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Abstract

Auction-based Federated Learning (AFL) has
emerged as an important research field in recent
years. The prevailing strategies for FL data con-
sumers (DCs) assume that the entire team of the
required data owners (DOs) for an FL task must
be assembled before training can commence. In
practice, a DC can trigger the FL training pro-
cess multiple times. DOs can thus be gradu-
ally recruited over multiple FL model training
sessions. Existing bidding strategies for AFL
DCs are not designed to handle such scenarios.
Therefore, the problem of multi-session AFL re-
mains open. To address this problem, we propose
the Multi-session Budget Optimization Strategy
for forward Auction-based Federated Learning
(MBOS-AFL). Based on hierarchical reinforce-
ment learning, MBOS-AFL jointly optimizes inter-
session budget pacing and intra-session bidding
for AFL DCs, with the objective of maximizing
the total utility. Extensive experiments on six
benchmark datasets show that it significantly out-
performs seven state-of-the-art approaches. On
average, MBOS-AFL achieves 12.28% higher util-
ity, 14.52% more data acquired through auctions
for a given budget, and 1.23% higher test accuracy
achieved by the resulting FL model compared to
the best baseline. To the best of our knowledge, it
is the first budget optimization decision support
method with budget pacing capability designed
for DCs in multi-session forward AFL.
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Figure 1. An overview of auction-based federated learning (AFL).

1. Introduction
Federated Learning (FL) (Fan et al., 2025; Rendle, 2012;
Yang, 2020; Meng et al., 2024) has gained great attention for
its ability to safeguard data privacy and user confidentiality
in both academia (Qi et al., 2025b;a; Tang et al., 2024c)
and industry (Sun et al., 2024). Traditional FL approaches
often assume that data owners (DOs), also known as FL
clients, are willing participants in FL tasks, assisting data
consumers (DCs), or FL servers, in training models. How-
ever, this assumption may not always hold in practice, as
DOs often weigh their participation against self-interest
and cost-benefit considerations. To address this challenge,
auction-based Federated Learning (AFL) has emerged as
a promising solution (Jiao et al., 2019; Deng et al., 2021;
Zhang et al., 2021; He et al., 2024).

As shown in Fig. 1, the key participants in AFL are the auc-
tioneer, DOs, and DCs. The data trading process between
DOs and DCs is modeled as an auction, coordinated by the
auctioneer. The auctioneer facilitates the flow of asking
prices from DOs and bid prices from DCs. After receiving
the bids, the auctioneer consolidates the results, notifies
participants of the match-making outcomes, and determines
the auction winners. Through these auction processes, DCs
recruit DOs for FL training tasks. Once FL teams (i.e., DOs
recruited for the FL training tasks) are formed, DCs proceed
with the FL model training following standard FL protocols.

AFL methods can be divided into three categories (Tang
et al., 2024a; Tang & Yu, 2023c): 1) data owner-oriented
(DO-oriented), 2) auctioneer-oriented, and 3) data consumer-
oriented (DC-oriented). DO-oriented AFL methods focus
on helping DOs determine the amount of resources to com-
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mit to FL tasks, and set their respective reserve prices for
profit maximization. Auctioneer-oriented AFL methods in-
vestigate how to optimally match DOs with DCs as well as
provide the necessary governance oversight to ensure desir-
able operational objectives can be achieved (e.g., fairness,
social cost minimization (Zhang et al., 2023)). DC-oriented
AFL methods examine how to help DCs select which DOs
to bid and for how much, in order to optimize key perfor-
mance indicators (KPIs) within budget constraints, possibly
in competition with other DCs.

This paper focuses on DC-oriented AFL, helping DCs bid
for DOs. The prevailing methods in this domain require that
the budget of a DC shall be maximally spent to recruit the
entire team of necessary DOs before FL model training can
commence (Tang & Yu, 2023b; Tang et al., 2024b; Tang &
Yu, 2023a). In practice, throughout the FL model training
process, a DC can recruit DOs over multiple training ses-
sions. This is especially useful in continual FL (Yoon et al.,
2021; Pan et al., 2016) settings where DOs’ local data are
continuously updated over time. Existing AFL approaches
designed to optimize KPIs within a single auctioning session
cannot be directly applied in multi-session AFL scenarios,
especially in scenarios with multiple DCs competing to bid
for DOs from a common pool of candidates. This is pri-
marily due to the limitation that they are unable to perform
budget pacing, which pertains to the strategic dispersion of
a limited overall budget across multiple AFL sessions to
achieve optimal KPIs over a given time frame.

To address this issue, we propose the Multi-session Budget
Optimization Strategy for forward Auction-based Federated
Learning (MBOS-AFL). It is designed to empower a DC
with the ability to dynamically allocate its limited budget
over multiple AFL DO recruitment sessions, and then opti-
mize the distribution of budget for each session among DOs
through effective bidding. The ultimate goal is to maximize
the DC’s winning utility. MBOS-AFL is grounded in Hierar-
chical Reinforcement Learning (HRL) (Pateria et al., 2021)
to effectively deal with the intricate decision landscape and
the absence of readily available analytical remedies. Specif-
ically, MBOS-AFL consists of two agents for each DC: 1)
the Inter-Session Budget Pacing Agent (InterBPA), and
2) the Intra-Session Bidding Agent (IntraBMA). For each
auctioning session, each DC’s InterBPA opportunistically
determines how much of the total budget shall be spent in
this session based on jointly considering the quantity and
quality of the currently available candidate DOs, as well as
bidding outcomes from previous sessions. Then, the DC’s
IntraBMA determines the bid price for each data resource
offered by DOs in the AFL market within the session budget.

To our best knowledge, MBOS-AFL is the first budget op-
timization decision support method with budget pacing ca-
pability designed for DCs in multi-session forward auction-

based FL. Extensive experiments on six benchmark datasets
show that it significantly outperforms seven state-of-the-
art approaches. On average, MBOS-AFL achieves 12.28%
higher utility, 14.52% more data acquired through auctions
for a given budget, and 1.23% higher test accuracy achieved
by the resulting FL model compared to the best baseline.

