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Abstract

Thanks to their practical efficiency and random nature of the data, stochastic1

first-order methods are standard for training large-scale machine learning models.2

Random behavior may cause a particular run of an algorithm to result in a highly3

suboptimal objective value, whereas theoretical guarantees are usually proved4

for the expectation of the objective value. Thus, it is essential to theoretically5

guarantee that algorithms provide small objective residual with high probability.6

Existing methods for non-smooth stochastic convex optimization have complexity7

bounds with the dependence on the confidence level that is either negative-power or8

logarithmic but under an additional assumption of sub-Gaussian (light-tailed) noise9

distribution that may not hold in practice, e.g., in several NLP tasks. In our paper,10

we resolve this issue and derive the first high-probability convergence results with11

logarithmic dependence on the confidence level for non-smooth convex stochastic12

optimization problems with non-sub-Gaussian (heavy-tailed) noise. To derive our13

results, we propose novel stepsize rules for two stochastic methods with gradient14

clipping. Moreover, our analysis works for generalized smooth objectives with15

Hölder-continuous gradients, and for both methods, we provide an extension for16

strongly convex problems. Finally, our results imply that the first (accelerated)17

method we consider also has optimal iteration and oracle complexity in all the18

regimes, and the second one is optimal in the non-smooth setting.19

1 Introduction20

Stochastic first-order optimization methods like SGD [33], Adam [21], and their various modifi-21

cations are extremely popular in solving a number of different optimization problems, especially22

those appearing in statistics [37], machine learning, and deep learning [14]. The success of these23

methods in real-world applications motivates the researchers to investigate theoretical properties24

for the methods and to develop new ones with better convergence guarantees. Typically, stochastic25

methods are analyzed in terms of the convergence in expectation (see [13, 25, 16] and references26

therein), whereas high-probability complexity results are established much rarely. However, as27

illustrated in [15], guarantees in terms of the convergence in expectation have much worse correlation28

with the real behavior of the methods than high-probability convergence guarantees when the noise29

in the stochastic gradients has heavy-tailed distribution.30

Recent studies [36, 35, 42] show that in several popular problems such as training BERT [38] on31

Wikipedia dataset the noise in the stochastic gradients is heavy-tailed. Moreover, in [42], the authors32

justify empirically that in such cases SGD works significantly worse than clipped-SGD [31] and33

Adam. Therefore, it is important to theoretically study the methods’ convergence when the noise is34

heavy-tailed.35
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For convex and strongly convex problems with Lipschitz continuous gradient, i.e., smooth convex and36

strongly convex problems, this question was properly addressed in [26, 3, 15] where the first high-37

probability complexity bounds with logarithmic dependence on the confidence level were derived38

for the stochastic problems with heavy-tailed noise. However, a number of practically important39

problems are non-smooth on the whole space [41, 23]. For example, in deep neural network training,40

the loss function often grows polynomially fast when the norm of the network’s weights goes to41

infinity. Moreover, non-smoothness of the activation functions such as ReLU or loss functions such42

as hinge loss implies the non-smoothness of the whole problem. While being well-motivated by43

practical applications, the existing high-probability convergence guarantees for stochastic first-order44

methods applied to solve non-smooth convex optimization problems with heavy-tailed noise depend45

on the negative power of the confidence level that dramatically increases the number of iterations46

required to obtain high accuracy of the solution with probability close to one. Such a discrepancy in47

the theory between algorithms for stochastic smooth and non-smooth problems leads us to the natural48

question: is it possible to obtain high-probability complexity bounds with logarithmic dependence49

on the confidence level for non-smooth convex stochastic problems with heavy-tailed noise? In this50

paper, we give a positive answer to this question. To achieve this we focus on gradient clipping51

methods [31, 11, 24, 23, 41, 42].52

1.1 Preliminaries53

Before we describe our contributions in detail, we formally state the considered setup.54

Stochastic optimization. We focus on the following problem55

min
x∈Rn

f(x), f(x) = Eξ [f(x, ξ)] , (1)

where f(x) is a convex but possibly non-smooth function. Next, we assume that at each point x ∈ Rn56

we have an access to the unbiased estimator∇f(x, ξ) of ∇f(x) with uniformly bounded variance57

Eξ[∇f(x, ξ)] = ∇f(x), Eξ
[
‖∇f(x, ξ)−∇f(x)‖22

]
≤ σ2, σ > 0. (2)

This assumption on the stochastic oracle is widely used in stochastic optimization literature [12,58

13, 20, 22, 27]. We emphasize that we do not assume that the stochastic gradients have so-called59

“light tails” [22], i.e., sub-Gaussian noise distribution meaning that P{‖∇f(x, ξ)−∇f(x)‖2 > b} ≤60

2 exp(−b2/(2σ2)) for all b > 0.61

Level of smoothness. Finally, we assume that function f has (ν,Mν)-Hölder continuous gradients62

on a compact set Q ⊆ Rn for some ν ∈ [0, 1], Mν > 0 meaning that63

‖∇f(x)−∇f(y)‖2 ≤Mν‖x− y‖ν2 ∀x, y ∈ Q. (3)

When ν = 1 inequality (3) implies M1-smoothness of f , and when ν = 0 we have that ∇f(x)64

has bounded variation which is equivalent to being uniformly bounded. Moreover, when ν = 065

differentiability of f is not needed, and one can assume uniform boundedness of the subgradients of66

f . Linear regression in the case when the noise has generalized Gaussian distribution (Example 4.467

from [2]) serves as a natural example of the situation with ν ∈ (0, 1). Moreover, when (3) holds for68

ν = 0 and ν = 1 simultaneously then it holds for all ν ∈ [0, 1] with Mν ≤M1−ν
0 Mν

1 [29]. As we69

show in our results, the set Q should contain the ball centered at the solution x∗ of (1) with radius70

2R0 = 2‖x0 − x∗‖2, where x0 is a starting point of the method, i.e., our analysis does not require (3)71

to hold on Rn.72

High-probability convergence. For a given accuracy ε > 0 and confidence level β ∈ (0, 1) we73

are interested in finding ε-solutions of problem (1) with probability at least 1− β, i.e., such x̂ that74

P{f(x̂) − f(x∗) ≤ ε} ≥ 1 − β. For brevity, we will call such (in general, random) points x̂ as75

(ε, β)-solution of (1). Moreover, by high-probability complexity of a stochastic methodM we mean76

the sufficient number of oracle calls, i.e., number of∇f(x, ξ) computations, needed to guarantee that77

the output ofM is an (ε, β)-solution of (1).78
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Table 1: Summary of known and new high-probability complexity bounds for solving (1) with
f being convex and having (ν,Mν)-Hölder continuous gradients. Columns: “Ref.” = reference,
“Complexity” = high-probability complexity (ε – accuracy, β – confidence level, numerical constants
and logarithmic factors are omitted), “HT” = heavy-tailed noise, “UD” = unbounded domain, “HCC”
= Hölder continuity of the gradient is required only on the compact set. The results labeled by ♣ are
obtained from the convergence guarantees in expectation via Markov’s inequality. Negative-power
dependencies on the confidence level β are colored in red.

Method Ref. Complexity ν HT? UD? HCC?

SGD [27] max
{
M2

0R
2
0

ε2
,
σ2R2

0
ε2

}
0 7 3 7

AC-SA [12, 22] max

{√
M1R

2
0

ε
,
σ2R2

0
ε2

}
1 7 3 7

SIGMA [6] max

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν
,
σ2R2

0
ε2

 [0, 1] 7 3 7

SGD [27]♣ max
{
M2

0R
2
0

β2ε2
,
σ2R2

0
β2ε2

}
0 3 7 7

AC-SA [12, 22]♣ max

{√
M1R

2
0

βε
,
σ2R2

0
β2ε2

}
1 3 3 7

SIGMA [6]♣ max

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

β
2

1+3ν ε
2

1+3ν
,
σ2R2

0
β2ε2

 [0, 1] 3 3 7

clipped-SSTM [15] max

{√
M1R

2
0

ε
,
σ2R2

0
ε2

}
1 3 3 7

clipped-SGD [15] max
{
M1R

2
0

ε
,
σ2R2

0
ε2

}
1 3 3 7

clipped-SSTM Thm. 2.2 max

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν
,
σ2R2

0
ε2

 [0, 1] 3 3 3

clipped-SGD Thm. 3.1 max

{
M

2
1+ν
ν R2

0

ε
2

1+ν
,
σ2R2

0
ε2

}
[0, 1] 3 3 3

1.2 Contributions79

• We propose novel stepsize rules for clipped-SSTM [15] to handle the problems with Hölder80

continuous gradients and derive high-probability complexity guarantees for convex stochastic81

optimization problems without using “light tails” assumption, i.e., we prove that our version of82

clipped-SSTM83

O
(

max

{
D ln

2(1+ν)
1+3ν

D

β
,
σ2R2

0

ε2
ln
D

β

})
, D =

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν

high-probability complexity. Unlike all previous high-probability complexity results in this setup84

with ν < 1 (see Tbl. 1), our result depends only logarithmically on the confidence level β that85

is highly important when β is small. Moreover, up to the difference in logarithmic factors the86

derived complexity guarantees meet the known lower bounds [22, 18] obtained for the problems87

with light-tailed noise. In particular, when ν = 1 we recover accelerated convergence rate [30, 22].88

