hessian On the other hand, researchers incorporated second-order
information (Hessian) to provide richer guidance for gradient descent during the training. For
example BROYDEN (BROYDEN, 1970) , Nesterov & Polyak (Nesterov & Polyak, 2006) and Conn
et al. (Conn et al., 2000) utilized curvature information to pre-condition the gradient; Magoulas et
al. (Magoulas et al., 1999) applied diagonal Hessian as the pre-conditioner; Martens (Martens, 2010)
approximated the Hessian with conjugate gradient. Sophia (Liu & Li, 2023) used a light-weight
estimate of the diagonal Hessian for pre-training LLMs. Despite their potential, above optimizers
require the enormous GPU-memory cost. Additionally, these methods can only be used when
first-order gradients are available.

Zeroth-Order Optimizer Zeroth-order optimizers, with just forward passes to estimate the gradient,
can greatly reduce the memory consumption. It appears in a wide range of applications where either
the objective functions is implicit or its gradient is impossible or expensive to obtain. Methods like
SPSA (Spall, 1992) have been shown to perform well in non-convex multi-agent optimization (Tang
et al., 2021; Hajinezhad & Zavlanos, 2018) or generating black-box adversarial examples (Chen et al.,
2017; Cai et al., 2021; Liu et al., 2019a; Ye et al., 2019). Recently, MeZO (Malladi et al., 2023) first
adapted the classical ZO-SGD method to fine-tune LLM, achieving comparable performance with
significant memory reduction. Then Zhang et al. (2024) proposed a wider array of ZO optimization
techniques. However, these methods often struggle with heterogeneous curvatures.

3 METHODS

In the following, we briefly introduce the classical ZO gradient estimator SPSA (Spall, 1992), which
is used in MeZO. Then we describe how HiZOO estimates diagonal Hessian and cooperates with
ZOO. We also provide detailed proof for our method.

3.1 PRELIMINARIES

Definition 3.1. Simultaneous Perturbation Stochastic Approximation or SPSA

Given a model with parameters θ ∈ Rd and loss function L, SPSA estimates the gradient on a
minibatch B , based on the concepts of sampling and differencing, as shown below:

g′µ(θt) =
L(θt + µu;B)− L(θt − µu;B)

2µ
u ≈uu⊤∇L(θt;B),

where u ∈ Rd and is sampled from N (0, Id), µ is the perturbation scale. The n-SPSA gradient
estimate averages gµ(θ) over n randomly sampled u.

3

Published as a conference paper at ICLR 2025

Algorithm 1 HiZOO
Require: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale µ, learning rate

schedule ηt, smooth scale αt, diagonal Hessian Σ0

1: for t = 1, ..., T do
2: Sample batch B ⊂ D and random seed s
3: ℓ← L(θ;B)
4: θ← PerturbParameters(θ, µ, Σ1/2

t−1, s)
5: ℓ+ ← L(θ;B)
6: θ← PerturbParameters(θ, −2µ, Σ1/2

t−1, s)
7: ℓ− ← L(θ;B)
8: θ← PerturbParameters(θ, µ, Σ1/2

t−1, s) ▷ Reset parameters before descent
9: Σ′

t =
1

2µ2 (ℓ+ + ℓ− − 2ℓ)(Σ
−1/2
t−1 uiu

⊤
i Σ

−1/2
t−1) ▷ Update diagonal Hessian

10: Σ−1
t = (1− αt)Σ

−1
t−1 + αt |diag(Σ′

t)|
11: projected_grad← (ℓ+ − ℓ−) ∗ Σ1/2

t /2µ
12: Reset random number generator with seed s ▷ For sampling ui

13: for θi ∈ θ do
14: Sample ui ∼ N (0, Id)
15: θi ← θi − ηt∗ projected_grad ∗ui

16: end for
17: end for
18: function PERTURBPARAMETER(θ, µ, Σ1/2

t , s)
19: Reset random number generator with seed s ▷ For sampling ui

20: for θi ∈ θ do
21: Sample ui ∼ N (0, Id)

22: θi ← θi + µΣ
1/2
t ui ▷ Modify parameters in place

23: end for
24: return θ
25: end function

3.2 HESSIAN INFORMED ZEROTH-ORDER OPTIMIZATION

We will present how to estimate Hessian inverse matrix Σ in detail in Section 3.3. Given Σ, then we
can construct the following descent direction:

gµ(θt) =

n∑
i=1

L(θt + µΣ
1/2
t ui;B)− L(θt − µΣ

1/2
t ui;B)

2µ · n · Σ1/2
t ui. (1)

With the above descent direction, we can update θt as follows:

θt+1 = θt − ηtgµ(θt). (2)

It’s guaranteed that gµ(θ) can estimate the descent direction by the following equation:
E [L(θt+1;B)] = L(θt;B)− ηtE [⟨∇L(θt;B), gµ(θt)⟩] +O(η2t)

= L(θt;B)− ηt
1

b
E

[
b∑

i=1

⟨∇L(θt;B),Σ1/2
t uiu

⊤
i Σ

1/2
t ∇L(θt;B)⟩

]
+O(η2t) +O(µ)

= L(θt;B)− ηt∥Σ1/2
t ∇L(θt;B)∥2 +O(η2t) + µ,

where the first and second equality are both from the Taylor’s expansion. Above equation shows that
when ηt is properly chosen, gµ(θ) can accurately estimate the direction of gradient descent, which is
the key to the success of fine-tuning large language models.

3.3 DIAGONAL HESSIAN ESTIMATOR

Given a model with parameters θ ∈ Rd, storing the exact full spectral Hessian (d × d) requires
O(d2) memory (Yao et al., 2018; Xu et al., 2019; Dembo et al., 1982), which is sufficient but never

4

Published as a conference paper at ICLR 2025

necessary. In HiZOO, we just estimate and retain only the diagonal Hessian which requires O(d)
memory. It serves as a pre-conditioner to scale the direction and magnitude of the model parameter
updates according to their respective curvatures.

Drawing from the lemma presented in MiNES (Ye, 2023):

1

2
· Eu(u

⊤Σ1/2HΣ1/2u · (Σ−1/2uu⊤Σ−1/2 − Σ−1)) = H, (3)

where H is the Hessian∇2L(θ;B) and Σ is a positive definite matrix.

Thus, we can approximate the diagonal Hessian by the zeroth order oracles. Firstly, we will access to
the L(θ + µΣ1/2u;B), L(θ − µΣ1/2u;B) and L(θ;B). Through the Taylor’s expansion, we yield
the following results:

L(θ + µΣ1/2u;B) = L(θ;B) + µ⟨L(θ;B),Σ1/2u⟩+ µ2

2
u⊤Σ1/2∇2L(θ;B)Σ1/2u+ α(θ, µΣ1/2u).

Similarly, we also have:

L(θ − µΣ1/2u;B) = L(θ;B)− µ⟨L(θ;B),Σ1/2u⟩+ µ2

2
u⊤Σ1/2∇2L(θ;B)Σ1/2u+ α(θ,−µΣ1/2u).

Then we can calculate the difference ∆L by:

∆L = L(θ + µΣ1/2u;B) + L(θ − µΣ1/2u;B)− 2L(θ;B)
= µ2u⊤Σ1/2∇2L(θ;B)Σ1/2u+ α(θ, µΣ1/2u) + α(θ,−µΣ1/2u).

Since α(θ, µΣ1/2u) and α(θ,−µΣ1/2u) are of order O(µ3), we can obtain that:

∆L
µ2

= u⊤Σ1/2∇2L(θ;B)Σ1/2u+O(µ).

Upon substituting the above results into the left side of the Eq. equation 3, we arrive at:

1

2
E
[
∆L
µ2
·
(
Σ−1/2uu⊤Σ−1/2 − Σ−1

)]
= ∇2L(θ;B) +O(µ).

Therefore, by generalizing above equation to the multi-sampling version, we can approximate the
diagonal Hessian∇2L(θ) at θ by:

Σ′
t(θ) =

1

2n

n∑
i=1

[
∆L
µ2
·
(
Σ

−1/2
t uiu

⊤
i Σ

−1/2
t − Σ−1

)]
, (4)

where n denotes the number of sampling instances for u, indicating the frequency of estimation
per step. A larger n diminishes the variance of the diagonal Hessian estimation and simultaneously
increases computational overhead. Here we adopt n = 1 as the default setting and present the
pseudo-code of HiZOO in Algorithm 1. Further experimental investigation into the impact of varying
n is available in the Section 4.6.