2. Related Work
Existing methods for DC-oriented issues can be further
divided into two subcategories (Tang, 2024; Tang & Yu,
2025): i) reverse auction-based methods, and ii) forward
auction-based methods.

Reverse Auction-based Methods: Developed primarily for
monopoly AFL markets where there is only one DC facing
multiple DOs, reverse auction-based methods like (Deng
et al., 2021; Zhang et al., 2021; Jiao et al., 2020; Zeng et al.,
2020; Tang & Yu, 2024c; Le et al., 2020; Thi Le et al., 2021)
address the challenge of DO selection through reverse auc-
tions. The key idea of these methods is to optimally resolve
the DO selection problem, targeting the maximization of
KPIs specific to the target DC. Particularly relevant in sce-
narios where disparate DOs vie for the attention of a sole
DC, these methods have progressed by integrating diverse
mechanisms such as graph neural networks, blockchains,
and reputation assessment.

Forward Auction-based Methods: These methods are
designed for situations where multiple DCs compete for
the same pool of DOs (Tang & Yu, 2023b; 2024a; 2023a;
2024b; Tang et al., 2024b). The key idea of these methods
lies in determining the optimal bidding strategy for DCs.
The goal is to maximize model-specific key performance
indicators. A notable example is Fed-Bidder (Tang & Yu,
2023b) which assists DCs to determine their bids for DOs.
It leverages a wealth of auction-related insights, encompass-
ing aspects like DOs’ data distributions and suitability to
the task, DCs’ success probabilities in ongoing auctions
and budget constraints. However, this method ignores the
complex relationships among DCs, which are both competi-
tive and cooperative. To deal with this issue, (Tang & Yu,
2023a) models the AFL ecosystem as a multi-agent system
to steer DCs to bid strategically toward an equilibrium with
desirable overall system characteristics.

MBOS-AFL falls into the forward auction-based methods
category. Distinct from existing methods which focus on
optimizing the objectives within a single auctioning session,
it is designed to solve the problem of multi-session AFL
budget optimization.
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3. Preliminaries
AFL Market: Generally, an AFL market consists of three
types of participants (Tang et al., 2024a): 1) Data Owners
(DOs): entities possessing potentially sensitive yet valuable
data, who are willing to share or sell access to their data
resources for FL task training in exchange for appropriate
compensation. 2) Data Consumers (DCs): organizations or
individuals requiring data to train their machine learning
models via FL. 3)Auctioneer: a trusted third-party entity
orchestrating the auction process between DOs and DCs. It
facilitates the exchange of data resources for FL training
tasks through an auction mechanism, such as the Second-
Price Sealed-Bid (SPSB) auction (Yang et al., 2023).

When a DO is ready to offer its services for FL task training,
it notifies the auctioneer, specifying its bid request and the
reserve price.1 The auctioneer then announces the auction
to all DCs currently participating in the AFL market. Any
DC whose required the corresponding data resources aligns
with the DO’s offering submits a bid for the auction.

Multi-Session Budget Constrained AFL Bidding: During
the course of FL model training, a DC can initiate the FL
training procedure (i.e., a training session) on multiple occa-
sions, with the aim of recruiting DOs to improve model per-
formance. Consider the scenario of multiple banks engaging
in FL. The dynamic nature of user data within these banks
sets in motion a perpetual cycle of updates, with continually
refreshed data stored locally by each bank. As a result, these
banks systematically engage in repeated sessions of feder-
ated model training periodically, during which the standard
FL training protocol is followed. Let S denote the number
of training sessions for the target DC, who has a budget B
for all training sessions [S]. In each FL training session s
(s ∈ [S]), there are Cs available qualified DOs, which can
help train the FL model of the target DC. Each DO i ∈ [Cs]

possesses a private dataset Di = {(xj , yj)}|Di|
j=1 .

Following (Tang & Yu, 2023b), we assume that each DO
i become gradually available over time. Each DO i can
trigger the following auction process: 1) Bid Request Initi-
ation: DO i ∈ [Cs] generates a bid request about itself (e.g.,
identity, data quantity, etc.) and sends it along with the the
reserve price (i.e., the lowest price it is willing to accept for
selling the corresponding resources (Vincent, 1995)) to the
auctioneer. 2) Bid Request Dissemination: The auctioneer
disseminates the received bid request to the relevant DCs
whose FL tasks are relevant to the data resources of the DO
being auctioned. 3) Bidding Response: Each relevant DC
evaluates the potential value and cost of the received bid
request, and decides on a bid price based on its bidding
strategy. The DCs submit their bids to the auctioneer. When

1Following (Tang & Yu, 2023b), we assume that DOs arrive
and make their bid requests sequentially, one after the other.

a DC has exhausted its budget, it will forfeit future auc-
tions. 4) Outcome Determination: Upon receiving bids
from relevant DCs, the auctioneer determines the winning
price based on an auction mechanism. It then compares the
winning price with the reserve price set by each DO. If the
winning price is lower than the reserve price, the auctioneer
terminates the auction and informs the DO to initiate another
auction for the same resources. Otherwise, the auctioneer
informs the winning DC about the cost (i.e., the winning
price) it needs to pay, informs the losing DCs, and informs
the DO about the winning DC it shall join.

When the auctioning process for session s has been com-
pleted or the DC has exhausted its budget, it initiates FL
model training with the recruited DOs. Each DC pays the
corresponding market prices to the DOs it has recruited.

FL with Recruited DOs: After the auction-based DO re-
cruitment process, the DC triggers the FL training process
with the recruited DOs in session s, which is detailed in
Appendix A.1.