That is, neglecting the logarithmic factors our results are unimprovable and, surprisingly coincide89

with the best-known results in the “light-tailed case”.90

• We derive the first high-probability complexity bounds for clipped-SGD when the objective91

functions is convex with (ν,Mν)-Hölder continuous gradient and the noise is heavy tailed., i.e., we92

derive93

O
(

max

{
D2,max

{
D1+ν ,

σ2R2
0

ε2

}
ln
D2 +D1+ν

β

})
, D =

M
1

1+ν
ν R0

ε
1

1+ν

high-probability complexity bound. Interestingly, when ν = 0 the derived bound for clipped-SGD94

has better dependence on the logarithms than the corresponding one for clipped-SSTM. Moreover,95

neglecting the dependence on ε under the logarithm, our bound for clipped-SGD has the same96
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Table 2: Summary of known and new high-probability complexity bounds for solving (1) with f being
µ-strongly convex and having (ν,Mν)-Hölder continuous gradients. Columns: “Ref.” = reference,
“Complexity” = high-probability complexity (ε – accuracy, β – confidence level, numerical constants
and logarithmic factors are omitted), “HT” = heavy-tailed noise, “UD” = unbounded domain, “HCC”
= Hölder continuity of the gradient is required only on the compact set. The results labeled by ♣ are
obtained from the convergence guarantees in expectation via Markov’s inequality. Negative-power
dependencies on the confidence level β are colored in red.

Method Ref. Complexity ν HT? UD? HCC?

SGD [27] max
{
M2

0
µε
, σ

2

µε

}
0 7 3 7

AC-SA [12, 22] max
{√

M1
µ
, σ

2

µε

}
1 7 3 7

SIGMA [6]
max

{
N̂, σ

2

µε

}
,

N̂=

(
Mν
µR1−ν

0

) 2
1+3ν

+
(

M2
ν

µ1+νε1−ν

) 1
1+3ν

[0, 1] 7 3 7

SGD [27]♣ max
{
M2

0
µβε

, σ
2

µβε

}
0 3 7 7

AC-SA [12, 22]♣ max
{√

M1
µ
, σ

2

µβε

}
1 3 3 7

SIGMA [6]♣
max

{
N̂, σ

2

µε̂

}
, ε̂ = βε,

N̂=

(
Mν
µR1−ν

0

) 2
1+3ν

+
(

M2
ν

µ1+ν ε̂1−ν

) 1
1+3ν

[0, 1] 3 3 7

R-clipped-SSTM [15] max
{√

M1
µ
, σ

2

µε2

}
1 3 3 7

R-clipped-SGD [15] max
{
M1
µ
, σ

2

µε2

}
1 3 3 7

R-clipped-SSTM Thm. 2.1
max

{
N̂, σ

2

µε

}
,

N̂ =

(
Mν
µR1−ν

0

) 2
1+3ν

+
(

M2
ν

µ1+νε1−ν

) 1
1+3ν

[0, 1] 3 3 3

R-clipped-SGD Thm. 3.2 max

 M
2

1+ν
ν

µ
2

1+ν R

2(1−ν)
1+ν

0

, M
2

1+ν
ν

µε
1−ν
1+ν

, σ
2

µε

 [0, 1] 3 3 3

dependence on the confidence level as the tightest known result in this case under the “light tails”97

assumption [17].98

• Using restarts technique we extend the obtained results for clipped-SSTM and clipped-SGD to99

the strongly convex case (see Tbl. 2). As in the convex case, the obtained results are superior to all100

previous known results in the general setup we consider.101

• As one of the key contributions of this work, we emphasize that in our theoretical results it is102

sufficient to assume Hölder continuity of the gradients of f only on the ball with radius 2R0 =103

2‖x0 − x∗‖2 and centered at a solution of the problem. This makes our results applicable to much104

larger class of problems than functions with Hölder continuous gradients on Rn, e.g., our analysis105

works even for polynomially growing objectives.106

• To test the performance of the considered methods we conduct several numerical experiments107

on image classification and NLP tasks, and observe that 1) clipped-SSTM and clipped-SGD108

show a comparable performance with SGD on the image classification task, when the noise109

distribution is almost sub-Gaussian, 2) converge much faster than SGD on the NLP task, when the110

noise distribution is heavy-tailed, and 3) clipped-SSTM achieves a comparable performance with111

Adam on the NLP task enjoying both the best known theoretical guarantees and good practical112

performance.113

1.3 Related work114

Light-tailed noise. The theory of high-probability complexity bounds for convex stochastic op-115

timization with light-tailed noise is well-developed. Lower bounds and optimal methods for the116

problems with (ν,Mν)-Hölder continuous gradients are obtained in [27] for ν = 0, and in [12] for117

ν = 1. Up to the logarithmic dependencies these high-probability convergence bounds coincide with118
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the corresponding results for the convergence in expectation (see first two rows of Tbl. 1) While not119

being directly derived in the literature, the lower bound for the case when ν ∈ (0, 1) can be obtained120

as a combination of lower bounds in the deterministic [28, 18] and smooth stochastic settings [12].121

The corresponding optimal methods are analyzed in [4, 6] through the lens of inexact oracle.122

Heavy-tailed noise. Unlike in the “light-tailed” case, the first theoretical guarantees with reasonable123

dependence on both the accuracy ε and the confidence level β appeared just recently. In [26], the124

first such results without acceleration [30] were derived for Mirror Descent with special truncation125

technique for smooth (ν = 1) convex problems on a bounded domain, and then were accelerated and126

extended in [15]. For the strongly convex problems the first accelerated high-probability convergence127

guarantees were obtained in [3] for the special method called proxBoost requiring solving auxiliary128

nontrivial problems at each iteration. These bounds were tightened in [15].129

In contrast, for the case when ν < 1 and, in particular, when ν = 0 the best-known high-probability130

complexity bounds suffer from the negative-power dependence on the confidence level β, i.e., have131

a factor 1/βα for some α > 0, that affects the convergence rate dramatically for small enough132

β. Without additional assumptions on the tails these results are obtained via Markov’s inequality133

P{f(x)− f(x∗) > ε} < E[f(x)−f(x∗)]/ε from the guarantees for the convergence in expectation to134

the accuracy εβ, see the results labeled by ♣ in Tbl. 1. Under an additional assumption on noise135

tails that P{‖∇f(x, ξ)−∇f(x)‖22 > sσ2} = O(s−α) for α > 2 these results can be tightened [10]136

when ν = 0 as O
(
M2

0R
2
0 max

{
ln(β−1)/ε2, (1/βεα)

2/(3α−2)
})

without removing the negative-power137

dependence on the confidence level β. Different stepsize policies allow to change the last term in138

max to β−
1

2α−1 ε−
2α

2α−1 without removing the negative-power dependence on β.139

Gradient clipping. The methods based on gradient clipping [31] and normalization [19] are popular140

in different machine learning and deep learning tasks due to their robustness in practice to the noise141

in the stochastic gradients and rapid changes of the objective function [14]. In [41, 23], clipped-GD142

and clipped-SGD are theoretically studied in applications to non-smooth problems that can grow143

polynomially fast when ‖x − x∗‖2 → ∞ showing the superiority of gradient clipping methods144

to the methods without clipping. The results from [41] are obtained for non-convex problems145

with almost surely bounded noise, and in [23], the authors derive the stability and expectation146

convergence guarantees for strongly convex under assumption that the central p-th moment of the147

stochastic gradient is bounded for p ≥ 2. Since the authors of [23] do not provide convergence148

guarantees with explicit dependencies on all important parameters of the problem it complicates direct149

comparison with our results. Nevertheless, convergence guarantees from [23] are sub-linear and are150

given for the convergence in expectation, and, as a consequence, the corresponding high-probability151

convergence results obtained via Markov’s inequality also suffer from negative-power dependence on152

the confidence level. Next, in [42], the authors establish several expectation convergence guarantees153

for clipped-SGD and prove their optimality in the non-convex case under assumption that the central154