Above equation shows that we can approximate the diagonal entries of∇2L(θ;B) by diag(Σ′
t(θ)),

requiring just one more forward pass per step compared with MeZO.

Due to the presence of noise in the calculation of the Hessian, we utilize exponential moving average
(EMA) to denoise the diagonal Hessian estimation.

Σ−1
t+1 = (1− αt)Σ

−1
t + αt |diag(Σ′

t)| . (5)

In the above equation, we firstly initial the Σ0 = Id and update it every step with O(d) memory cost
all the time. We also use |diag(Σ′

t)| to keep all entries of Σt to be non-negative.

To further reduce Hessian memory consumption, we propose HiZOO-L to maintain it in a low-rank
subspace, motivated by Adafactor (Shazeer & Stern, 2018). For Σ̂−1 ∈ Rp×q, we will store two
low-rank matrices R ∈ Rp×k and C ∈ Rk×q with k = 1. Specifically, we can get Σ̂−1 by:

5

Published as a conference paper at ICLR 2025

Σ̂−1
t = (Rt ∗ Ct)/(1

⊤
p ∗Rt),

where 1p = (1, · · · , 1) ∈ Rp denotes a column vector of p ones. Then in each step, we will update
the R and C separately:

R−1
t = (1− αt)R

−1
t−1 + αt

∣∣∣diag(Σ̂′
t)
∣∣∣ ∗ 1q,

C−1
t = (1− αt)C

−1
t−1 + αt1

⊤
p ∗

∣∣∣diag(Σ̂′
t)
∣∣∣ .

Detailed Algorithm can be seen in Appendix D.

3.4 CONVERGENCE ANALYSIS

In this section, we will analyse the convergence based on the assumption of non-convex optimization
(details in Appendix B).

Theorem 3.2. Let the descent direction gµ(θt) defined as:

gµ(θt) =
b∑

i=1

L(θt + µΣ
1/2
t ui;Bt)−L(θt − µΣ

1/2
t ui;Bt)

2bµ
Σ

1/2
t ui. (6)

Based on Assumption B.1-B.3, if the update rule for θ is θt+1 = θt − ηgµ(θt) for a single step, then
it’s established that:

E [L(θt+1) |] ≤ L(θt)−
ηt
4
∥∇L(θt)∥2Σt

+ 2η2tL (tr(Σt) + βu)σ
2 +O(µ2). (7)

Furthermore, given iteration number T , we choose the step size η = 1
8
√
TL(maxt tr(Σt)+βu)

and take

θout = θj with j uniformly sampled from {1, . . . , T}. Then, we have

E
[
∥∇L(θout)∥2

]
≤ 32L (maxt{tr(Σt)}+ βu) (L(θ1)−L(θ∗))√

Tβℓ

+
σ2

T 3/2βℓ
+O

(
µ2) , (8)

where L(θ∗) minimizes the function L(θ;). The above equation shows that as T →∞, HiZOO can
converge to the stationary point.

Proof. Detailed proof can be found in Appendix B.

3.5 VISUALIZATION OF HIZOO ON TEST FUNCTIONS

Despite above theoretical guarantee, we still want to illustrate how HiZOO utilizes Hessian to
improve the convergence process. But it’s impractical for large models to visualize their optimization
trajectories. Therefore we choose three test functions (see details in Appendix C) with heterogeneous
curvatures across different parameters and visualize the optimization trajectories on them.

As illustrated in Figure 3, HiZOO and Adam both achieve better convergence on three functions, and
HiZOO even requires less steps for convergence than Adam. However, MeZO only achieves effective
convergence in either the x or y dimension, but not both, indicating a limitation in capturing this
curvature difference. Particularly in function (c) curvature of x is extremely bigger than y. In this
case, HiZOO can sense this difference in parametric curvature and update the function along x on
purpose, achieving quicker convergence. In contrast, MeZO is very hard to converge.

4 EXPERIMENTS

Large language models are generally classified into two types: (1) Encoder-Decoder, also known as
masked language models, such as BERT (Devlin et al., 2019) and ALBERT (Lan et al., 2020); (2)
Decoder-Only, also recognized as generative language models, such as GPT family (Radford et al.,
2019; Brown et al., 2020), OPT (Zhang et al., 2022a), LLaMA (Touvron et al., 2023), Phi (Li et al.,
2023; Gunasekar et al., 2023).

6

Published as a conference paper at ICLR 2025

Figure 3: Optimization trajectories of Adam, MeZO and HiZOO on 3 test functions. We have labeled
the number of iterations required for the loss to drop to 0.1.

Table 1: Experiments on RoBERTa-large (350M parameters, k=16). PEFT represents using LoRA
and prefix and we report the best result of them. All reported numbers are averaged accuracy (standard
deviation) across 5 runs.

Task Type SST-2 SST-5 SNLI MNLI RTE TREC Average
—— sentiment —— —— natural language inference —— — topic —

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0 49.5
LP 76.0 (±2.8) 40.3 (±1.9) 66.0 (±2.7) 56.5 (±2.5) 59.4 (±5.3) 51.3 (±5.5) 58.3

FT 91.9 (±1.8) 47.5 (±1.9) 77.5 (±2.6) 70.0 (±2.3) 66.4 (±7.2) 85.0 (±2.5) 74.9
PEFT 91.9 (±1.0) 47.7 (±1.1) 77.2 (±1.3) 67.7 (±1.4) 66.6 (±2.0) 85.7 (±1.3) 72.8

MeZO 90.5 (±1.2) 45.5 (±2.0) 68.5 (±3.9) 58.7 (±2.5) 64.0 (±3.3) 76.9 (±2.7) 67.4
MeZO (PEFT) 91.4 (±0.9) 45.8 (±2.0) 71.6 (±2.5) 62.1 (±2.5) 61.0 (±3.9) 80.3 (±3.6) 68.7

HiZOO 93.2 (±0.8) 46.2 (±1.1) 74.6 (±1.3) 64.9 (±1.7) 66.8 (±1.2) 79.8 (±1.3) 70.9
HiZOO(PEFT) 92.3 (±1.2) 47.2 (±1.1) 71.1 (±1.1) 62.1 (±1.7) 65.4 (±1.2) 82.0 (±2.0) 70.0

To rigorously assess the universality and robustness of our HiZOO, we have chosen models from
each category for empirical testing. Additionally, we investigate FT and PEFT (LoRA (Hu et al.,
2022) and prefix (Li & Liang, 2021)). Detailed experiment settings are presented in Appendix E.1.

4.1 MASKED LANGUAGE MODELS

Firstly, we conduct experiments on RoBERTa-large 350M (Liu et al., 2019b) on three NLP task
paradigms: sentence classification, multiple choice and text generation. We follow the experimental
setting (Malladi et al., 2023) in studying the few-shot and many-shot, sampling k examples per class
for k = 16 (results in Table 1) and k = 512 (results in Appendix E.1). We did not utilize HiZOO-L
here due to model’s smaller parameter count.

Figure 4: Training loss curves when using Adam, MeZO and HiZOO to fine-tune Roberta-large on
MNLI. The evaluation accuracy curves can be found in Figure 11 in Appendix E.1.

HiZOO greatly increases the convergence speed across full-parameter tuning, LoRA and prefix.
As shown in Figure 4, HiZOO achieves 4× speedup over MeZO on average while getting the same
training loss compared with MeZO. What’s more, HiZOO finally achieves a 2.2% absolute accuracy
improvement on MNLI better than MeZO.

7

Published as a conference paper at ICLR 2025

HiZOO achieves better performance compared with MeZO. Table 1 shows that HiZOO out-
performs MeZO’s results with 3.5% absolute on average on all datasets across different tasks.
Specifically, HiZOO outperforms MeZO more than 6% in both the SNLI and MNLI dataset.

Table 2: Experiments on three different models(with 1000 examples). We highlight the best results
between MeZO, HiZOO and HiZOO-L in bold to facilitate comparison.