Let vis denote the reputation of DO i ∈ [Cs] (Shi & Yu,
2023) and xi

s ∈ {0, 1} denote whether the target DC wins
i. Then, the goal of the target DC across S sessions is to
maximize the total utility of winning DOs2 under the budget
B, which can be formulated as:

max
∑
s∈[S]

∑
i∈[Cs]

xi
s × vis, s.t.

∑
s∈[S]

∑
i∈[Cs]

xi
s × pis ≤ B,

(1)

Data Owner Reputation Calculation: Following (Shi &
Yu, 2023; Tang & Yu, 2024b), we calculate the reputation
of each DO based on the GTG-Shapley method (Liu et al.,
2022) technique and Beta Reputation System (BRS) (Josang
& Ismail, 2002).

We start by adopting the SV approach to calculate the contri-
bution ϕi of each DO i during each training round towards
the performance of the resulting FL model as

ϕi = α
∑

S⊆N\{i}

f(wS∪{i})− f(wS)(|N|−1
|S|

) . (2)

α is a constant. S represents the subset of DOs drawn
from N . f(wS) denotes the performance of the FL model
w when trained on data owned by S. The contributions
made by the DOs can be divided into two types: 1) positive
contribution (i.e., ϕi ≥ 0); and 2) negative contribution
(i.e., ϕi < 0). We use the variables pci and nci to record
the number of positive contributions and the number of
negative contributions made by each DO i, respectively.

2Following (Zhang et al., 2021; Tang & Yu, 2023b; Zhang
et al., 2022a;b; Tang & Yu, 2023a), maximizing the total utility is
equivalent to optimizing the performance of the global FL model
obtained by the target DC.
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Figure 2. An overview of the proposed MBOS-AFL approach.

Following BRS, the reputation value vi of i can be computed
as follows:

vi = E[Beta(pci + 1, nci + 1)] =
pci + 1

pci + nci + 2
. (3)

It is important to highlight that, as depicted in Eq. (3), the
reputation of each DO i undergoes dynamic updates as the
FL model training process unfolds. Furthermore, in cases
where there is no prior information available, the default
initialization for the reputation value of i is set to the uniform
distribution, denoted as vi = N(0, 1) = Beta(1, 1).

The basics of Reinforcement Learning (RL) could be found
in Appendix A.2.

4. The Proposed MBOS-AFL Approach
Our primary objective is to help DCs recruit DOs across
multiple sessions while adhering to budget constraints, with
the overarching goal of maximizing the total utility. To ac-
complish this, we must tackle two fundamental challenges:
1) Budget Allocation: Determining the allocation of the to-
tal budget B to a given session s, Bs; 2) Bidding Strategy:
Determining the bid price bis for any given DO i in session s
under the session budget Bs. Since the AFL market is highly
dynamic, it is difficult for DCs to obtain a closed-form ana-
lytical solution for the above two problems. Therefore, we
design MBOS-AFL based on RL (Sutton & Barto, 2018) to
solve these problems without requiring prior knowledge. To
determine the optimal budget allocation strategy and bidding
strategy for a DC to realize the objective outlined in Eq. (1),
we design MBOS-AFL based on HRL (Pateria et al., 2021).
It consists of two HRL-based budget allocation agents: 1)
Inter-session Budget Pacing Agent (InterBPA), and 2)
Intra-session Bidding Agent (IntraBMA). An overview of
MBOS-AFL is shown in Figure 2.

During each FL training session s, the InterBPA observes
the current state within the model training environment. Sub-
sequently, this observed state is channeled into the policy
network of the InterBPA, generating the recommended
inter-session action (i.e., setting the budget Bs for session
s). This action aims to enhance the current FL model per-

formance, ultimately influencing the outcome across all
training sessions. Moreover, this inter-session action serves
as an initial state for the IntraBMA. It is worth noting that
the InterBPA will stay static throughout a given session
s. It is only updated when the session s is concluded. Fun-
neling the inter-session action Bs into the policy network
of the IntraBMA helps determine the intra-session actions,
especially the initial intra-session action.

The primary function of the IntraBMA is to help a DC
bid for each DO i ∈ [Cs] in session s in an efficient way,
thus contributing to the crafting of the optimal budget allo-
cation strategies under MBOS-AFL. The IntraBMA takes
the dynamic DC state as the input, and produces the optimal
action ais as the bid price for data owner i to be submitted
to the auctioneer. As a result, the IntraBMA will be up-
dated upon every DO auction in session s. The synthesis
of inter-session and intra-session actions culminates in the
formulation of the DC’s budget allocation strategy. In the
following sections, we provide detailed descriptions of these
two agents.

4.1. Inter-session Budget Pacing Agent (InterBPA)

State: The state of the InterBPA in session s ∈ [S], de-
noted as sinters , comprises two main segments. The first
segment contains historical data derived from the preced-
ing S′ sessions. These include the budgets allocated for
each of the historical sessions, and the bidding outcomes of
IntraBMA in these sessions (including the bid prices for
DOs, payment for DOs, and reputation of the recruited DOs).
The second segment contains current session information
(including the number of available DOs and the remaining
budget). Thus, the formulation of sinters is as follows:

sinter
s = {bs−S′ , · · · , bs−1,ps−S′ , · · · ,ps−1,vs−S′ , · · · ,vs−1,

Cs, B, s}.
(4)

bs−1 = {bis−1}t∈[Cs−1], ps−1 = {pis−1}i∈[Cs−1], and
vs−1 = {vis−1}i∈[Cs−1]. The integration of historical con-
text into the state design is pivotal, as it empowers the agent
to understand the impact of its strategies on FL training over
time.

Action: In session s, the action to be taken by the
InterBPA is to determine the budget allocated to the cur-
rent session, ainters , which is expressed as:

ainter
s = Bs. (5)

Here, Bs denotes the budget for session s to bid for the data
owners involved. This inter-session action plays a pivotal
role in regulating the amount of budget to be disbursed by
the DC during session s, thereby helping preserve the total
budget B for potential future FL training sessions.