α-moment of the stochastic gradient is uniformly bounded, where α ∈ (1, 2]. It turns out that155

clipped-SGD is able to converge even when α < 2, whereas vanilla SGD can diverge in this setting.156

2 Clipped Stochastic Similar Triangles Method157

In this section, we propose a novel variation of Clipped Stochastic Similar Triangles Method [15]158

adjusted to the class of objectives with Hölder continuous gradients (clipped-SSTM, see Alg. 1).159

The method is based on the clipping of the stochastic gradients:160

clip(∇f(x, ξ), λ) = min

{
1,

λ

‖∇f(x, ξ)‖2

}
∇f(x, ξ) (4)

where ∇f(x, ξ) = 1
m

∑m
i=1∇f(x, ξi) is a mini-batched stochastic gradient. Gradient clipping161

ensures that the resulting vector has a norm bounded by the clipping level λ. Since the clipped162

stochastic gradient cannot have arbitrary large norm, the clipping helps to avoid unstable behavior of163

the method when the noise is heavy-tailed and the clipping level λ is properly adjusted.164

However, unlike the stochastic gradient, clipped stochastic gradient is a biased estimate of ∇f(x):165

the smaller the clipping level the larger the bias. The biasedness of the clipped stochastic gradient166
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Algorithm 1 Clipped Stochastic Similar Triangles Method (clipped-SSTM): case ν ∈ [0, 1]

Input: starting point x0, number of iterationsN , batchsizes {mk}Nk=1, stepsize parameter α, clipping
parameter B, Hölder exponent ν ∈ [0, 1].

1: Set A0 = α0 = 0, y0 = z0 = x0

2: for k = 0, . . . , N − 1 do
3: Set αk+1 = α(k + 1)

2ν
1+ν , Ak+1 = Ak + αk+1, λk+1 = B

αk+1

4: xk+1 = (Aky
k+αk+1z

k)/Ak+1

5: Draw mini-batch mk of fresh i.i.d. samples ξk1 , . . . , ξ
k
mk

and compute ∇f(xk+1, ξk) =
1
mk

∑mk
i=1∇f(xk+1, ξki )

6: Compute ∇̃f(xk+1, ξk) = clip(∇f(xk+1, ξk), λk+1) using (4)
7: zk+1 = zk − αk+1∇̃f(xk+1, ξk)
8: yk+1 = (Aky

k+αk+1z
k+1)/Ak+1

9: end for
Output: yN

complicates the analysis of the method. On the other hand, to circumvent the negative effect of167

the heavy-tailed noise on the high-probability convergence one should choose λ to be not too large.168

Therefore, the question on the appropriate choice of the clipping level is highly non-trivial.169

Fortunately, there exists a simple but insightful observation that helps us to obtain the right formula170

for the clipping level λk in clipped-SSTM: if λk is chosen in such a way that ‖∇f(xk)‖2 ≤ λk/2171

with high probability, then for the realizations ∇f(xk+1, ξk) of the mini-batched stochastic gradient172

such that ‖∇f(xk+1, ξk) − ∇f(xk+1)‖2 ≤ λk/2 the clipping is an identity operator. Next, if the173

probability mass of such realizations is big enough then the bias of the clipped stochastic gradient is174

properly bounded that helps to derive needed convergence guarantees. It turns out that the choice175

λk ∼ 1/αk ensures the method convergence with needed rate and high enough probability.176

Guided by this observation we derive the precise expressions for all the parameters of clipped-SSTM177

and derive high-probability complexity bounds for the method. Below we provide a simplified version178

of the main result for clipped-SSTM in the convex case. The complete formulation and the full proof179

of the theorem are deferred to Appendix B.1 (see Thm. B.1).180

Theorem 2.1. Assume that function f is convex and its gradient satisfy (3) with ν ∈ [0, 1], Mν > 0181

on Q = B2R0 = {x ∈ Rn | ‖x − x∗‖2 ≤ 2R0}, where R0 ≥ ‖x0 − x∗‖2. Then there exist such182

a choice of parameters that clipped-SSTM achieves f(yN )− f(x∗) ≤ ε with probability at least183

1− β after O
(
D ln

2(1+ν)
1+3ν D

β

)
iterations with D =

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν
and requires184

O
(

max

{
D ln

2(1+ν)
1+3ν

D

β
,
σ2R2

0

ε2
ln
D

β

})
oracle calls. (5)

The obtained result has only logarithmic dependence on the confidence level β and optimal depen-185

dence on the accuracy ε up to logarithmic factors [22, 18] for all ν ∈ [0, 1]. Moreover, we emphasize186

that our result does not require f to have (ν,Mν)-Hölder continuous gradient on the whole space.187

This is because we prove that for the proposed choice of parameters the iterates of clipped-SSTM188

stay inside the ball B2R0
= {x ∈ Rn | ‖x − x∗‖2 ≤ 2R0} with probability at least 1 − β, and,189

as a consequence, Hölder continuity of the gradient is required only inside this ball. In particular,190

this means that the better starting point leads not only to the reduction of R0, but also it can reduce191

Mν . Moreover, our result is applicable to much wider class of functions than the standard class of192

functions with Hölder continuous gradients in Rn, e.g., to the problems with polynomial growth.193

For the strongly convex problems, we consider restarted version of Alg. 1 (R-clipped-SSTM, see194

Alg. 2) and derive high-probability complexity result for this version. Below we provide a simplified195

version of the result. The complete formulation and the full proof of the theorem are deferred to196

Appendix B.2 (see Thm. B.2).197

Theorem 2.2. Assume that function f is µ-strongly convex and its gradient satisfy (3) with ν ∈ [0, 1],198

Mν > 0 on Q = B2R0
= {x ∈ Rn | ‖x− x∗‖2 ≤ 2R0}, where R0 ≥ ‖x0 − x∗‖2. Then there exist199
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Algorithm 2 Restarted clipped-SSTM (R-clipped-SSTM): case ν ∈ [0, 1]

Input: starting point x0, number of restarts τ , number of steps of clipped-SSTM in restarts {Nt}τt=1,
batchsizes {m1

k}
N1−1
k=1 , {m2

k}
N2−1
k=1 , . . . , {mτ

k}
Nτ−1
k=1 , stepsize parameters {αt}τt=1, clipping pa-

rameters {Bt}τt=1, Hölder exponent ν ∈ [0, 1].
1: x̂0 = x0

2: for t = 1, . . . , τ do
3: Run clipped-SSTM (Alg. 1) for Nt iterations with batchsizes {mt

k}
Nt−1
k=1 , stepsize parameter

αt, clipping parameter Bt, and starting point x̂t−1. Define the output of clipped-SSTM by x̂t.
4: end for

Output: x̂τ

such a choice of parameters that R-clipped-SSTM achieves f(x̂τ )− f(x∗) ≤ ε with probability at200

least 1− β after201

N̂ = O

(
D ln

2(1+ν)
1+3ν

D

β

)
, D = max

{(
Mν

µR1−ν
0

) 2
1+3ν

ln
µR2

0

ε
,

(
M2
ν

µ1+νε1−ν

) 1
1+3ν

}
(6)

iterations of Alg. 1 in total and requires202

O

(
max

{
D ln

2(1+ν)
1+3ν

D

β
,
σ2

µε
ln
D

β

})
oracle calls. (7)

Again, the obtained result has only logarithmic dependence on the confidence level β and, as our203

result in the convex case, it has optimal dependence on the accuracy ε up to logarithmic factors204

depending on β [22, 18] for all ν ∈ [0, 1].205

3 SGD with clipping206

In this section, we present a new variant of clipped-SGD [31] properly adjusted to the class of207

objectives with (ν,Mν)-Hölder continuous gradients (see Alg. 3).208

Algorithm 3 Clipped Stochastic Gradient Descent (clipped-SGD): case ν ∈ [0, 1]

Input: starting point x0, number of iterations N , batchsize m, stepsize γ, clipping parameter B > 0.
1: for k = 0, . . . , N − 1 do
2: Draw mini-batch of m fresh i.i.d. samples ξk1 , . . . , ξ

k
m and compute ∇f(xk+1, ξk) =

1
m

∑m
i=1∇f(xk+1, ξki )

3: Compute ∇̃f(xk, ξk) = clip(∇f(xk, ξk), λ) using (4) with λ = B/γ

4: xk+1 = xk − γ∇̃f(xk, ξk)
5: end for

Output: x̄N = 1
N

∑N−1
k=0 x

k

We emphasize that as for clipped-SSTM we use clipping level λ inversely proportional to the stepsize209