Model Method SST-2 RTE CB WSC WIC COPA MultiRC Average
Phi-2 MeZO 86.6 67.1 75.0 59.6 54.4 86.0 78.2 72.4
Phi-2 HiZOO 88.9 69.0 75.2 62.5 59.4 86.0 79.2 74.3
Phi-2 HiZOO-L 88.9 68.9 75.2 62.4 59.2 86.0 79.2 74.2

Llama3 MeZO 92.2 74.4 69.6 63.5 57.8 88.0 77.6 74.7
Llama3 HiZOO 93.5 75.1 69.6 63.5 59.7 89.0 78.2 75.5
Llama3 HiZOO-L 94.3 75.1 69.6 63.5 57.7 89.0 77.9 75.3

OPT-13B MeZO 91.4 66.1 66.0 63.5 59.4 88.0 57.3 70.2
OPT-13B HiZOO 92.1 69.3 69.6 63.5 59.4 89.0 61.3 72.1
OPT-13B HiZOO-L 92.1 68.2 67.9 65.4 59.4 89.0 61.1 71.9

4.2 AUTO-REGRESSIVE LANGUAGE MODELS

Then we extend experiments with Phi-2(2.7B), Llama3(8B) and OPT family on the same NLP task
paradigms. The results of the experiment in Table 2 show that HiZOO outperforms MeZO in most
cases. Also, we can see that HiZOO-L has only a slight decrease in accuracy. We also provide relative
loss curves to show the better convergence process of our HiZOO in Appendix E.2.

HiZOO is capable of scaling to large models with up to 66B parameters, while preserving its
exceptional performance. As depicted in Table 3, on OPT-30B HiZOO outperforms MeZO with
up to 2.9% increase and 1.1% increase on average. Even scaling to OPT-66B, HiZOO(prefix) still
outperforms MeZO(prefix) with up to 5.1% increase and 2.7% increase on average.

4.3 TRAINING WITH NON-DIFFERENTIABLE OBJECTIVES

Our proposed HiZOO employs gradient estimation to update parameters, allowing for the use of
non-differentiable objectives for training. Following the setting of MeZO (Malladi et al., 2023), we
conduct extensive experiments using F1 as optimization objective. The results presented in Table 4
indicate that our method outperforms MeZO by 6.54% absolute on F1 on average.

Table 3: Experiments on OPT-30B (we use FT
and prefix-tuning, report the best of them) and
OPT-66B (we use prefix-tuning).

Task SST-2 RTE WSC WIC Average
30B MeZO 90.6 66.4 63.5 59.1 69.9
30B HiZOO 91.2 69.3 63.5 60.2 71.0
30B HiZOO-L 91.1 68.9 63.5 59.8 70.8

66B MeZO 93.6 66.4 57.7 58.6 69.0
66B HiZOO 93.6 71.5 60.6 61.1 71.7
66B HiZOO-L 93.6 71.0 60.3 60.9 71.4

Table 4: Experiments on non-differentiable
optimization objectives (F1). For classification
(k = 512), we use full-parameter tuning and for
SQuAD (1,000 examples), we use prefix tuning.

Model RoBERTa-large (350M) OPT-13B

Task SST-2 SST-5 SNLI TREC SQuAD
Zero-shot 79.0 35.5 50.2 32.0 46.2
MeZO 92.7 48.9 82.7 68.6 78.5
HiZOO 94.9 52.9 83.1 90 83.21

4.4 MEMORY USAGE AND TIME EFFICIENCY ANALYSIS

Memory Usage As shown in Figure 5, HiZOO increases the memory usage compared to MeZO
because of the storage of the diagonal Hessian(refer to Appendix F for detailed numbers). To
further reduce memory consumption, we propose HiZOO-L, the low-rank implementation of HiZOO,
motivated by Adafactor (Shazeer & Stern, 2018). Detailed Algorithm can be seen in Appendix D.
As a result, HiZOO-L increases < 10% memory more than MeZO, while maintaining the original
performance of HiZOO. Specifically, using the same GPUs, HiZOO-L allows for tuning a model that
is 10 times larger than what is feasible with FT on average.

Time Efficiency We analyse the wall-clock time efficiencies and find that HiZOO and HiZOO-L
spend 1.5× time per step compared with MeZO, mainly from the extra forward pass, details in

8

Published as a conference paper at ICLR 2025

Appendix G. However, HiZOO reduces total number of forward passes required for convergence. For
example, HiZOO achieves a 8× and 4× speedup on SST2 and MNLI tasks.

7x

7x

10x

11x

10x

Figure 5: GPU memory consumption with different OPT models and tuning methods on MultiRC
(400 tokens per example on average). More details can be found in Appendix F.

4.5 COMPARISON WITH OTHER ZO VARIANTS

We also compare our HiZOO with a broader array of ZO optimization techniques Zhang et al. (2024).
As shown in Table 5, our HiZOO outperforms all other ZO methods. Compared with ZO-Adam who
leverages second-order moment to guide gradient descent, our HiZOO-L achieves a notable 4.3%
absolute improvement, while using 50% of the GPU memory.

Table 5: Performance comparison on SST2(Robert-Large and OPT-1.3B) and COPA(OPT-13B) using
different ZO methods. Memory and runtime cost are multiples of ZO-SGD.

Model/Task Roberts-Large OPT-1.3B OPT-13B Average Memory Runtime
FT prefix FT prefix FT prefix

ZO-SGD 89.4 90.0 90.8 91.4 90.0 79.0 88.4 1.0x 1.0x
ZO-SGD-MMT 89.6 89.1 85.2 91.2 87.0 85.0 87.8 1.56x 1.0x
ZO-SGD-Cons 89.6 89.1 88.3 88.1 82.0 84.0 86.8 1.0x 2.49x
ZO-SGD-Sign 52.5 53.6 87.2 89.5 80.0 78.0 73.4 1.0x 1.0x
ZO-Adam 89.8 90.2 84.4 91.4 82.0 79.0 86.1 2.47x 1.04x
HiZOO 93.2 92.7 90.7 91.4 88.0 87.0 90.5 2.04x 1.37x
HiZOO-L 92.5 92.7 90.7 91.4 88.0 87.0 90.4 1.12x 1.39x

4.6 HYPERPARAMETER ANALYSIS

Figure 6: Influence of EMA αt for hessian in
Eq. equation 5. We use HiZOO (prefix) to fine-
tune Roberta-large on SNLI. More results can
be found in Appendix H.1.

Figure 7: Loss curves on Function (a) using the
variant HiZOO-multi with different estimation
times n per step. Trajectory visualization can
be found in Appendix H.1.

9

Published as a conference paper at ICLR 2025

Influence of Smooth Scale αt in EMA To assess the robustness of the optimizer, a grid search is
conducted to evaluate the sensitivity of the hyper-parameter αt on RoBERTa-large (350M). Figure 6
illustrates that as αt is incrementally increased from zero, the training loss decreases faster. However,
too large αt values may impede convergence or even cause training to fail due to gradient explosion.

Influence of Estimation Times n Per Step We also propose a variant of HiZOO in Appendix D.2:
HiZOO-multi, which has n > 1 per step. As shown in Figure 7, different n maybe doesn’t affect
the final accuracy. However, the larger n will estimate the diagonal Hessian more accurate per step
and accelerate model convergence, reducing the overall training steps. But it will also increase the
computation per step. Balancing these factors is crucial for efficient training.

5 CONCLUSION

In this work, we introduce HiZOO, which is the first ZOO that incorporates diagonal Hessian for fine-
tuning LLMs. By introducing one more forward pass, HiZOO can handle heterogeneous curvatures
across different parameter dimensions. We provide theoretical analysis and visualize the optimization
trajectories to explore how it works. Further experiments show that HiZOO converges in much fewer
steps than MeZO and achieves better performance across various LLMs. We also explore a memory
efficient implementation (HiZOO-L) to reduce the Hessian consumption.

ACKNOWLEDGMENTS

This work was supported in part by National Key Research and Development Project of China under
Grant 2022YFA1004002 and National Natural Science Foundation of China under Grant 72471185.