Reward: The inter-session reward for session s, rinters , is
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determined by the average reputation of DOs recruited in s:

rinter
s =

1∑
i∈[Cs]

xi
s

∑
i∈[Cs]

xi
sv

i
s. (6)

xi
s ∈ {0, 1} denotes if the DC wins the auction for DO i.

Discount factor: As the goal of a DC is to maximize the
total utility derived from the recruited DOs for a given total
budget B regardless of time, the reward discount factor of
InterBPA is set to 1.

4.2. Intra-session Budget Management Agent
(IntraBMA)

State: The state of the IntraBMA in session s during an
auction for DO i, denoted as sintras,i , consists of: 1) Cs − i:
the remaining DOs in session s, 2) Bs: the remaining budget
of session s, and 3) vis: the reputation of DO i:

sintra
s,i = {Cs − i, Bs, v

i
s}. (7)

Action: The action, denoted as aintra
s,i , to be taken by the

IntraBMA in session s for DO i ∈ [Cs] is to determine the
bid price for i, i.e., bis.

Reward: The intra-session reward for session s following
the bid for DO i is defined as the utility obtained from i,
which is formulated as:

rintra
s,i = xi

sv
i
s. (8)

Discount factor: Similar to InterBPA, the discount factor
for the IntraBMA is also set to 1.

4.3. Training Procedure for InterBPA and IntraBMA

Following (Tang & Yu, 2023a), InterBPA and
IntraBMA leverage the Deep Q-Network (DQN) tech-
nique (Mnih et al., 2015). Both agents use deep neural net-
works (DNNs) to model the action-value function Q(s, a),
parameterized by θinter and θintra, respectively. To im-
prove stability during training, we pair these networks with
a similar DNN architecture parameterized by θ̂inter and
θ̂intra, respectively (referred to as the target networks),
which also approximates Q(s, a). To update θinter and
θintra, the training is conducted by minimizing the follow-
ing loss function: L(θ) = 1

2E(s,a,r,s′)∼D[(y−Q(s, a; θ))2].
The replay buffer, D, is a storage mechanism for transition
tuples {(s, a, r, s′)}ni=1, where s′ is the new observation fol-
lowing action a based on the state s, resulting in reward r.
This buffer allows the agent to learn from its past experi-
ences by randomly sampling batches of transitions during
training. y represents the temporal difference target, and is
computed as y = r+ γmaxa′ Q(s, a′; θ̂). γ is the discount
factor, θ̂ represents the parameters of the target network

Algorithm 1 The training procedure of MBOS-AFL
Initialize Qintra, Qinter with parameters θintra, θinter; target
networks of Qintra and Qinter with parameters θ̂intra and θ̂inter;
replay memories Dintra and Dinter; target networks’ update fre-
quency Γ.
1: for s ∈ [S] do
2: Observe state sinter

s ;
3: Compute Bs according to ϵ-greedy policy w.r.t Qinter;
4: for i ∈ [Cs] do
5: Observe state sintra

s,i ;
6: Compute bis according to ϵ-greedy policy w.r.t Qintra;
7: Submit bis to the auctioneer;
8: Obtain rewards vis and the payment pis;
9: Bs ← Bs − pis;

10: Store transition tuples in Dintra;
11: Sample a random minibatch of m samples from D;
12: yintra = ris +

γmaxaintra′
s

Qintra(sintra
s,i+1, a

intra′
s ; θ̂intra);

13: Update θintra by minimizing
∑

m[(yintra −
Qintra(sintra

s,i , aintra
s,i ; θintra)2];

14: θ̂intra ← θintra every Γ steps;
15: end for
16: Obtain rewards rinter

s and the total payment pis during
session s;

17: B ← B −
∑

i∈[Cs]
pis;

18: Store transition tuples in Dinter;
19: Sample a random minibatch of m samples from D;
20: yinter = rs+γmaxainter′

s
Qinter(sinter

s+1 , ainter′
s ; θ̂inter);

21: Update θinter by minimizing
∑

m[(yinter −
Qinter(sinter

s , ainter
s ; θinter)2];

22: θ̂inter ← θinter every Γ steps;
23: end for

associated with the corresponding agent. Q(s, a′; θ̂) is the
predicted action-value function of the corresponding agent
for its next state s′ and all possible actions a′. This target net-
work is used to stabilize the learning process by providing a
fixed target during training, which is updated periodically
(every Γ steps) to match the current action-value network.
Algorithm 1 is the training procedure for MBOS-AFL.

5. Experimental Evaluation
5.1. Experiment Settings

Dataset: The performance assessment of MBOS-AFL is
conducted on the following six widely-adopted datasets
in FL studies: 1) MNIST3, 2) CIFAR-104, 3) Fashion-
MNIST (i.e., FMNIST) (Xiao et al., 2017), 4) EMNIST-
digits (i.e., EMNISTD), 5) EMNIST-letters (i.e., EMNISTL)
(Cohen et al., 2017) and 6) Kuzushiji-MNIST (i.e., KM-
NIST) (Clanuwat et al., 2018). The FL models used are the
same as those employed in (Tang & Yu, 2023b).

3http://yann.lecun.com/exdb/mnist/
4https://www.cs.toronto.edu/kriz/cifar.html
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Comparison Approaches: We evaluate the performance
of MBOS-AFL against the following seven AFL bidding ap-
proaches in our experiments: Constant Bid (Const) (Zhang
et al., 2014), Randomly Generated Bid (Rand) (Zhang et al.,
2021; 2022b), Below Max Utility Bid (Bmub), Linear-
Form Bid (Lin) (Perlich et al., 2012), Bidding Machine
(BM) (Ren et al., 2017), Reinforcement Learning-based Bid
(RLB) (Tang & Yu, 2023a; 2024b), FedBidder-sim (FBs),
and Fed-Bidder-com (FBc) (Tang & Yu, 2023b). Details
can be found in (Tang et al., 2024b).