γ. Below we provide a simplified version of the main result for clipped-SGD in the convex case. The210

complete formulation and the full proof of the theorem are deferred to Appendix C.1 (see Thm. C.1).211

Theorem 3.1. Assume that function f is convex and its gradient satisfy (3) with ν ∈ [0, 1], Mν > 0212

on Q = B2R0
= {x ∈ Rn | ‖x− x∗‖2 ≤ 2R0}, where R0 ≥ ‖x0 − x∗‖2. Then there exist such a213

choice of parameters that clipped-SGD achieves f(x̄N )− f(x∗) ≤ ε with probability at least 1− β214

after215

O
(

max

{
D2, D1+ν ln

D2 +D1+ν

β

})
, D =

M
1

1+ν
ν R0

ε
1

1+ν

(8)

iterations and requires216

O
(

max

{
D2,max

{
D1+ν ,

σ2R2
0

ε2

}
ln
D2 +D1+ν

β

})
oracle calls. (9)
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As all our results in the paper, this result for clipped-SGD has two important features: 1) the217

dependence on the confidence level β is logarithmic and 2) Hölder continuity is required only on218

the ball B2R0 centered at the solution. Moreover, up to the difference in the expressions under219

the logarithm the dependence on ε in the result for clipped-SGD is the same as in the tightest220

known results for non-accelerated SGD-type methods [4, 17]. Finally, we emphasize that for ν < 1221

the logarithmic factors appearing in the complexity bound for clipped-SSTM are worse than the222

corresponding factor in the complexity bound for clipped-SGD. Therefore, clipped-SGD has the223

best known high-probability complexity results in the case when ν = 0 and f is convex.224

For the strongly convex problems, we consider restarted version of Alg. 3 (R-clipped-SGD, see225

Alg. 4) and derive high-probability complexity result for this version. Below we provide a simplified

Algorithm 4 Restarted clipped-SGD (R-clipped-SGD): case ν ∈ [0, 1]

Input: starting point x0, number of restarts τ , number of steps of clipped-SGD in restarts {Nt}τt=1,
batchsizes {mt}τk=1, stepsizes {γt}τt=1, clipping parameters {Bt}τt=1

1: x̂0 = x0

2: for t = 1, . . . , τ do
3: Run clipped-SGD (Alg. 3) for Nt iterations with batchsize mt, stepsize γt, clipping parame-

ter Bt, and starting point x̂t−1. Define the output of clipped-SGD by x̂t.
4: end for

Output: x̂τ

226
version of the result. The complete formulation and the full proof of the theorem are deferred to227

Appendix C.2 (see Thm. C.2).228

Theorem 3.2. Assume that function f is µ-strongly convex and its gradient satisfy (3) with ν ∈ [0, 1],229

Mν > 0 on Q = B2R0
= {x ∈ Rn | ‖x− x∗‖2 ≤ 2R0}, where R0 ≥ ‖x0 − x∗‖2. Then there exist230

such a choice of parameters that R-clipped-SGD achieves f(x̄N )− f(x∗) ≤ ε with probability at231

least 1− β after232

O
(

max

{
D

2
1+ν

1 ln
µR2

0

ε
,D

2
1+ν

2 ,max

{
D1 ln

µR2
0

ε
,D2

}
ln
D

β

})
iterations of Alg. 3 in total and requires233

O
(

max

{
D

2
1+ν

1 ln
µR2

0

ε
,D

2
1+ν

2 ,max

{
D1 ln

µR2
0

ε
,D2,

σ2

µε

}
ln
D

β

})
oracle calls, where

234

D1 =
Mν

µR1−ν
0

, D2 =
Mν

µ
1+ν
2 ε

1−ν
2

, D = (D
2

1+ν

1 +D1) ln
µR2

0

ε
+D2 +D

2
1+ν

2 .

As in the convex case, for ν < 1 the log factors appearing in the complexity bound for R-clipped-235

SSTM are worse than the corresponding factor in the bound for R-clipped-SGD. Thus, R-clipped-236

SGD has the best known high-probability complexity results for strongly convex f and ν = 0.237

4 Numerical experiments238

We tested the performance of the methods on the following problems:239

• BERT fine-tuning on CoLA dataset [39]. We use pretrained BERT from Transformers library [40]240

(bert-base-uncased) and freeze all layers except the last two linear ones.241

• ResNet-18 training on ImageNet-100 (first 100 classes of ImageNet [34]).242

First, we study the noise distribution for both problem as follows: at the starting point we sample243

large enough number of batched stochastic gradients ∇f(x0, ξ1), . . . ,∇f(x0, ξK) with batchsize244

32 and plot the histograms for ‖∇f(x0, ξ1)−∇f(x0)‖2, . . . , ‖∇f(x0, ξK)−∇f(x0)‖2, see Fig. 1.245

As one can see, the noise distribution for BERT + CoLA is substantially non-sub-Gaussian, whereas246

the distribution for ResNet-18 + Imagenet-100 is almost Gaussian.247

Next, we compared 4 different optimizers on these problems: Adam, SGD (with Momentum),248

clipped-SGD (with Momentum and coordinate-wise clipping) and clipped-SSTM (with norm-249

clipping and ν = 1). The results are presented in Fig. 2. We observed that the noise distributions do250
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Figure 1: Noise distribution of the stochastic gradients for ResNet-18 on ImageNet-100 and BERT
fine-tuning on the CoLA dataset before the training. Red lines: probability density functions with
means and variances empirically estimated by the samples. Batch count is the total number of samples
used to build a histogram.

not change significantly along the trajectories of the considered methods, see Appendix D. During251

the hyper-parameters search we compared different batchsizes, emulated via gradient accumulation252

(thus we compare methods with different batchsizes by the number of base batches used). The base253

batchsize was 32 for both problems, stepsizes and clipping levels were tuned. One can find additional254

details regarding our experiments in Appendix D.255

0.2 0.4 0.6 0.8 1.0 1.2
batch count 1e5

0.8

1.0

1.2

1.4

1.6

1.8

2.0

lo
ss

Train loss, ResNet-18
Adam
SGD
clipped-SSTM
clipped-SGD

0.4 0.6 0.8 1.0 1.2
batch count 1e5

1.2

1.4

1.6

1.8

lo
ss

Validation loss, ResNet-18

0.4 0.6 0.8 1.0 1.2
batch count 1e5

55

60

65

70

ac
cu

ra
cy

Validation accuracy, ResNet-18

0.0 0.5 1.0 1.5 2.0 2.5
batch count 1e3

0.55

0.60

0.65

0.70

lo
ss

Train loss, BERT
Adam
clipped-SSTM
clipped-SGD
SGD

0.0 0.5 1.0 1.5 2.0 2.5
batch count 1e3

0.52

0.54

0.56

0.58

0.60

lo
ss

Validation loss, BERT

0.0 0.5 1.0 1.5 2.0 2.5
batch count 1e3

71

72

73

74

75

ac
cu

ra
cy

Validation accuracy, BERT

Figure 2: Train and validation loss + accuracy for different optimizers on both problems. Here, “batch
count” denotes the total number of used stochastic gradients.

Image classification. On ResNet-18 + ImageNet-100 task, SGD performs relatively well, and256

even ties with Adam (with batchsize of 4× 32) in validation loss. clipped-SSTM (with batchsize of257

2× 32) also ties with Adam and clipped-SGD is not far from them. The results were averaged from258

5 different launches (with different starting points/weight initializations). Since the noise distribution259

is almost Gaussian even vanilla SGD performs well, i.e., gradient clipping is not required. At the260

same time, the clipping does not slow down the convergence significantly.261

Text classification. On BERT + CoLA task, when the noise distribution is heavy-tailed, the methods262

with clipping outperform SGD by a large margin. This result is in good correspondence with the263

derived high-probability complexity bounds for clipped-SGD, clipped-SSTM and the best-known264

ones for SGD. Moreover, clipped-SSTM (with batchsize of 8 × 32) achieves the same loss on265

validation as Adam, and has better accuracy. These results were averaged from 5 different train-val266

splits and 20 launches (with different starting points/weight initializations) for each of the splits, 100267

launches in total.268
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A Basic facts, technical lemmas, and auxiliary results455

A.1 Notation, missing definitions, and useful inequalities456

Notation and missing definitions. We use standard notation for stochastic optimization. For all457

x ∈ Rn we use ‖x‖2 =
√
〈x, x〉 to denote standard Euclidean norm, where 〈x, y〉 = x1y1 + x2y2 +458

. . .+ xnyn, x = (x1, . . . , xn)>, x = (x1, . . . , xn)> ∈ Rn. Next, we use E[ξ] and E[ξ | η] to denote459

expectation of ξ and expectation of ξ conditioned on η respectively. In some places of the paper,460

we also use Eξ[·] to denote conditional expectation taken w.r.t. the randomness coming from ξ. The461

probability of event E is defined as P{E}.462

Finally, we use a standard definition of differentiable strongly convex function.463

Definition A.1. Differentiable function f : Q ⊆ Rn → R is called µ-strongly convex for some µ ≥ 0464

if for all x, y ∈ Q465

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖22.