REFERENCES

Alekh Agarwal, Martin J Wainwright, Peter Bartlett, and Pradeep Ravikumar. Information-theoretic
lower bounds on the oracle complexity of convex optimization. Advances in Neural Information
Processing Systems, 22, 2009.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

C. G. BROYDEN. The Convergence of a Class of Double-rank Minimization Algorithms 1. General
Considerations. IMA Journal of Applied Mathematics, 6(1):76–90, 03 1970. ISSN 0272-4960. doi:
10.1093/imamat/6.1.76. URL https://doi.org/10.1093/imamat/6.1.76.

Hanqin Cai, Yuchen Lou, Daniel Mckenzie, and Wotao Yin. A zeroth-order block coordinate
descent algorithm for huge-scale black-box optimization. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 1193–1203. PMLR, 18–24 Jul 2021.

Minping Chen, You-Liang Huang, and Zeyi Wen. Towards efficient low-order hybrid optimizer for
language model fine-tuning. 2025a.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450352024. doi:
10.1145/3128572.3140448. URL https://doi.org/10.1145/3128572.3140448.

Yiming Chen, Yuan Zhang, Liyuan Cao, Kun Yuan, and Zaiwen Wen. Enhancing zeroth-order
fine-tuning for language models with low-rank structures. arXiv preprint arXiv:2410.07698, 2024.

10

https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1145/3128572.3140448

Published as a conference paper at ICLR 2025

Yiming Chen, Yuan Zhang, Yin Liu, Kun Yuan, and Zaiwen Wen. A memory efficient randomized sub-
space optimization method for training large language models. arXiv preprint arXiv:2502.07222,
2025b.

Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-Region Methods. Society for
Industrial and Applied Mathematics, USA, 2000. ISBN 0898714605.

Ron S. Dembo, Stanley C. Eisenstat, and Trond Steihaug. Inexact newton methods. SIAM Journal on
Numerical Analysis, 19(2):400–408, 1982. doi: 10.1137/0719025. URL https://doi.org/
10.1137/0719025.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In North American Chapter of the Associa-
tion for Computational Linguistics, 2019. URL https://api.semanticscholar.org/
CorpusID:52967399.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res., 12(null):2121–2159, jul 2011. ISSN 1532-4435.

FairScale authors. Fairscale: A general purpose modular pytorch library for high performance and
large scale training. https://github.com/facebookresearch/fairscale, 2021.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a kronecker-factored eigenbasis. In Proceedings of
the 32nd International Conference on Neural Information Processing Systems, NIPS’18, pp.
9573–9583, Red Hook, NY, USA, 2018. Curran Associates Inc.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
mization via hessian eigenvalue density. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2232–2241. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/ghorbani19b.html.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of llms with extreme
sparsity. arXiv preprint arXiv:2406.02913, 2024.

Davood Hajinezhad and Michael M. Zavlanos. Gradient-free multi-agent nonconvex nonsmooth
optimization. 2018 IEEE Conference on Decision and Control (CDC), pp. 4939–4944, 2018. URL
https://api.semanticscholar.org/CorpusID:58669445.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Kevin G Jamieson, Robert Nowak, and Ben Recht. Query complexity of derivative-free optimization.
Advances in Neural Information Processing Systems, 25, 2012.

Shuoran Jiang, Qingcai Chen, Youchen Pan, Yang Xiang, Yukang Lin, Xiangping Wu, Chuanyi Liu,
and Xiaobao Song. Zo-adamu optimizer: Adapting perturbation by the momentum and uncertainty
in zeroth-order optimization, 2023.

11

https://doi.org/10.1137/0719025
https://doi.org/10.1137/0719025
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://github.com/facebookresearch/fairscale
https://proceedings.mlr.press/v97/ghorbani19b.html
https://api.semanticscholar.org/CorpusID:58669445
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Published as a conference paper at ICLR 2025

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=H1eA7AEtvS.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.
URL https://aclanthology.org/2021.acl-long.353.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report, 2023.

Hong Liu and Zhiyuan Li. Sophia: A scalable stochastic second-order opti-
mizer for language model pre-training. https://synthical.com/article/
17aca766-2012-4c7c-a0f4-5b785dadabf9, 4 2023.

Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signsgd via zeroth-order oracle.
In International Conference on Learning Representations, 2019a. URL https://api.
semanticscholar.org/CorpusID:108298677.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse mezo: Less
parameters for better performance in zeroth-order llm fine-tuning. arXiv preprint arXiv:2402.15751,
2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Jan R Magnus et al. The moments of products of quadratic forms in normal variables. Univ., Instituut
voor Actuariaat en Econometrie, 1978.

G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis. Improving the convergence of the
backpropagation algorithm using learning rate adaptation methods. Neural Comput., 11(7):
1769–1796, oct 1999. ISSN 0899-7667. doi: 10.1162/089976699300016223. URL https:
//doi.org/10.1162/089976699300016223.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=Vota6rFhBQ.

James Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, ICML’10, pp. 735–742, Madison,
WI, USA, 2010. Omnipress. ISBN 9781605589077.

Yurii Nesterov and B. T. Polyak. Cubic regularization of newton method and its global performance.
Math. Program., 108(1):177–205, aug 2006. ISSN 0025-5610.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: Layerwise
importance sampling for memory-efficient large language model fine-tuning, 2024.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks, 2014.

12

https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://aclanthology.org/2021.acl-long.353
https://synthical.com/article/17aca766-2012-4c7c-a0f4-5b785dadabf9
https://synthical.com/article/17aca766-2012-4c7c-a0f4-5b785dadabf9
https://api.semanticscholar.org/CorpusID:108298677
https://api.semanticscholar.org/CorpusID:108298677
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1162/089976699300016223
https://doi.org/10.1162/089976699300016223
https://openreview.net/forum?id=Vota6rFhBQ
https://openreview.net/forum?id=Vota6rFhBQ

Published as a conference paper at ICLR 2025

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Maxim Raginsky and Alexander Rakhlin. Information-based complexity, feedback and dynamics in
convex programming. IEEE Transactions on Information Theory, 57(10):7036–7056, 2011.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singularity
and beyond, 2017. URL https://openreview.net/forum?id=B186cP9gx.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In Sanjoy Dasgupta and
David McAllester (eds.), Proceedings of the 30th International Conference on Machine Learning,
volume 28 of Proceedings of Machine Learning Research, pp. 343–351, Atlanta, Georgia, USA,
17–19 Jun 2013. PMLR. URL https://proceedings.mlr.press/v28/schaul13.
html.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 4596–4604.
PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/shazeer18a.
html.

James C. Spall. A one-measurement form of simultaneous perturbation stochastic approximation.
Automatica, 33(1):109–112, jan 1997. ISSN 0005-1098. doi: 10.1016/S0005-1098(96)00149-5.
URL https://doi.org/10.1016/S0005-1098(96)00149-5.

J.C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approxi-
mation. IEEE Transactions on Automatic Control, 37(3):332–341, 1992. doi: 10.1109/9.119632.

Yan Sun, Tiansheng Huang, Liang Ding, Li Shen, and Dacheng Tao. Tezo: Empowering the low-
rankness on the temporal dimension in the zeroth-order optimization for fine-tuning llms. arXiv
preprint arXiv:2501.19057, 2025.

Qitao Tan, Jun Liu, Zheng Zhan, Caiwei Ding, Yanzhi Wang, Jin Lu, and Geng Yuan. Harmony
in divergence: Towards fast, accurate, and memory-efficient zeroth-order llm fine-tuning. arXiv
preprint arXiv:2502.03304, 2025.

Xinyu Tang. Effectively learning from data and generating data in differentially private machine
learning. PhD thesis, Princeton University, 2024.

Yujie Tang, Junshan Zhang, and Na Li. Distributed zero-order algorithms for nonconvex multiagent
optimization. IEEE Transactions on Control of Network Systems, 8(1):269–281, 2021. doi:
10.1109/TCNS.2020.3024321.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. ArXiv, abs/2302.13971, 2023. URL https://api.semanticscholar.org/
CorpusID:257219404.

A. T. Vakhitov, O. N. Granichin, and L. S. Gurevich. Algorithm for stochastic approximation with
trial input perturbation in the nonstationary problem of optimization. Autom. Remote Control,
70(11):1827–1835, nov 2009. ISSN 0005-1179. doi: 10.1134/S000511790911006X. URL
https://doi.org/10.1134/S000511790911006X.