Experiment Scenarios: We compare MBOS-AFL with
baselines under two main experiment scenarios with each
containing 10,000 DOs: 1) IID data, varying dataset sizes,
without noise: In this scenario, the sizes of datasets owned
by various DOs are randomly generated, ranging from 500
to 5,000 samples. Additionally, all the data are independent
and identically distributed (IID), with no noise. 2) Non-
IID data, with noise: In this experimental scenario, we
deliberately introduce data heterogeneity by adjusting the
class distribution among individual DOs. Following (Tang
et al., 2024b), we implement the following Non-IID setup.
We designate 1 class (on datasets other than EMNISTL) or
6 classes (on EMNISTL) as the minority class and assign
this minority class to 100 DOs. As a result, these 100 DOs
possess images for all classes, while all other DOs exclu-
sively have images for the remaining nine classes, excluding
the minority class. In this experiment scenario, each DO
holds 3,000 images. Additionally, we simulate scenarios
in which the minority DOs contain 10% or 25% noisy data.
The implementation details can be found in Appendix A.3.

Evaluation Metrics: To evaluate the effectiveness of all the
comparison methods, we adopt the following three metrics:
1) the number of data samples won by the DC (#data), 2) the
utility obtained by the DC (utility), and 3) the test accuracy
(Acc). More details could be found in Appendix A.4.

5.2. Results and Discussion

To conduct a comparative analysis of bidding strategies
based on these metrics, we carry out experiments across six
datasets, each with varying budget settings. These settings
span the range of {100, 200, 400, 600, 800}. The results are
shown in Tables 1, 2, and Figure 3.

Table 1 shows the results of various comparison methods
under the IID data, different sizes of DOs datasets without
noisy samples scenario. It can be observed that under all six
datasets and five budget settings, MBOS-AFL consistently
outperforms all baseline methods in terms of both evaluation
metrics. Specifically, compared to the best-performing base-
line, MBOS-AFL achieves 12.28% and 14.52% improve-
ment in terms of total utility and the number of data samples
won, respectively. Figure 3 shows the corresponding test
accuracy. The results align with the auction performance

shown in Table 1 with MBOS-AFL improving the test accu-
racy by 1.23% on average.

In addition, the comparative results under the Non-IID data
with noise scenario can be found in Table 2. It can be
observed that under these two different settings, the pro-
posed method MBOS-AFL consistently outperforms exist-
ing methods in terms of achieving higher FL model accuracy.
In particular, on average, MBOS-AFL achieves 1.49% and
1.72% higher FL model accuracy compared to the best per-
formance achieved by baselines under the 10% noisy data
and 25% noisy data settings, respectively. All these results
demonstrate the effectiveness of our approach in helping
DCs optimize their budget pacing and bidding strategies for
DOs under the emerging multi-session AFL scenarios.

Lin and Bmub typically outperform Const and Rand due to
the use of utility in the bidding process. However, Bmub is
less effective than Lin due to the reliance on randomness.
Meanwhile, the more advanced methods BM, FBs, FBc,
RLB and MBOS-AFL perform significantly better than the
simpler approaches. This is largely due to the inclusion
of auction records (including auction history and bidding
records) and the use of advanced learning methods.

RLB and MBOS-AFL both outperform BM, FBs, and FBc,
due to their ability of adaptive adjustment to the highly dy-
namic auction environment. While BM does consider mar-
ket price distribution, it derives this distribution by learning
the prediction of each bid request’s market price density,
which may lead to overfitting. In contrast, FBs and FBc
obtain the market price distribution via a predefined winning
function, which helps predict the expected bid costs more
accurately. However, BM, FBs and FB are still static bid-
ding strategies. They are essentially represented by linear
or non-linear functions whose parameters are derived from
historical auction data using heuristic techniques. Subse-
quently, these parameters are applied to new auctions, even
if the dynamics of these new auctions may vary significantly
from those in the historical data. The inherent dynamism
of the AFL market poses a considerable challenge for these
static bidding methods, making it hard for them to consis-
tently achieve desired outcomes in subsequent auctions.

While RLB optimize its bidding process with dynamic pro-
gramming, it is susceptible to the drawback of immediate re-
wards, which might result in indiscriminate bidding for data
samples without considering their associated costs. This
issue is effectively addressed by MBOS-AFL. Moreover, it
is worth highlighting that RLB is not designed for optimiz-
ing budget allocation across multiple sessions. This is a
distinction where MBOS-AFL offers significant advantages.

The test accuracy achieved by the FL models trained under
all bidding strategies on CIFAR-10 is consistently lower
than that on other datasets. This can be attributed to the base
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Table 1. Comparison results under the scenario of IID data, different sizes of DOs datasets without noisy samples. The best results are
highlighted in Bold. Ours represents MBOS-AFL.

Budget Method MNIST CIFAR FMNIST EMNIST EMNISTL KMNIST
#data utility #data utility #data utility #data utility #data utility #data utility

100

Const 8,832 7.36 9,897 7.87 10,722 6.46 7,638 6.52 7,359 7.02 7,810 6.75
Rand 9,125 8.41 8,721 8.43 9,743 8.09 8,853 8.10 6,822 7.97 8,940 7.96
Bmub 9,246 9.03 11,302 9.19 12,274 8.76 10,382 8.91 6,485 9.15 10,551 8.62

Lin 9,461 10.28 11,426 10.17 13,523 9.84 10,673 10.33 8,220 10.51 10,694 9.97
BM 12,324 11.95 13,367 11.85 15,321 12.65 14,399 12.19 15,157 12.27 14,501 12.46
FBs 13,985 14.51 14,259 13.51 16,373 13.53 15,321 13.46 14,408 13.44 15,509 13.54
FBc 13,869 13.84 13,984 13.70 15,843 13.42 16,772 14.23 14,168 13.67 16,927 13.64
RLB 13,892 14.42 14,263 14.26 17,783 13.95 15,989 13.51 15,544 14.40 16,027 14.33
Ours 14,944 16.59 17,397 17.47 19,064 18.19 18,674 17.46 16,317 18.59 18,687 16.55