When µ = 0 function f is called convex.466

Useful inequalities. For all a, b ∈ Rn and λ > 0467

|〈a, b〉| ≤ ‖a‖
2
2

2λ
+
λ‖b‖22

2
, (10)

468

‖a+ b‖22 ≤ 2‖a‖22 + 2‖b‖22, (11)
469

〈a, b〉 =
1

2

(
‖a+ b‖22 − ‖a‖22 − ‖b‖22

)
. (12)

A.2 Auxiliary lemmas470

Lemma A.1 ([5, 29]). Let f be (ν,Mν)-Hölder continuous on Q ⊆ Rn. Then for all x, y ∈ Q and471

for all δ > 0472

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
Mν

1 + ν
‖x− y‖1+ν2 , (13)

473

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L(δ, ν)

2
‖x− y‖22 +

δ

2
, L(δ, ν) =

(
1

δ

) 1−ν
1+ν

M
2

1+ν
ν . (14)

Lemma A.2 (Bernstein inequality for martingale differences [1, 7, 8]). Let the sequence of random474

variables {Xi}i≥1 form a martingale difference sequence, i.e. E [Xi | Xi−1, . . . , X1] = 0 for all475

i ≥ 1. Assume that conditional variances σ2
i

def
= E

[
X2
i | Xi−1, . . . , X1

]
exist and are bounded and476

assume also that there exists deterministic constant c > 0 such that ‖Xi‖2 ≤ c almost surely for all477

i ≥ 1. Then for all b > 0, F > 0 and n ≥ 1478

P

{∣∣∣ n∑
i=1

Xi

∣∣∣ > b and
n∑
i=1

σ2
i ≤ F

}
≤ 2 exp

(
− b2

2F + 2cb/3

)
. (15)

A.3 Technical lemmas479

Lemma A.3. Let sequences {αk}k≥0 and {Ak}k≥0 satisfy480

α0 = A0 = 0, αk+1 =
(k + 1)

2ν
1+ν (ε/2)

1−ν
1+ν

2
2ν

1+ν aM
2

1+ν
ν

, Ak+1 = Ak + αk+1, a, ε,Mν > 0, ν ∈ [0, 1]

(16)
for all k ≥ 0. Then for all k ≥ 0 we have481

Ak ≥ aLkα2
k, Ak ≥

k
1+3ν
1+ν (ε/2)

1−ν
1+ν

2
1+3ν
1+ν aM

2
1+ν
ν

, (17)
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where L0 = 0 and for k > 0482

Lk =

(
2Ak
αkε

) 1−ν
1+ν

M
2

1+ν
ν . (18)

Moreover, for all k ≥ 0483

Ak ≤
k

1+3ν
1+ν (ε/2)

1−ν
1+ν

2
2ν

1+ν aM
2

1+ν
ν

. (19)

Proof. We start with deriving the second inequality from (17). The proof goes by induction. For484

k = 0 the inequality holds. Next, we assume that it holds for all k ≤ K. Then,485

AK+1 = AK + αK+1 ≥
K

1+3ν
1+ν (ε/2)

1−ν
1+ν

2
1+3ν
1+ν aM

2
1+ν
ν

+
(K + 1)

2ν
1+ν (ε/2)

1−ν
1+ν

2
2ν

1+ν aM
2

1+ν
ν

.

Let us estimate the right-hand side of the previous inequality. We want to show that486

K
1+3ν
1+ν (ε/2)

1−ν
1+ν

2
1+3ν
1+ν aM

2
1+ν
ν

+
(K + 1)

2ν
1+ν (ε/2)

1−ν
1+ν

2
2ν

1+ν aM
2

1+ν
ν

≥ (K + 1)
1+3ν
1+ν (ε/2)

1−ν
1+ν

2
1+3ν
1+ν aM

2
1+ν
ν

that is equivalent to the inequality:487

K
1+3ν
1+ν

2
+ (K + 1)

2ν
1+ν ≥ (K + 1)

1+3ν
1+ν

2
⇐⇒ K

1+3ν
1+ν

2
≥ (K + 1)

2ν
1+ν (K − 1)

2
.

If K = 1, it trivially holds. If K > 1, it is equivalent to488

K

K − 1
≥
(
K + 1

K

)2− 2
1+ν

.

Since 2− 2
1+ν is monotonically increasing function for ν ∈ [0, 1] we have that489 (

K + 1

K

)2− 2
1+ν

≤ K + 1

K
≤ K

K − 1
.

That is, the second inequality in (17) holds for k = K + 1, and, as a consequence, it holds for all490

k ≥ 0. Next, we derive the first part of (17). For k = 0 it trivially holds. For k > 0 we consider cases491

ν = 0 and ν > 0 separately. When ν = 0 the inequality is equivalent to492

1 ≥ 2aαkM
2
0

ε
, where

2aαkM
2
0

ε

(16)
= 1,

i.e., we have Ak = aLkα
2
k for all k ≥ 0. When ν > 0 the first inequality in (17) is equivalent to493

Ak ≥ a
1+ν
2ν α

1+3ν
2ν

k (ε/2)−
1−ν
2ν M

1
ν
ν

(16)⇐⇒ Ak ≥
k

1+3ν
1+ν (ε/2)

1−ν
1+ν

2
1+3ν
1+ν aM

2
1+ν
ν

,

where the last inequality coincides with the second inequality from (17) that we derived earlier in the494

proof.495

To finish the proof it remains to derive (19). Again, the proof goes by induction. For k = 0 inequality496

(19) is trivial. Next, we assume that it holds for all k ≤ K. Then,497

AK+1 = AK + αK+1 ≤
K

1+3ν
1+ν (ε/2)

1−ν
1+ν

2
2ν

1+ν aM
2

1+ν
ν

+
(K + 1)

2ν
1+ν (ε/2)

1−ν
1+ν

2
2ν

1+ν aM
2

1+ν
ν

.

Let us estimate the right-hand side of the previous inequality. We want to show that498

K
1+3ν
1+ν (ε/2)

1−ν
1+ν

2
2ν

1+ν aM
2

1+ν
ν

+
(K + 1)

2ν
1+ν (ε/2)

1−ν
1+ν

2
2ν

1+ν aM
2

1+ν
ν

≤ (K + 1)
1+3ν
1+ν (ε/2)

1−ν
1+ν

2
2ν

1+ν aM
2

1+ν
ν

that is equivalent to the inequality:499

K
1+3ν
1+ν + (K + 1)

2ν
1+ν ≤ (K + 1)

1+3ν
1+ν .

This inequality holds due to500

K
1+3ν
1+ν ≤ (K + 1)

2ν
1+νK.

That is, (19) holds for k = K + 1, and, as a consequence, it holds for all k ≥ 0.501
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Lemma A.4. Let f have Hölder continuous gradients on Q ⊆ Rn for some ν ∈ [0, 1] with constant502

Mν > 0, be convex and x∗ ∈ Q be some minimum of f(x) on Rn. Then, for all x ∈ Rn503

‖∇f(x)‖2 ≤
(

1 + ν

ν

) ν
1+ν

M
1

1+ν
ν (f(x)− f(x∗))

ν
1+ν , (20)

where for ν = 0 we use
[(

1+ν
ν

) ν
1+ν

]
ν=0

:= limν→0

(
1+ν
ν

) ν
1+ν = 1.504

Proof. For ν = 0 inequality (20) follows from (3) and1 ∇f(x∗) = 0. When ν > 0 for arbitrary point505

x ∈ Q we consider the point y = x− α∇f(x), where α =
(
‖∇f(x)‖1−ν2

Mν

) 1
ν

. Since x∗ ∈ Q and f is506

convex one can easily show that y ∈ Q. For the pair of points x, y we apply (13) and get507

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
Mν

1 + ν
‖x− y‖1+ν2

= f(x)− α‖∇f(x)‖2 +
αν+1Mν

1 + ν
‖∇f(x)‖1+ν2

= f(x)− ‖∇f(x)‖
1+ν
ν

2

M
1
ν
ν

+
‖∇f(x)‖

1+ν
ν

2

(1 + ν)M
1
ν
ν

= f(x)− ν‖∇f(x)‖
1+ν
ν

2

(1 + ν)M
1
ν
ν

implying508

‖∇f(x)‖2 ≤
(

1 + ν

ν

) ν
1+ν

M
1

1+ν
ν (f(x)− f(y))

ν
1+ν ≤

(
1 + ν

ν

) ν
1+ν

M
1

1+ν
ν (f(x)− f(x∗))

ν
1+ν .