Yilong Wang, Haishan Ye, Yong Liu, Guang Dai, Ivor Tsang, and Jingdong Wang. The advance-
ment in stochastic zeroth-order optimization: Mechanism of accelerated convergence of gaussian
direction on objectives with skewed hessian eigenvalues.

Zhongruo Wang, Krishnakumar Balasubramanian, Shiqian Ma, and Meisam Razaviyayn. Zeroth-
order algorithms for nonconvex minimax problems with improved complexities. arXiv preprint
arXiv:2001.07819, 2020.

Peng Xu, Fred Roosta, and Michael W. Mahoney. Newton-type methods for non-convex optimization
under inexact hessian information, 2019.

13

https://openreview.net/forum?id=B186cP9gx
https://proceedings.mlr.press/v28/schaul13.html
https://proceedings.mlr.press/v28/schaul13.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://doi.org/10.1016/S0005-1098(96)00149-5
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://doi.org/10.1134/S000511790911006X

Published as a conference paper at ICLR 2025

Zhewei Yao, Peng Xu, Farbod Roosta-Khorasani, and Michael W. Mahoney. Inexact non-convex
newton-type methods, 2018.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(12):10665–10673, May 2021. doi: 10.1609/aaai.v35i12.
17275. URL https://ojs.aaai.org/index.php/AAAI/article/view/17275.

Haishan Ye. Mirror natural evolution strategies, 2023.

Haishan Ye, Zhichao Huang, Cong Fang, Chris Junchi Li, and Tong Zhang. Hessian-aware zeroth-
order optimization for black-box adversarial attack, 2019.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=Syx4wnEtvH.

Matthew D. Zeiler. Adadelta: An adaptive learning rate method, 2012.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, San-
jiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 15383–15393. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/b05b57f6add810d3b7490866d74c0053-Paper.pdf.

Lin Zhang, Shaohuai Shi, and Bo Li. Eva: Practical second-order optimization with kronecker-
vectorized approximation. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=_Mic8V96Voy.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022a.

Yan Zhang, Yi Zhou, Kaiyi Ji, and Michael M. Zavlanos. A new one-point residual-feedback oracle
for black-box learning and control. Automatica, 136(C), feb 2022b. ISSN 0005-1098. doi:
10.1016/j.automatica.2021.110006. URL https://doi.org/10.1016/j.automatica.
2021.110006.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, and Tianlong Chen.
Revisiting zeroth-order optimization for memory-efficient LLM fine-tuning: A benchmark. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett,
and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 59173–59190. PMLR,
21–27 Jul 2024. URL https://proceedings.mlr.press/v235/zhang24ad.html.

Huaqin Zhao, Jiaxi Li, Yi Pan, Shizhe Liang, Xiaofeng Yang, Wei Liu, Xiang Li, Fei Dou, Tianming
Liu, and Jin Lu. Helene: Hessian layer-wise clipping and gradient annealing for accelerating
fine-tuning llm with zeroth-order optimization. arXiv preprint arXiv:2411.10696, 2024a.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection, 2024b.

14

https://ojs.aaai.org/index.php/AAAI/article/view/17275
https://openreview.net/forum?id=Syx4wnEtvH
https://proceedings.neurips.cc/paper_files/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://openreview.net/forum?id=_Mic8V96Voy
https://doi.org/10.1016/j.automatica.2021.110006
https://doi.org/10.1016/j.automatica.2021.110006
https://proceedings.mlr.press/v235/zhang24ad.html

Published as a conference paper at ICLR 2025

A RELATED WORKS

A.1 FIRST-ORDER OPTIMIZER USED IN LLMS

Optimization methods have consistently been a popular research domain, encompassing techniques
such as Gradient Descent (GD), Momentum, Adagrad (Duchi et al., 2011), ADADELTA (Zeiler,
2012), and Newton’s method, which have been instrumental in advancing fields like computer vision.
However, the emergence of large-scale models, characterized by their massive parameter counts and
intricate architectures, has challenged the efficacy of conventional optimization methods for training
tasks. Amidst this landscape, Adam (Kingma & Ba, 2015) has emerged as the preferred choice
for its ability to rapidly converge, making it particularly suitable for the training and fine-tuning
large models. Then AdamW (Loshchilov & Hutter, 2019) was proposed to add a weight decay
coefficient to alleviate over-fitting. Notwithstanding these advancements, a limitation persists with
these optimizers: they have an implicit batch size ceiling. Exceeding this threshold can provoke
extreme gradient updates, thus impeding the convergence rate of the models. This bottleneck is
particularly problematic in the context of large-model training, which typically necessitates substantial
batch sizes. To circumvent this constraint, LAMB (You et al., 2020) was devised to apply principled
layer-wise adaptation strategy to accelerate the training of large models employing large batches.

A.2 HESSIAN BASED FIRST-ORDER OPTIMIZER

Compared with first-order optimizers, second-order optimizer considers second-order information in
the process of gradient calculation. As a result, it has more abundant information to guide gradient
descent and is considered to be more promising. Previous studies utilized curvature information
to pre-condition the gradient (BROYDEN, 1970; Nesterov & Polyak, 2006; Conn et al., 2000).
Subsequently, Magoulas et al. (Magoulas et al., 1999) applied diagonal Hessian as the pre-conditioner,
which greatly promotes the landing of second-order optimizer in the field of deep learning. Martens
(Martens, 2010) approximated the Hessian with conjugate gradient. Schaul et al. (Schaul et al.,
2013) utilized diagonal Hessian to automatically adjust the learning rate of SGD during training.
Another work (Pascanu & Bengio, 2014) extended natural gradient descent to incorporate second
order information alongside the manifold information and used a truncated Newton approach for
inverting the metric matrix instead of using a diagonal approximation of it. EVA (Zhang et al.,
2023) proposed to use the Kronecker factorization of two small vectors to approximated the Hessian,
which significantly reduces memory consumption. AdaHessian (Yao et al., 2021) incorporates an
approximate Hessian diagonal, with spatial averaging and momentum to precondition the gradient
vector.

Although great progress has been made in the research of second-order optimizer, it has not been
widely used because of the extra computation and memory cost when gradient updating, and this
situation is extremely serious in the training of large language models. Based on the above dilemma,
recent works (Anil et al., 2021; George et al., 2018) proposed to offload Hessian computation to
CPUs and utilized ResNets and very large batch size to approximate the Fisher information matrix.
Sophia (Liu & Li, 2023) was the first to apply second-order optimizer and achieve a speed-up on
large language models in total compute successfully.

A.3 ZEROTH-ORDER OPTIMIZER

Zeroth-order optimization, is also known as derivative-free or black-box optimization. There have
been many one-point gradient estimators in past works (FairScale authors, 2021; Spall, 1997; Vakhitov
et al., 2009; Spall, 1992; Jamieson et al., 2012; Agarwal et al., 2009; Raginsky & Rakhlin, 2011;
Wang et al., 2020). However, cursory experiments with one such promising estimator (Zhang et al.,
2022b) reveal that SPSA outperforms other methods.

In previous works, it appears in a wide range of applications where either the objective function is
implicit or its gradient is impossible or too expensive to compute. For example, methods (Tang et al.,
2021; Hajinezhad & Zavlanos, 2018) consider derivative-free distributed algorithms for non-convex
multi-agent optimization. ZO-BCD(Cai et al., 2021), ZOO(Chen et al., 2017), ZO-signSGD (Liu
et al., 2019a) and ZO-HessAware (Ye et al., 2019) utilize zeroth-order stochastic optimization to
generate black-box adversarial example in deep learning.

15

Published as a conference paper at ICLR 2025

Beyond that, MeZO (Malladi et al., 2023) firstly adapted the classical ZO-SGD method to fine-tune
LLMs, while achieving comparable performance with extremely great memory reduction and GPU-
hour reduction. Recently there have been many subsequent excellent works (Jiang et al., 2023; Zhao
et al., 2024a; Liu et al., 2024; Guo et al., 2024; Tang, 2024; Chen et al., 2024; Wang et al.; Chen
et al., 2025a; Tan et al., 2025; Chen et al., 2025b; Sun et al., 2025). All of these optimizers provide
researchers with a new and promising technique for fine-tuning large models.