200

Const 11,037 8.49 12,043 9.31 16,374 8.52 13,826 9.46 10,876 10.33 13,950 9.31
Rand 10,895 10.06 11,894 10.00 14,898 9.90 12,452 10.34 12,808 10.42 12,601 10.05
Bmub 16,582 9.58 17,021 10.60 25,327 10.60 17,817 10.40 20,966 11.43 17,878 10.97

Lin 17,803 13.14 17,849 12.88 26,880 12.88 19,435 12.64 27,860 12.70 19,553 12.97
BM 23,584 14.97 20,836 15.11 31,945 15.92 21,656 15.03 35,016 15.29 21,722 15.70
FBs 27,813 17.70 28,456 17.61 34,936 17.09 26,994 17.01 31,743 17.40 27,087 17.49
FBc 28,005 17.51 29,835 17.24 36,873 17.58 27,863 16.60 34,686 16.99 27,892 17.89
RLB 29,468 17.77 30,138 17.82 35,548 17.04 26,748 17.45 37,122 17.82 26,819 17.23
Ours 33,045 21.99 35,163 21.08 39,982 23.72 35,656 19.59 37,645 22.43 35,737 18.08

400

Const 14,395 8.72 15,362 8.11 18,475 8.34 17,877 7.82 10,177 8.04 17,940 8.41
Rand 13,195 9.86 16,372 9.71 17,844 6.87 17,003 7.13 6,431 9.02 17,051 9.20
Bmub 23,378 10.90 25,631 11.16 31,487 10.86 24,756 10.05 23,639 10.63 24,869 11.33

Lin 24,523 14.58 26,830 14.41 32,677 14.24 25,669 14.28 36,261 14.31 25,802 14.46
BM 38,516 16.46 30,173 16.54 38,552 16.90 30,878 17.26 41,050 17.66 31,077 17.61
FBs 50,983 19.32 38,452 19.24 39,236 18.54 38,452 18.69 40,605 19.04 38,566 19.09
FBc 50,146 19.23 39,817 19.10 41,582 18.37 40,663 18.40 39,555 18.85 40,768 18.88
RLB 51,643 19.54 42,731 19.63 45,667 18.84 37,748 19.18 43,077 19.71 37,843 19.55
Ours 56,872 23.65 53,672 22.71 52,386 23.00 47,135 19.32 46,341 23.83 47,262 19.73

600

Const 17,895 9.71 19,378 9.60 21,394 9.33 19,832 10.08 10,596 9.55 19,982 8.92
Rand 19,803 8.68 20,184 9.07 20,853 11.69 18,838 10.37 24,581 9.15 18,966 9.83
Bmub 30,164 12.07 29,174 11.93 37,421 11.85 29,669 12.06 33,768 11.94 29,845 11.97

Lin 32,973 15.62 30,375 15.59 40,128 15.08 34,452 15.16 47,484 15.61 34,629 15.62
BM 49,807 17.09 49,272 17.43 47,533 18.06 38,743 17.85 51,454 18.23 38,943 18.54
FBs 62,396 20.49 50,384 20.58 46,731 19.54 45,232 19.64 50,482 20.29 45,288 20.29
FBc 61,478 20.31 52,836 20.24 52,843 19.92 48,767 19.38 49,468 20.04 48,958 20.06
RLB 63,672 20.64 58,273 20.64 50,472 19.26 42,534 19.69 59,455 20.53 42,692 20.44
Ours 66,654 21.72 60,737 22.82 63,824 24.17 58,462 23.01 63,441 23.54 58,522 21.72

800

Const 23,047 11.04 24,753 11.35 26,311 11.13 22,644 10.79 17,875 11.40 22,705 11.30
Rand 24,853 14.09 22,845 13.34 22,734 13.68 20,474 13.60 26,563 13.57 20,642 13.26
Bmub 36,703 12.99 35,777 12.70 40,275 13.47 36,648 12.91 38,570 13.08 36,732 13.17

Lin 39,651 16.79 38,561 16.88 47,823 16.55 40,537 16.67 59,390 16.86 40,727 16.76
BM 57,442 18.57 52,735 18.68 51,272 19.16 46,772 19.34 65,086 19.41 46,933 19.59
FBs 70,496 22.09 62,842 22.07 54,453 21.07 51,863 21.02 67,470 21.54 51,942 21.69
FBc 72,845 22.04 63,112 22.06 55,388 21.18 56,991 21.09 61,598 21.57 57,152 21.53
RLB 70,381 22.31 66,843 22.37 52,621 20.92 53,823 20.95 68,943 21.78 57,900 21.92
Ours 77,821 22.40 71,244 23.46 64,739 23.12 62,579 22.57 70,393 23.04 59,711 22.18
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Figure 3. Comparison of accuracy under the scenario of IID data, different sizes of DOs datasets without noisy samples.
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Table 2. Comparison of accuracy under the Non-IID data with noise scenario. 10% and 25% represents 10% and 25% noisy data,
respectively. Bud. represent budget and Ours represents MBOS-AFL.