509

Lemma A.5. Let f have Hölder continuous gradients on Q ⊆ Rn for some ν ∈ [0, 1] with constant510

Mν > 0, be convex and x∗ ∈ Q be some minimum of f(x) on Rn. Then, for all x ∈ Rn and all511

δ > 0,512

‖∇f(x)‖22 ≤ 2

(
1

δ

) 1−ν
1+ν

M
2

1+ν
ν (f(x)− f(x∗)) + δ

2ν
1+νM

2
1+ν
ν . (21)

Proof. For a given δ > 0 we consider an arbitrary point x ∈ Q and y = x − 1
L(δ,ν)∇f(x), where513

L(δ, ν) =
(
1
δ

) 1−ν
1+ν M

2
1+ν
ν . Since x∗ ∈ Q and f is convex one can easily show that y ∈ Q. For the514

pair of points x, y we apply (14) and get515

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L(δ, ν)

2
‖x− y‖22 +

δ

2

= f(x)− 1

2L(δ, ν)
‖x− y‖22 +

δ

2

implying516

‖∇f(x)‖22 ≤ 2L(δ, ν) (f(x)− f(y)) + δL(δ, ν)

≤ 2

(
1

δ

) 1−ν
1+ν

M
2

1+ν
ν (f(x)− f(x∗)) + δ

2ν
1+νM

2
1+ν
ν .

517

1When f is not differentiable, we use subgradients. In this case, 0 belongs to the subdifferential of f at the
point x∗ and we take it as ∇f(x∗).
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B Clipped Similar Triangles Method: missing details and proofs518

B.1 Convergence in the convex case519

In this section, we provide the full proof of Thm. 2.1 together with complete statement of the result.520

B.1.1 Two lemmas521

The analysis of clipped-SSTM consists of 3 main steps. The first one is an “optimization lemma” –522

a modification of a standard lemma for Similar Triangles Method (see [9] and Lemma F.4 from [15]).523

This result helps to estimate the progress of the method after N iterations.524

Lemma B.1. Let f be a convex function with a minimum at some2 point x∗, its gradient be (ν,Mν)-525

Hölder continuous on a ball B3R0(x∗), where R0 ≥ ‖x0 − x∗‖2, and let stepsize parameter a526

satisfy a ≥ 1. If xk, yk, zk ∈ B3R0(x∗) for all k = 0, 1, . . . , N , N ≥ 0, then after N iterations of527

clipped-SSTM for all z ∈ Rn we have528

AN
(
f(yN )− f(z)

)
≤ 1

2
‖z0 − z‖22 −

1

2
‖zN − z‖22 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk

〉
+

N−1∑
k=0

α2
k+1 ‖θk+1‖22 +

N−1∑
k=0

α2
k+1

〈
θk+1,∇f(xk+1)

〉
+
ANε

4
,(22)

θk+1
def
= ∇̃f(xk+1, ξk)−∇f(xk+1). (23)

Proof. Consider an arbitrary k ∈ {0, 1, . . . , N − 1}. Using zk+1 = zk − αk+1∇̃f(xk+1, ξk) we529

get that for all z ∈ Rn530

αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉
= αk+1

〈
∇̃f(xk+1, ξk), zk − zk+1

〉
+αk+1

〈
∇̃f(xk+1, ξk), zk+1 − z

〉
= αk+1

〈
∇̃f(xk+1, ξk), zk − zk+1

〉
+
〈
zk+1 − zk, z − zk+1

〉
(12)
= αk+1

〈
∇̃f(xk+1, ξk), zk − zk+1

〉
− 1

2
‖zk − zk+1‖22

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22. (24)

Next, we notice that531

yk+1 =
Aky

k + αk+1z
k+1

Ak+1
=
Aky

k + αk+1z
k

Ak+1
+
αk+1

Ak+1

(
zk+1 − zk

)
= xk+1+

αk+1

Ak+1

(
zk+1 − zk

)
(25)

2Our proofs are valid for any solution x∗ and, for example, one can take as x∗ the closest solution to the
starting point x0.
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implying532

αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉 (23),(24)
≤ αk+1

〈
∇f(xk+1), zk − zk+1

〉
− 1

2
‖zk − zk+1‖22

+αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22

(25)
= Ak+1

〈
∇f(xk+1), xk+1 − yk+1

〉
− 1

2
‖zk − zk+1‖22

+αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22

(14)
≤ Ak+1

(
f(xk+1)− f(yk+1)

)
+
Ak+1Lk+1

2
‖xk+1 − yk+1‖22

+
αk+1ε

4
− 1

2
‖zk − zk+1‖22 + αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22

(25)
= Ak+1

(
f(xk+1)− f(yk+1)

)
+

1

2

(
α2
k+1Lk+1

Ak+1
− 1

)
‖zk − zk+1‖22

+αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22 +

αk+1ε

4
,

where in the third inequality we used xk+1, yk+1 ∈ B3R0(x∗) and (14) with δ = αk+1

2Ak+1
ε and533

L(δ, ν) = Lk+1 =
(

2Ak+1

εαk+1

) 1−ν
1+ν

M
2

1+ν
ν . Since Ak+1 ≥ aLk+1α

2
k+1 (Lemma A.3) and a ≥ 1 we534

can continue our derivations:535

αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉
≤ Ak+1

(
f(xk+1)− f(yk+1)

)
+ αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22 +

αk+1ε

4
. (26)

Next, due to convexity of f we have536

〈
∇̃f(xk+1, ξk), yk − xk+1

〉
(23)
=

〈
∇f(xk+1), yk − xk+1

〉
+
〈
θk+1, y

k − xk+1
〉

≤ f(yk)− f(xk+1) +
〈
θk+1, y

k − xk+1
〉
. (27)

By definition of xk+1 we have xk+1 = Aky
k+αk+1z

k

Ak+1
implying537

αk+1

(
xk+1 − zk

)
= Ak

(
yk − xk+1

)
(28)
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since Ak+1 = Ak + αk+1. Putting all together we derive that538

αk+1

〈
∇̃f(xk+1, ξk), xk+1 − z

〉
= αk+1

〈
∇̃f(xk+1, ξk), xk+1 − zk

〉
+αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉
(28)
= Ak

〈
∇̃f(xk+1, ξk), yk − xk+1

〉
+αk+1

〈
∇̃f(xk+1, ξk), zk − z

〉
(27),(26)
≤ Ak

(
f(yk)− f(xk+1)

)
+Ak

〈
θk+1, y

k − xk+1
〉

+Ak+1

(
f(xk+1)− f(yk+1)

)
+ αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22 +

αk+1ε

4
(28)
= Akf(yk)−Ak+1f(yk+1) + αk+1

〈
θk+1, x

k+1 − zk
〉

+αk+1f(xk+1) + αk+1

〈
θk+1, z

k − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22 +

αk+1ε

4

= Akf(yk)−Ak+1f(yk+1) + αk+1f(xk+1)

+αk+1

〈
θk+1, x

k+1 − zk+1
〉

+
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22 +

αk+1ε

4
.

Rearranging the terms we get539

Ak+1f(yk+1)−Akf(yk) ≤ αk+1

(
f(xk+1) +

〈
∇̃f(xk+1, ξk), z − xk+1

〉)
+

1

2
‖zk − z‖22

−1

2
‖zk+1 − z‖22 + αk+1

〈
θk+1, x

k+1 − zk+1
〉

+
αk+1ε

4
(23)
= αk+1

(
f(xk+1) +

〈
∇f(xk+1), z − xk+1

〉)
+αk+1

〈
θk+1, z − xk+1

〉
+

1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22

+αk+1

〈
θk+1, x

k+1 − zk+1
〉

+
αk+1ε

4

≤ αk+1f(z) +
1

2
‖zk − z‖22 −

1

2
‖zk+1 − z‖22 + αk+1

〈
θk+1, z − zk+1

〉
+
αk+1ε

4
where in the last inequality we use the convexity of f . Taking into account A0 = α0 = 0 and540

AN =
∑N−1
k=0 αk+1 we sum up these inequalities for k = 0, . . . , N − 1 and get541

ANf(yN ) ≤ ANf(z) +
1

2
‖z0 − z‖22 −

1

2
‖zN − z‖22 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk+1

〉
+
ANε

4

= ANf(z) +
1

2
‖z0 − z‖22 −

1

2
‖zN − z‖22 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk

〉
+

N−1∑
k=0

α2
k+1

〈
θk+1, ∇̃f(xk+1, ξk)

〉
+
ANε

4

(23)
= ANf(z) +

1

2
‖z0 − z‖22 −

1

2
‖zN − z‖22 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk

〉
+

N−1∑
k=0

α2
k+1 ‖θk+1‖22 +

N−1∑
k=0

α2
k+1

〈
θk+1,∇f(xk+1)

〉
+
ANε

4

that concludes the proof.542
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From Lemma A.3 we know that543

AN ∼
N

1+3ν
1+ν ε

1−ν
1+ν

M
2

1+ν
ν

.