B DETAILED CONVERGENCE ANALYSIS

Firstly, our convergence analysis requires the following assumptions:

Assumption B.1. The objective function L(θ) is L-smooth, which means that for any θ1, θ2 ∈ Rd,
it holds that:

L(θ2) ≤ L(θ1) + ⟨∇L(θ1), θ2 − θ1⟩+
L

2
∥θ2 − θ1∥2. (9)

Assumption B.2. The stochastic gradient∇L(θ) has σ2 variance, which means:

E
[
∥∇L(θ)−∇L(θ)∥2

]
≤ σ2. (10)

Assumption B.3. Each entry of Σt lies in the range [βℓ, βu] with 0 < βℓ ≤ βu.

Then we will give the detailed proof for convergence.

Proof. By the update rule of θt and Assumption B.1, we have

E [L(θt+1) | θt]

≤L(θt)− ηtE [⟨∇L(θt), gµ(θt)⟩] +
Lη2t
2

E
[
∥gµ(θt)∥2

]
≤L(θt)− ηt∥∇L(θt)∥2Σt

+ ηtO (µ∥∇L(θt)∥)
+ 2η2tL (tr(Σt) + βu) ∥∇L(θt)∥2Σt

+ 2η2tL (tr(Σt) + βu)σ
2 +O(µ2)

≤L(θt)−
ηt
2
∥∇L(θt)∥2Σt

+ 2η2tL (tr(Σt) + βu) ∥∇L(θt)∥2Σt

+ 2η2tL (tr(Σt) + βu)σ
2 +O(µ2)

=L(θt)−
ηt
2
(1− 4ηtL(tr(Σt) + βu)) ∥∇L(θt)∥2Σt

+ 2η2tL (tr(Σt) + βu)σ
2 +O(µ2)

≤L(θt)−
ηt
4
∥∇L(θt)∥2Σt

+ 2η2tL (tr(Σt) + βu)σ
2 +O(µ2),

where the second inequality is because of Lemma B.4 and the last inequality is because of the value
of ηt.

Rearrange above equation and summing up it, we can obtain that

E

[
T∑

t=1

ηt
4
∥∇L(θt)∥2Σt

]
≤

T∑
t=1

(L(θt)−L(θt+1))

+ 2η2tL (tr(Σt) + βu)σ
2 +O(Tµ2)

=L(θ1)−L(θT+1) + 2η2tL (tr(Σt) + βu)σ
2 +O(Tµ2)

≤L(θ1)−L(θ∗) + 2η2tL (tr(Σt) + βu)σ
2 +O(Tµ2).

16

Published as a conference paper at ICLR 2025

By taking θout = θj with j uniformly sampled from {1, . . . , T} and taking expectation, we can
obtain that

E
[
∥∇L(θout)∥2

]
=

1

T

T∑
t=1

∥∇L(θt)∥2 ≤
1

Tβℓ

T∑
t=1

∥∇L(θt)∥2Σt

≤4(L(θ1)−L(θ∗))

Tβℓη
+

8ηL (tr(Σt) + βu)

Tβℓ
σ2 +O(µ2)

=
32L (tr(Σt) + βu) (L(θ1)−L(θ∗))√

Tβℓ

+
σ2

T 3/2βℓ
+O

(
µ2

)
,

where the first inequality is because of the assumption that the diagonal entries of Σt is no less than
βℓ,

Eq. equation 7 shows that once we choose the step size η properly, L(θt+1) will be less than
L(θt) in expectation up to some noises of order µ2. Specifically, if set η = 1

8
√
TL(maxt tr(Σt)+βu)

,

Eq. equation 8 implies that we can find an solution θout such that E
[
∥∇L(θout)∥2

]
≤ ϵ2 in O(ϵ−4)

iterations. This rate matches the one of (Ghadimi & Lan, 2013).
Lemma B.4. We assume that Assumption B.2 and Assumption B.3 hold. Then, gµ(θt) defined in
Eq. equation 6 has the following properties:

E [gµ(θt)] = Σt∇L(θt) +O(µ)
E
[
∥gµ(θt)∥2

]
≤ 4 (tr(Σt) + βu) ∥∇L(θt)∥2Σt

+ 4βu (tr(Σt) + βu)σ
2 +O(µ2).

Proof. By the definition of gµ(θt), we have

gµ(θt)

=

b∑
i=1

L(θt + µΣ
1/2
t ui)−L(θt − µΣ

1/2
t ui)

2bµ
Σ

1/2
t ui

=

b∑
i=1

2µ∇⊤L(θt)Σ
1/2
t ui +O(µ2)

2bµ
Σ

1/2
t ui

=
1

b

b∑
i=1

Σ
1/2
t uiu

⊤
i Σ

1/2
t ∇L(θt) +O(µ).

Thus, we can obtain that

E [gµ(θt)] = Σt∇L(θt) +O(µ). (11)

Moreover,

E
[
∥gµ(θt)∥2

]
=E

[
∥1
b

b∑
i=1

Σ
1/2
t uiu

⊤
i Σ

1/2
t ∇L(θt) +O(µ)∥2

]

≤2E

[
∥1
b

b∑
i=1

Σ
1/2
t uiu

⊤
i Σ

1/2
t ∇L(θt)∥2

]
+O(µ2)

≤2

b

b∑
i=1

E
[
∥Σ1/2

t uiu
⊤
i Σ

1/2
t ∇L(θt)∥2

]
+O(µ2)

=2tr(Σt) · ∇⊤L(θt)Σt∇L(θt)

+ 2∇⊤L(θt)Σ
2
t∇L(θt) +O(µ2)

≤2 (tr(Σt) + βu)∇⊤L(θt)Σt∇L(θt) +O(µ2),

17

Published as a conference paper at ICLR 2025

where the last equality is because of Lemma B.5.

Finally, we have

E
[
∇⊤L(θt)Σt∇L(θt)

]
= E

[
∥∇L(θt)∥2Σt

]
≤2E

[
∥∇L(θt)∥2Σt

]
+ 2E

[
∥∇L(θt)−∇L(θt)∥2Σt

]
≤2∥∇L(θt)∥2Σt

+ 2βuE
[
∥∇L(θt)−∇L(θt)∥2

]
≤2∥∇L(θt)∥2Σt

+ 2βuσ
2,

where the second inequality is because of Assumption B.3 and the last inequality is because of
Assumption B.2.

Therefore,

E
[
∥gµ(θt)∥2

]
≤ 4 (tr(Σt) + βu) ∥∇L(θt)∥2Σt

+ 4βu (tr(Σt) + βu)σ
2.

Lemma B.5. (Magnus et al., 1978) Let A and B be two symmetric matrices, and u obeys the
Gaussian distribution, that is, u ∼ N(0, Id). Define z = u⊤Au · u⊤Bu. The expectation of z is:

Eu[z] = (trA)(trB) + 2tr(AB). (12)

C TEST FUNCTIONS OF THE OPTIMIZATION TRAJECTORIES

For better illustrating how HiZOO utilizes hessian to improve the convergence process, we choose
below three test functions with heterogeneous curvatures across different parameters. In Figure 8, we
provide the 2D convergence paths of three functions and the variation of their losses with respect to
steps.

• Function (a): f(x, y) = 8(x− 1)2(1.3x2 + 2x+ 1) + 0.5(y − 4)2

• Function (b): f(x, y) = |x|+ |y|
• Function (c): f(x, y) = 10000x2 + y2

Figure 8: 2D trajectories of Adam, MeZO and HiZOO on 3 test functions. The upper figures are the
2D trajectories of gradient descent, and the bottom parts are the corresponding loss curves.

Function (a) is from (Liu & Li, 2023).

18

Published as a conference paper at ICLR 2025

D HIZOO VARIANTS

D.1 HIZOO-L

Due to the storage of Hessian, HiZOO introduces extra memory cost, which is equal to the size of the
model parameters. To address this limitations, we propose HiZOO-L, the low-rank implementation
for the storage of Hessian, motivated by Adafactor (Shazeer & Stern, 2018). Details can be see in
Algorithm 2. We also visualize the loss curves of HiZOO and HiZOO-L in Figure 9 and find that
on most datasets two algorithms perform closely. This also indicates that the estimation of Hessian
in HiZOO may be sparse, so we encourage researchers to try other memory efficient algorithms to
compress the Hessian.