Bud. Method MNIST CIFAR FMNIST EMNIST EMNISTL KMNIST
10% 25% 10% 25% 10% 25% 10% 25% 10% 25% 10% 25%

100

Const 70.11 70.03 12.88 13.97 61.48 57.87 77.02 76.46 64.92 63.30 58.21 59.63
Rand 69.61 65.42 10.57 10.83 62.70 59.48 78.69 77.97 63.97 62.83 57.01 59.12
Bmub 71.22 70.61 15.37 12.94 63.32 60.45 78.42 77.37 66.88 65.19 61.83 61.76

Lin 72.36 70.32 18.65 17.41 64.04 64.13 78.62 77.44 66.47 64.07 62.72 62.97
BM 72.31 71.65 19.50 19.62 67.35 66.25 79.50 78.42 67.17 64.62 64.55 63.77
FBs 73.23 72.32 23.59 22.03 70.97 70.26 79.51 78.35 68.35 65.94 65.82 64.33
FBc 73.11 74.80 23.42 22.26 71.29 70.68 79.92 78.93 67.69 64.78 65.47 63.88
RLB 73.07 73.11 22.94 22.98 71.03 69.55 79.83 78.66 68.20 65.57 65.38 63.93
Ours 73.79 75.22 23.88 23.24 72.31 71.42 80.66 79.29 69.26 66.76 66.15 65.08

200

Const 70.73 66.38 10.68 11.08 63.74 60.16 77.98 77.52 67.84 66.16 58.44 58.29
Rand 69.48 68.96 10.32 10.26 63.86 59.63 78.63 78.19 68.24 66.88 59.25 58.09
Bmub 71.81 70.52 13.39 13.03 63.83 62.18 79.37 78.37 69.09 67.42 63.04 63.34

Lin 72.98 70.55 19.07 17.96 64.43 64.16 79.43 78.43 69.96 68.44 67.07 66.09
BM 73.43 72.48 20.36 20.14 64.53 70.01 80.52 79.40 70.19 67.35 69.01 67.63
FBs 74.69 72.17 23.82 22.79 71.49 71.99 80.28 79.27 69.65 67.57 69.77 68.69
FBc 74.29 72.99 23.61 22.58 71.86 71.61 80.37 79.52 70.70 68.45 68.75 67.04
RLB 74.33 73.26 23.77 23.14 71.52 70.74 80.48 79.52 70.13 68.11 70.52 70.48
Ours 75.60 75.72 24.94 24.52 72.98 73.13 81.31 80.10 71.39 69.05 71.13 71.27

400

Const 71.06 68.34 17.09 16.96 64.01 58.93 78.49 77.98 68.19 66.69 68.66 68.33
Rand 70.05 67.74 20.90 20.45 64.25 60.58 78.62 78.43 68.88 67.64 70.36 69.75
Bmub 72.27 70.26 22.21 20.49 64.37 63.15 79.97 78.90 69.71 68.11 69.93 68.56

Lin 72.99 71.02 24.18 22.94 65.52 65.44 80.01 78.99 70.53 69.12 70.37 69.10
BM 74.96 73.01 25.59 23.74 65.87 68.38 80.90 79.91 71.62 70.35 71.58 70.44
FBs 75.85 73.53 26.47 24.50 71.72 70.06 81.36 80.22 71.75 70.17 71.93 70.85
FBc 75.66 73.77 26.21 24.27 72.03 71.95 81.29 80.18 71.88 70.38 71.01 69.56
RLB 75.25 74.96 26.78 24.83 72.31 72.24 81.55 80.47 71.99 70.59 72.45 70.72
Ours 76.59 76.33 27.65 25.86 73.85 73.63 81.86 80.69 72.54 71.84 73.38 71.66

600

Const 71.05 69.36 23.10 21.66 64.61 61.77 79.28 78.49 68.39 67.01 69.21 68.69
Rand 68.79 69.05 22.72 20.32 64.39 62.49 79.25 78.83 69.31 67.95 70.19 69.74
Bmub 71.95 71.07 18.90 22.02 64.41 63.78 80.68 79.38 70.49 68.71 70.78 69.60

Lin 73.54 72.57 24.43 24.79 66.92 66.18 80.86 79.58 71.44 69.92 71.21 69.94
BM 75.25 73.58 28.30 26.62 67.21 67.80 81.42 80.26 72.47 71.07 71.97 70.82
FBs 76.18 74.16 28.85 27.25 73.55 71.81 81.47 80.34 72.51 71.06 72.26 72.23
FBc 76.25 73.98 29.07 28.95 74.14 73.31 81.49 80.31 72.51 70.99 72.18 72.84
RLB 76.06 73.15 28.52 29.60 73.85 73.05 81.68 80.60 73.07 71.64 73.41 72.81
Ours 76.93 76.71 29.91 30.55 74.46 74.05 82.16 80.93 73.21 71.86 74.63 73.79

800

Const 67.21 66.43 23.63 21.95 68.17 64.97 79.64 78.81 68.85 67.49 69.49 69.01
Rand 68.95 71.02 24.54 20.66 68.15 65.32 79.78 79.23 70.13 68.75 70.91 70.11
Bmub 71.90 72.16 25.97 19.45 69.24 66.51 81.08 79.77 70.80 69.05 71.52 70.60

Lin 75.11 72.66 25.46 28.06 71.87 69.03 81.37 80.12 71.61 70.16 71.76 70.46
BM 75.28 73.89 28.76 29.00 72.83 70.31 81.64 80.58 72.89 71.63 73.09 71.74
FBs 76.09 75.04 29.54 30.18 75.92 73.86 81.87 80.83 72.99 71.72 73.42 72.20
RLB 76.31 76.34 30.05 30.81 76.39 74.72 82.06 81.07 73.62 72.37 74.90 73.18
Ours 77.29 76.78 32.82 32.46 77.10 75.57 82.47 82.69 73.77 73.55 75.39 73.82

model adopted for FL training. As mentioned in Section
5.1, the accuracy reported in these two figures is with re-
gard to the VGG11 network. Nevertheless, even with such
a less effective base model, MBOS-AFL still significantly
outperforms other baselines.