Therefore, in view of Lemma B.1 (inequality (22) with z = x∗), to derive the desired complexity544

bound from Thm. 2.1 it is sufficient to show that545

N−1∑
k=0

αk+1

〈
θk+1, z − zk

〉
+

N−1∑
k=0

α2
k+1 ‖θk+1‖22 +

N−1∑
k=0

α2
k+1

〈
θk+1,∇f(xk+1)

〉
+
ANε

4
. R2

0.

with probability at least 1− β. One possible way to achieve this goal is to apply some concentration546

inequality to these three sums. Since we use clipped stochastic gradients, under a proper choice of the547

clipping parameter, random vector θk+1 = ∇̃f(xk+1, ξk) −∇f(xk+1) is bounded in `2-norm by548

2λk+1 with high probability as well. Taking into account the assumption on the stochastic gradients549

(see (2)), it is natural to apply Bernstein’s inequality (see Lemma A.2). Despite the seeming simplicity,550

this part of the proof is the trickiest one.551

First of all, it is useful to derive tight enough upper bounds for bias, variance and distortion of552

∇̃f(xk+1, ξk) – this is the second step of the whole proof. Fortunately, Lemma F.5 from [15] does553

exactly what we need in our proof and holds without any changes.554

Lemma B.2 (Lemma F.5 from [15].). For all k ≥ 0 the following inequality holds:555 ∥∥∥∇̃f(xk+1, ξk)− Eξk

[
∇̃f(xk+1, ξk)

]∥∥∥
2
≤ 2λk+1. (29)

Moreover, if ‖∇f(xk+1)‖2 ≤ λk+1

2 for some k ≥ 0, then for this k we have:556 ∥∥∥Eξk

[
∇̃f(xk+1, ξk)

]
−∇f(xk+1)

∥∥∥
2
≤ 4σ2

mkλk+1
, (30)

Eξk

[∥∥∥∇̃f(xk+1, ξk)−∇f(xk+1)
∥∥∥2
2

]
≤ 18σ2

mk
, (31)

Eξk

[∥∥∥∇̃f(xk+1, ξk)− Eξk

[
∇̃f(xk+1, ξk)

]∥∥∥2
2

]
≤ 18σ2

mk
. (32)

B.1.2 Proof of Theorem 2.1557

The final, third, step of the proof is consists of providing explicit formulas and bounds for the558

parameters of the method and derivation of the desired result using induction and Bernstein’s559

inequality. Below we provide the complete statement of Thm. 2.1.560

Theorem B.1. Assume that function f is convex, achieves minimum value at some3 x∗ , and the561

gradients of f satisfy (3) with ν ∈ [0, 1], Mν > 0 on B3R0
(x∗), where R0 ≥ ‖x0 − x∗‖2. Then for562

all β ∈ (0, 1) and N ≥ 1 such that563

ln
4N

β
≥ 2 (33)

we have that after N iterations of clipped-SSTM with564

α =
(ε/2)

1−ν
1+ν

2
2ν

1+ν aM
2

1+ν
ν

, mk = max

{
1,

20736Nσ2α2
k+1 ln 4N

β

C2R2
0

}
, (34)

565

B =
CR0

16 ln 4N
β

, a ≥ 16384 ln2 4N

β
, (35)

566

ε
1−ν
1+ν ≤ aCM

1−ν
1+ν
ν R1−ν

0

16 ln 4N
β

, ε ≤ 2
1+ν
2 a

1+ν
2 C1+νR1+ν

0 Mν

100
1+3ν

2

, (36)

3Our proofs are valid for any solution x∗ and, for example, one can take as x∗ the closest solution to the
starting point x0.
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567

ε
1−ν
1+3ν ≤ min

 a
2+3ν−ν2
2(1+3ν)

22+4ν+ 3+8ν−5ν2−6ν3

(1+ν)(1+3ν) ln 4N
β

,
a

(1+ν)2

1+3ν

24+7ν+ 2+7ν+2ν2−3ν3

(1+ν)(1+3ν) ln1+ν 4N
β

C
1−ν2
1+3ν R

1−ν2
1+3ν

0 M
1−ν
1+3ν
ν

(37)
with probability at least 1− β568

f(yN )− f(x∗) ≤ 4aC2R2
0M

2
1+ν
ν

N
1+3ν
1+ν ε

1−ν
1+ν

, (38)

where569

N =

2
1+ν
1+3ν a

1+ν
1+3νC

2(1+ν)
1+3ν R

2(1+ν)
1+3ν

0 M
2

1+3ν
ν

ε
2

1+3ν

+ 1, C =
√

7. (39)

In other words, if we choose a = 16384 ln2 4N
β , then the method achieves f(yN )− f(x∗) ≤ ε with570

probability at least 1− β after O

(
M

2
1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν
ln

2(1+ν)
1+3ν

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν β

)
iterations and requires571

O

max

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν

ln
2(1+ν)
1+3ν

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν β
,
σ2R2

0

ε2
ln
M

2
1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν β


 oracle calls.

(40)

Proof. First of all, we notice that for each k ≥ 0 iterates xk+1, zk, yk lie in the ball BR̃k(x∗), where572

Rk = ‖zk − x∗‖2, R̃0 = R0, R̃k+1 = max{R̃k, Rk+1}. We prove it using induction. Since y0 =573

z0 = x0, R̃0 = R0 ≥ ‖z0 − x∗‖2 and x1 = A0y
0+α1z

0

A1
= z0 we have that x1, z0, y0 ∈ BR̃0

(x∗).574

Next, assume that xl, zl−1, yl−1 ∈ BR̃l−1
(x∗) for some l ≥ 1. By definitions of Rl and R̃l we have575

that zl ∈ BRl(x∗) ⊆ BR̃l(x
∗). Since yl is a convex combination of yl−1 ∈ BR̃l−1

(x∗) ⊆ BR̃l(x
∗),576

zl ∈ BR̃l(x
∗) and BR̃l(x

∗) is a convex set we conclude that yl ∈ BR̃l(x
∗). Finally, since xl+1 is a577

convex combination of yl and zl we have that xl+1 lies in BR̃l(x
∗) as well.578

Next, our goal is to prove via induction that for all k = 0, 1, . . . , N with probability at least 1− kβ
N579

the following statement holds: inequalities580

R2
t ≤ R2

0 + 2
t−1∑
l=0

αl+1

〈
θl+1, x

∗ − zl
〉

+ 2
t−1∑
l=0

α2
l+1

〈
θl+1,∇f(xl+1)

〉
+2

t−1∑
l=0

α2
k+1‖θl+1‖22 +

ANε

2

≤ C2R2
0 (41)

hold for t = 0, 1, . . . , k simultaneously where C is defined in (39). Let Ek denote the probabilistic581

event that this statement holds. Then, our goal is to show that P{Ek} ≥ 1− kβ
N for all k = 0, 1, . . . , N .582

For t = 0 inequality (41) holds with probability 1 since C ≥ 1, hence P{E0} = 1. Next, assume583

that for some k = T − 1 ≤ N − 1 we have P{Ek} = P{ET−1} ≥ 1− (T−1)β
N . Let us prove that584

P{ET } ≥ 1− Tβ
N . First of all, since RT−1 implies Rt ≤ CR0 for all t = 0, 1, . . . , T − 1 we have585

that R̃T−1 ≤ CR0, and, as a consequence, zT−1 ∈ BCR0(x∗). Therefore, probability event ET−1586

implies587

‖zT − x∗‖2 = ‖zT−1 − x∗ − αT ∇̃f(xT , ξT−1)‖2 ≤ ‖zT−1 − x∗‖2 + αT ‖∇̃f(xT , ξT−1)‖2

≤ CR0 + αTλT =

(
1 +

1

16 ln 4N
β

)
CR0

(33),(39)
≤

(
1 +

1

32

)√
7R0 ≤ 3R0,
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hence R̃T ≤ 3R0. Then, one can apply Lemma B.1 and get that probability event ET−1 implies588

At
(
f(yt)− f(x∗)

)
≤ 1

2
‖z0 − x∗‖22 −

1

2
‖zt − x∗‖22 +

t−1∑
k=0

αk+1

〈
θk+1, x

∗ − zk
〉

+

t−1∑
k=0

α2
k+1 ‖θk+1‖22 +

t−1∑
k=0

α2
k+1

〈
θk+1,∇f(xk+1)

〉
+
Atε

4
, (42)

θk+1
def
= ∇̃f(xk+1, ξk)−∇f(xk+1) (43)

for all t = 0, 1, . . . , T − 1, T . Taking into account that f(yt)− f(x∗) ≥ 0 for all yt we derive that589

probability event ET−1 implies590

R2
t ≤ R2

0 +2

t−1∑
l=0

αl+1

〈
θl+1, x

∗ − zl
〉

+2

t−1∑
l=0

α2
l+1

〈
θl+1,∇f(xl+1)

〉
+2

t−1∑
l=0

α2
l+1‖θl+1‖22 +

Atε

2
.