Algorithm 2 HiZOO-L
Require: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale µ, learning rate

schedule ηt, smooth scale αt, diagonal Hessian R0, C0

1: for t = 1, ..., T do
2: Sample batch B ⊂ D and random seed s
3: ℓ← L(θ;B)
4: θ← PerturbParameters(θ, µ, Rt−1, Ct−1, s)
5: ℓ+ ← L(θ;B)
6: θ← PerturbParameters(θ, −2µ, Rt−1, Ct−1, s)
7: ℓ− ← L(θ;B)
8: θ← PerturbParameters(θ, µ, Rt−1, Ct−1, s) ▷ Reset parameters before descent
9: Σ̂−1

t−1 = (Rt−1 ∗ Ct−1)/(1
⊤
n ∗Rt−1)

10: Σ̂′
t =

1
2µ2 (ℓ+ + ℓ− − 2ℓ)(Σ̂

−1/2
t−1 uiu

⊤
i Σ̂

−1/2
t−1)

11: R−1
t = (1− αt)R

−1
t−1 + αt

∣∣∣diag(Σ̂′
t)
∣∣∣ ∗ 1m

12: C−1
t = (1− αt)C

−1
t−1 + αt1

⊤
n ∗

∣∣∣diag(Σ̂′
t)
∣∣∣

13: projected_grad← (ℓ+ − ℓ−) ∗ Σ̂1/2
t /2µ

14: Reset random number generator with seed s ▷ For sampling ui

15: for θi ∈ θ do
16: Sample ui ∼ N (0, Id)
17: θi ← θi − ηt∗ projected_grad ∗ui

18: end for
19: end for

20: function PERTURBPARAMETER(θ, µ, Rt, Ct, s)
21: Reset random number generator with seed s ▷ For sampling ui

22: for θi ∈ θ do
23: Sample ui ∼ N (0, Id)

24: Σ̂−1
t = (Rt ∗ Ct)/(1

⊤
n ∗Rt)

25: θi ← θi + µΣ̂
1/2
t ui ▷ Modify parameters in place

26: end for
27: return θ
28: end function

D.2 HIZOO-MULTI

There is a rich history of transferring ideas from first order optimization to enhance ZO algorithms.
Below, we highlight the variant of HiZOO: HiZOO-multi which can perform n estimation times
per step efficiently as shown in Algorithm 3. We conducted experiments to explore the influence
of estimation times n per step as shown in Figure 16. We can conclude that when n is larger, the
estimation of diagonal Hessian is more accurate. It can decrease the variance of the estimated diagonal
Hessian matrix during each step and thus reduce the overall training steps, but will cause much more
computation per step meanwhile. So choosing an appropriate value of n is very important during the
training.

19

Published as a conference paper at ICLR 2025

Figure 9: Loss curves on Llama3 between HiZOO and HiZOO-L.

Algorithm 3 HiZOO-multi
Require: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale µ, batch size B,

learning rate schedule ηt, smooth scale αt, estimate times n, Hessian matrix Σ0

1: for t = 1, ..., T do
2: seeds, projected_grads← []
3: for j = 1, ..., n do
4: Sample batch B ⊂ D and random seed s
5: ℓ← L(θ;B)
6: θ← PerturbParameters(θ, µ, Σ1/2

t−1, s)
7: ℓ+ ← L(θ;B)
8: θ← PerturbParameters(θ, −2µ, Σ1/2

t−1, s)
9: ℓ− ← L(θ;B)

10: θ← PerturbParameters(θ, µ, Σ1/2
t−1, s) ▷ Reset parameters before descent

11: Σ′
t =

1
2µ2 (ℓ+ + ℓ+ − 2ℓ)(Σ

−1/2
t−1 uiu

⊤
i Σ

−1/2
t−1)

12: Σ−1
t = (1− αt)Σ

−1
t−1 + αt |diag(Σ′

t)| ▷ Update Hessian matrix
13: projected_grad← (ℓ+ − ℓ−) ∗ Σ1/2

t /2µ
14: projected_grads[j]← projected_grad
15: seeds[j]← s
16: end for
17: end for
18: for j = 1, ..., n do
19: Reset random number generator with seeds[j]
20: for θi ∈ θ do
21: ui ∼ N (0, Id)
22: θi ← θi − (ηt/n)∗projected_grads[j] ∗ui ▷ Avg grad for u1, ..., un

23: end for
24: end for

25: function PERTURBPARAMETER(θ, µ, Σ1/2
t ,s)

26: Reset random number generator with seed s
27: for θi ∈ θ do
28: ui ∼ N (0, Id)

29: θi ← θi + µΣ
1/2
t ui ▷ Modify parameters in place

30: end for
31: return θ
32: end function

20

Published as a conference paper at ICLR 2025

E EXPERIMENTS ON LLMS

E.1 DETAILED EXPERIMENTS ON ROBERTA-LARGE

We use the hyperparameters in Table 6 for HiZOO experiments on RoBERTa-large. Regarding
learning rate scheduling and early stopping, we use constant learning rate for all HiZOO experiments.

Table 6: The hyperparameter grids used for RoBERTa-large experiments. HiZOO uses a constant
learning rate schedule. All HiZOO experiments use 100K steps.

Experiment Hyperparameters Values

HiZOO Batch size 64
Learning rate {1e−7, 1e−6, 1e−5}

µ 1e−3
Weight Decay 0

HiZOO(prefix) Batch size 64
Learning rate {1e−2, 5e−3, 1e−3}

µ 1e−1
Weight Decay 0

prefix tokens 5

HiZOO(LoRA) Batch size 64
Learning rate {1e−5, 5e−5, 1e−4}

µ 1e−3
Weight Decay 0.1

(r, α) (8, 16)

Table 7: Experiments on RoBERTa-large (350M parameters, k=512). For MeZO we report the results
we reproduced.

Task Type SST-2 SST-5 SNLI MNLI RTE TREC Average
—— sentiment —— —— natural language inference —— — topic —

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0 49.5
LP 91.3 (±0.5) 51.7 (±0.5) 80.9 (±1.0) 71.5 (±1.1) 73.1 (±1.5) 89.4 (±0.5) 76.3

FT 91.9 (±1.8) 47.5 (±1.9) 77.5 (±2.6) 70.0 (±2.3) 66.4 (±7.2) 85.0 (±2.5) 73.1
FT (LoRA) 91.4 (±1.7) 46.7 (±1.1) 74.9 (±4.3) 67.7 (±1.4) 66.1 (±3.5) 82.7 (±4.1) 71.6
FT (prefix) 91.9 (±1.0) 47.7 (±1.1) 77.2 (±1.3) 66.5 (±2.5) 66.6 (±2.0) 85.7 (±1.3) 72.6

MeZO 93.3 (±0.7) 53.2 (±1.4) 83.0 (±1.0) 78.3 (±0.5) 78.6 (±2.0) 94.3 (±1.3) 80.1
MeZO (LoRA) 90.5 (±0.6) 45.4(±1.1) 64.6(±1.2) 62.1(±0.9) 61.1(±1.8) 80.8(±1.5) 67.4
MeZO (prefix) 93.3 (±0.1) 53.6 (±0.5) 82.9 (±1.1) 75.6 (±1.2) 77.2 (±0.8) 88.2 (±0.7) 78.4

HiZOO 95.5 (±0.4) 53.2 (±0.9) 82.6 (±0.7) 77.7 (±0.6) 80.0 (± 1.5) 94.6 (±1.1) 80.6
HiZOO (LoRA) 91.7 (±0.3) 45.3 (±0.7) 76.5 (±0.3) 63.1 (±0.6) 70.4 (±1.4) 85.6 (±1.5) 72.1
HiZOO (prefix) 96.1 (±0.2) 54.2 (±0.4) 85.7 (±0.7) 79.7 (±1.0) 77.3 (±0.2) 93.9 (±0.6) 81.2

Figure 10: Loss curves on RoBERTa-large between MeZO and HiZOO.

In Table 7 we show the full experiment results. Additionally, we plot more loss curves to compare
with MeZO. As shown in Figure 10, we can see that HiZOO can greatly accelerate the training
process over MeZO, which verifies the robustness of HiZOO.