6. Conclusions
In this paper, we propose the Multi-session Budget
Optimization Strategy for forward Auction-based FL
(MBOS-AFL). It is designed to empower FL DCs with
the ability to strategically allocate budgets over multiple
FL training sessions and judiciously distribute the budget
among DOs within each session by bidding with different
bid prices, in order to maximize total utility. Based on
the hierarchical reinforcement learning, MBOS-AFL jointly
optimizes inter-session budget pacing and intra-session bid-
ding for DCs in the AFL ecosystem. To the best of our

knowledge, it is the first budget optimization decision sup-
port method with budget pacing capability designed for DCs
in multi-session forward auction-based FL.
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A. Appendix
A.1. Federated Learning with Recruited Data Owners

After the auction-based DO recruitment process, the DC triggers the FL training process with the recruited DOs in session s,
which is detailed in Appendix A.1. Specifically, the FL process operates through communication between the recruited DOs
and the target DC in a round-by-round manner. In each training round t in session s, the target DC broadcasts the current
global model parameters wt−1

s to the recruited DOs. Upon receiving wt−1
s , each DO i performs a local update to obtain

wt
s,i based on its private data Di, guided by the objective function

argmin
wt

s,i

E(x,y)∼Di
[L(wt

s,i; (x, y)]. (9)

L(·) represents the loss function, which depends on the FL model aggregation algorithm and the current global model
parameters wt−1

s . For instance, FedAvg (McMahan et al., 2017) calculates wt
s,i by employing SGD (Robbins & Monro,

1951) for a certain number of epochs using the cross-entropy loss. At the end of round t, DO i sends its optimized parameters
wt

s,i to the target DC. The global model is then updated by aggregating these parameter updates from the DOs as

wt
s =

∑
i

|Di|∑
i|Di|

wt
s,i. (10)

∑
i|Di| denotes the total number of data samples of all the recruited DOs in session s.

A.2. Reinforcement Learning Basics

A Markov Decision Process (MDP) is a mathematical framework for modeling decision-making in which an agent interacts
with an environment through discrete time steps. MDP is formally defined by the tuple ⟨S,A, P,R, γ⟩: 1) S represents
the possible states in the environment, denoted as s ∈ S. 2) A encompasses the feasible actions the agent can take. 3)
P : S × A × S → [0, 1] is the transition probability function for the likelihood of transitioning between states when an
action is taken, capturing environmental dynamics. 4) R : S ×A× S → R is the reward function, specifying immediate
rewards upon state transitions due to specific actions, with the agent’s aim to maximize cumulative rewards. 5) γ ∈ [0, 1]
serves as the discount factor, reflecting the agent’s preference for immediate rewards versus future rewards.

During the MDP process, the agent interacts with the environment across discrete time steps. At each time step, it selects
an action a ∈ A based on policy π : S → A, subsequently receiving a reward r, and the environment undergoes state
transitions according to P .

The goal of MDP is to identify an optimal policy π : S → A that maximizes the expected sum of discounted rewards over
time, given by maxπ E

[∑T
t=1 γ

t−1rt
]
. This entails finding the policy maximizing expected cumulative rewards. The value

function V π : S → R is associated with each policy, quantifying expected cumulative rewards. The optimal value function
V ∗ : S → R represents the maximum achievable expected cumulative reward achievable with the best policy from each
state.

A.3. Implementation Details

In our experiments, we faced the challenge of not having a publicly available AFL bidding behaviour dataset. To address
this issue, we track the behaviors of DCs over time during simulations to gradually accumulate data in four different settings.
Each setting contains 160 DCs who adopted one of the eight bidding strategies listed in the Compared Approaches section.

In the first setting, each of the eight baseline bidding methods is adopted by one eighth of the DCs. In the second setting, as
BM, Fed-Bidder variants (FBs and FBc) and RLB have AI techniques similar to MBOS-AFL, these four bidding strategies
are adopted by three sixteenths of the total population, while the remaining four baselines are adopted by one sixteenth of
the total population. In the third and fourth settings, as both Fed-Bidder variants and MBOS-AFL are designed specifically
for AFL, we set the percentage of DCs adopting FBs and FBc to be higher than those adopting the other six baselines.
Specifically, under the third setting, 50 DCs adopt FBs and FBc, while 10 DCs adopt each of the other six baselines. Under
the fourth setting, 65 DCs adopted FBs and FBc, while 5 DCs adopted each of the other six baselines. We adopt the
second-price sealed-bid (SPSB) auction mechanism in our experiments. By tracking the behaviors of DCs over time, we can
gradually accumulate data in the absence of a publicly available dataset related to AFL bidding behaviours.
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To evaluate the effectiveness of MBOS-AFL, we create nine DCs, each utilizing one of the aforementioned bidding
approaches to join the auction for each bid request (i.e., each DO) in each session s. Following (Tang & Yu, 2023b), bid
requests are delivered in chronological order. Upon receiving a bid request, each DC derives its bid price based on its
adopted bidding strategy. Subsequently, the auctioneer gathers the bid prices, identifies the winner, and determines the
market price using the SPSB auction mechanism. The winning DC pays the market price to the DO. The process concludes
when there are no more bid requests or when the budget is depleted.

MBOS-AFL utilizes fully connected neural networks with three hidden layers each containing 64 nodes to generate bid
prices for a target DO on behalf of their respective DCs. The replay buffer D of both the InterBPA and the IntraBMA
are set to 5,000. During training, both agents explore the environment using an ϵ-greedy policy with an annealing rate from
1.0 to 0.05. In updating both Qintra and Qinter, 64 tuples uniformly sampled from D are used for each training step, and the
corresponding target networks are updated once every 20 steps. In our experiments, we use RMSprop with a learning rate of
0.0005 to train all neural networks, and set the discount factor γ to 1. In addition, we have set the number of candidate DOs
within each session to 200 (i.e., Cs = 200). The communication round in each session is set at 100, while the local training
epoch is set at 30. All experiments were conducted five times, and the averaged results are reported.

A.4. Evaluation Metrics

To evaluate the effectiveness of all the comparison methods, we adopt the following three metrics: 1) The number of data
samples won by the DC (#data) is defined as the cumulative number of data samples owned by all DOs recruited by the
corresponding DC until the budget or session limits are reached. 2) The utility obtained by the DC (utility) is defined as the
cumulative reputation of DOs recruited by the corresponding DC until the budget or session limits are reached. 3) The test
accuracy (Acc) is determined as the accuracy of the final FL model for the respective DC, up to the point where either the
budget or session limits are reached.
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