21

Published as a conference paper at ICLR 2025

Figure 11: Accuracy curves on RoBERTa-large between MeZO and HiZOO.

E.2 DETAILED RESULTS ON VARIOUS LLMS

We use the hyperparameters in Table 8 for HiZOO experiments on OPT. Full results for OPT-30B
and OPT-66B are in Table 9. We also provide the relative loss curves of fine-tuning OPT family
in Figure 12. We provide several loss curves of fine-tuning Phi-2(2.7B) and Llama3(8B) in Figure 13
and Figure 14.

Table 8: The hyperparameter grids used for OPT experiments. All weight decay is set to 0. HiZOO
uses 20K steps and constant learning rates.

Experiment Hyperparameters Values

HiZOO Batch size 16
Learning rate {1e−6, 5e−7, 1e−7}

µ 1e−3

HiZOO(prefix) Batch size 16
Learning rate {5e−2, 1e−2, 5e−3}

µ 1e−1
prefix tokens 5

HiZOO(LoRA) Batch size 16
Learning rate {1e−4, 5e−5, 1e−5}

µ 1e−2
(r, α) (8, 16)

FT with Adam Batch size 8
Learning Rates {1e−5, 5e−5, 8e−5}

Table 9: Experiments on OPT-30B and OPT-66B(with 1000 examples). The best results are
highlighted in bold for better comparison. We highlight the best results between HiZOO and MeZO
in bold to facilitate comparison.

Task SST-2 RTE WSC WIC
30B zero-shot 56.7 52.0 38.5 50.2
30B ICL 81.9 66.8 56.7 51.3
30B MeZO 90.6 66.4 63.5 48.9
30B MeZO(prefix) 87.5 66.1 55.8 59.1

30B HiZOO 90.3 69.3 63.5 53.4
30B HiZOO(prefix) 91.2 68.6 57.7 60.2

66B zero-shot 57.5 67.2 43.3 50.6
66B ICL 89.3 65.3 52.9 54.9
66B MeZO(prefix) 93.6 66.4 57.7 58.6

66B HiZOO(prefix) 93.6 71.5 60.6 61.1

22

Published as a conference paper at ICLR 2025

Figure 12: Loss curves on OPT between MeZO and HiZOO.

Figure 13: Loss curves on Phi-2 between MeZO and HiZOO.

Figure 14: Loss curves on Llama3 between MeZO and HiZOO.

F DETAILS ABOUT MEMORY USAGE

Here we show the detailed numbers of memory profiling results Table 10. We did not turn on any
advance memory-saving options, e.g., gradient checkpointing. We set the per-device batch size as 1
to test the minimum hardware requirement to run the model with specific optimization algorithms.
We use Nvidia’s nvidia− smi command to monitor the GPU memory usage.

Table 10: Memory usage on the MultiRC (average tokens=400) dataset. Results of ICL and full-
parameter tuning are from MeZO(Malladi et al., 2023).

Method zero-shot/MeZO(FT) HiZOO(FT) HiZOO-L(FT) ICL Adam(FT)
1.3B 1xA100 (4GB) 1xA100 (7GB) 1xA100 (4GB) 1xA100 (6GB) 1xA100 (27GB)
2.7B 1xA100 (7GB) 1xA100 (13GB) 1xA100 (8GB) 1xA100 (8GB) 1xA100 (55GB)
6.7B 1xA100 (14GB) 1xA100 (29GB) 1xA100 (15GB) 1xA100 (16GB) 2xA100 (156GB)
13B 1xA100 (26GB) 1xA100 (53GB) 1xA100 (29GB) 1xA100 (29GB) 4xA100 (316GB)
30B 1xA100 (58GB) 2xA100 (118GB) 1xA100 (64GB) 1xA100 (62GB) 8xA100 (633GB)
66B 2xA100 (128GB) 3xA100 (246GB) 2xA100 (140GB) 2xA100 (134GB) 16xA100

G DETAILS ABOUT WALLCLOCK TIME EFFICIENCY

In this section, we measure the wallclock time efficiency of HiZOO compared to MeZO and full-
parameter fine-tuning (FT) with respect to different model sizes. Due to the lack of NV-Link

23

Published as a conference paper at ICLR 2025

connectivity in our A100 GPUs, we selected models that can be fully fine-tuned on a single A100
GPU for comparison. As shown in Table 11, HiZOO exhibits a longer per-step duration compared
to MeZO, within a 50% margin. This result indicates that the primary overhead in hierarchical
optimization methods lies in the forward propagation process. Given that HiZOO involves an
additional forward pass compared to MeZO, the time per step increases by approximately 1.4 to 1.5
times.

In conclusion, the speedup factors derived from the forward pass step used in our comparisons
between HiZOO and MeZO reflect the actual wallclock time efficiency improvements accurately.

Table 11: Wallclock time per step between MeZO, HiZOO and HiZOO-L. The increase in wallclock
time per step for HiZOO compared to MeZO is less than 1.5 times across different model sizes. To
avoid introducing additional overheads such as inter-GPU communication, results are measured on
the same dataset (SST-2) and GPUs (80GB A100), with each result averaged over 100 steps. "BS"
refers to batch size. For the relatively smaller RoBERTa-large model, we used a BS=64, while for
models larger than 1B parameters, we used a BS=16.

Model RoBERTa-large(350M) Phi-2(2.7B) Llama3(8B) OPT(13B)
MeZO 0.2092s(BS=64) 0.3011s(BS=16) 0.7471s(BS=16) 1.1108s(BS=16)
HiZOO 0.3023s(BS=64) 0.4486s(BS=16) 1.1090s(BS=16) 1.5225s(BS=16)
HiZOO-L 0.3193s(BS=64) 0.4851s(BS=16) 1.1996s(BS=16) 1.6422s(BS=16)

H DETAILS ABOUT ABLATION EXPERIMENTS

H.1 INFLUENCE OF SMOOTH SCALE αt AND NUMBER OF ESTIMATION n PER STEP

We conducted experiments on SST-2, SST-5, MNLI datasets when fine-tuning RoBERTa-large to
research the influence of smooth scale αt. Figure 15 shows that the value of αt mainly affects the
convergence speed of the model. Additionally, the best value of αt will vary between different
datasets. Figure 16 shows that the influence of the number of estimation n per steps.

(a) (b) (c)

Figure 15: More experiments on influence of the value of Smooth scale αt on RoBERTa.

Figure 16: Influence of number of estimation per step. (left) 2D trajectories of gradient descent;
(right) Corresponding loss curves.

24

Published as a conference paper at ICLR 2025

H.2 EXPERIMENTS ABOUT OMITTING [−Σ−1] TERM IN EQ. EQUATION 4

We conducted experiments on SST-2 datasets using three methods to fine-tune RoBERTa-large to
compare the difference between with [−Σ−1] term and without this term. Figure 17 shows that this
term can make negligible influence.

(a) (b) (c)

Figure 17: Experiment about the error generate by omitting the [−Σ−1] term in Eq equation 4. ’with’
means holding the term and ’without’ means omitting the term.

25

	Introduction
	Related Works
	Methods
	Preliminaries
	Hessian Informed Zeroth-Order Optimization
	Diagonal Hessian Estimator
	Convergence Analysis
	Visualization of HiZOO on Test Functions

	Experiments
	Masked Language Models
	Auto-Regressive Language Models
	Training with Non-Differentiable Objectives
	Memory Usage and Time Efficiency Analysis
	Comparison with other ZO variants
	Hyperparameter Analysis

	Conclusion
	Related Works
	First-order Optimizer Used in LLMs
	Hessian Based First-Order Optimizer
	Zeroth-Order Optimizer

	Detailed Convergence Analysis
	Test Functions of the optimization trajectories
	HiZOO Variants
	HiZOO-L
	HiZOO-multi

	Experiments on LLMs
	Detailed Experiments on RoBERTa-large
	Detailed results on various LLMs

	Details about Memory Usage
	Details about Wallclock Time Efficiency
	Details about Ablation Experiments
	Influence of Smooth Scale t and number of estimation n per step
	Experiments about Omitting [--1] term in Eq. equation 4