(44)
for all t = 0, 1, . . . , T .591

The rest of the proof is based on the refined analysis of inequality (44). First of all, when ν = 0 from592

(14) for all t ≥ 0 we have593

∥∥∇f(xt+1)
∥∥
2
≤ M0 =

16M0B ln 4N
β

CR0
≤ aM2

0B

ε
=

B

2αt+1
=
λt+1

2

where we use B = CR0

16 ln 4N
β

and ε ≤ aCM0R0

16 ln 4N
β

. Next, we prove that ‖∇f(xt+1)‖2 ≤ λt+1

2 when594

ν > 0. For t = 0 we have595

‖∇f(x1)‖2 = ‖∇f(z0)‖2
(3)
≤ Mν‖z0 − x∗‖ν2 ≤MνR

ν
0 =

16ε
1−ν
1+ν ln 4N

β

aCM
1−ν
1+ν
ν R1−ν

0

≤ B

2α1
=
λ1
2

since ε
1−ν
1+ν ≤ aCM

1−ν
1+ν
ν R1−ν

0

16 ln 4N
β

. For 0 < t ≤ T − 1 probability event ET−1 implies596

‖∇f(xt+1)‖2 ≤ ‖∇f(xt+1)−∇f(yt)‖2 + ‖∇f(yt)‖2
(3)
≤ Mν‖xt+1 − yt‖ν2 +

(
1 + ν

ν

) ν
1+ν

M
1

1+ν
ν

(
f(yt)− f(x∗)

) ν
1+ν

(28),(41)
≤ Mν

(
αt+1

At

)ν
‖xt+1 − zt‖ν2 +

(
1 + ν

ν

) ν
1+ν

M
1

1+ν
ν

(
C2R2

0

2At

) ν
1+ν

=
λt+1

2

(
2Mν

λt+1

(
αt+1

At

)ν
‖xt+1 − zt‖ν2︸ ︷︷ ︸

D1

+

(
1 + ν

ν

) ν
1+ν 2M

1
1+ν
ν

λt+1

(
C2R2

0

2At

) ν
1+ν

︸ ︷︷ ︸
D2

)
.
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Next, we show that D1 +D2 ≤ 1. Using the definition of λt+1, triangle inequality ‖xt+1 − zt‖2 ≤597

‖xt+1 − x∗‖2 + ‖zt − x∗‖2 ≤ 2CR0, and lower bound (17) for At (see Lemma A.3) we derive598

D1 =
2ν+4Mνα

1+ν
t+1 ln 4N

β

C1−νR1−ν
0 Aνt

=
2ν+4Mν(t+ 1)2ν(ε/2)1−ν ln 4N

β

22νa1+νC1−νR1−ν
0 M2

νA
ν
t

(17)
≤

23(t+ 1)2νε1−ν ln 4N
β

a1+νC1−νR1−ν
0 Mν

· 2
(1+3ν)ν

1+ν aνM
2ν

1+ν
ν

t
(1+3ν)ν

1+ν (ε/2)
ν(1−ν)
1+ν

=
(t+ 1)2ν

t
ν(1+3ν)

1+ν

·
23+2νε

1−ν
1+ν ln 4N

β

aM
1−ν
1+ν
ν C1−νR1−ν

0

≤
23+4νt

ν(1−ν)
1+ν ε

1−ν
1+ν ln 4N

β

aM
1−ν
1+ν
ν C1−νR1−ν

0

(39)
≤

23+4νε
1−ν
1+ν ln 4N

β

aM
1−ν
1+ν
ν C1−νR1−ν

0

· 2
2ν(1−ν)(1+2ν)
(1+ν)(1+3ν) a

ν(1−ν)
1+3ν C

2ν(1−ν)
1+3ν R

2ν(1−ν)
1+3ν

0 M
2ν(1−ν)

(1+ν)(1+3ν)
ν

ε
2ν(1−ν)

(1+ν)(1+3ν)

=
23+4ν+

2ν(1−ν)(1+2ν)
(1+ν)(1+3ν) ε

1−ν
1+3ν ln 4N

β

a
(1+ν)2

1+3ν M
1−ν
1+3ν
ν C

(1−ν)(1+ν)
1+3ν R

(1−ν)(1+ν)
1+3ν

0

(37)
≤ 1

2
3+6ν−7ν2−2ν3

(1+ν)(1+3ν) a
ν
2

.

Applying the same inequalities and
(
1+ν
ν

) ν
1+ν ≤ 2 we estimate D2:599

D2 =

(
1 + ν

ν

) ν
1+ν 24−

ν
1+νM

1
1+ν
ν αt+1 ln 4N

β

C
1−ν
1+νR

1−ν
1+ν

0 A
ν

1+ν

t

≤ 2 ·
24−

ν
1+νM

1
1+ν
ν ln 4N

β

C
1−ν
1+νR

1−ν
1+ν

0 A
ν

1+ν

t

· (t+ 1)
2ν

1+ν (ε/2)
1−ν
1+ν

2
2ν

1+ν aM
2

1+ν
ν

≤
24−

ν
1+ν · 2

2ν
1+ν t

2ν
1+ν ε

1−ν
1+ν ln 4N

β

aC
1−ν
1+νR

1−ν
1+ν

0 M
1

1+ν
ν A

ν
1+ν

t

(17)
≤

24+
ν

1+ν t
2ν

1+ν ε
1−ν
1+ν ln 4N

β

aC
1−ν
1+νR

1−ν
1+ν

0 M
1

1+ν
ν

· 2
ν(1+3ν)

(1+ν)2 a
ν

1+νM
2ν

(1+ν)2

ν

t
ν(1+3ν)

(1+ν)2 (ε/2)
ν(1−ν)
(1+ν)2

=
24+

3ν
1+ν t

ν(1−ν)
(1+ν)2 ε

1−ν
(1+ν)2 ln 4N

β

a
1

1+νC
1−ν
1+νR

1−ν
1+ν

0 M
1−ν

(1+ν)2

ν

(39)
≤

24+
3ν

1+ν ε
1−ν

(1+ν)2 ln 4N
β

a
1

1+νC
1−ν
1+νR

1−ν
1+ν

0 M
1−ν

(1+ν)2

ν

· 2
2ν(1+2ν)(1−ν)
(1+ν)2(1+3ν) a

ν(1−ν)
(1+ν)(1+3ν)C

2ν(1−ν)
(1+ν)(1+3ν)R

2ν(1−ν)
(1+ν)(1+3ν)

0 M
2ν(1−ν)

(1+ν)2(1+3ν)
ν

ε
2ν(1−ν)

(1+ν)2(1+3ν)

=
2
4+ 3ν

1+ν+
2ν(1+2ν)(1−ν)
(1+ν)2(1+3ν) ε

1−ν
(1+ν)(1+3ν) ln 4N

β

a
1+ν
1+3νC

1−ν
1+3νR

1−ν
1+3ν

0 M
1−ν

(1+ν)(1+3ν)
ν

(37)
≤ 1

2
2+5ν+ν3

(1+ν)2(1+3ν)

.

Combining the upper bounds for D1 and D2 we get600

D1 +D2 ≤ 1

2
3+6ν−7ν2−2ν3

(1+ν)(1+3ν) a
ν
2

+
1

2
2+5ν+ν3

(1+ν)2(1+3ν)

.

Since 2+5ν+ν3

(1+ν)2(1+3ν) is a decreasing function of ν for ν ∈ [0, 1] we continue as601

D1 +D2 ≤ 1

2
3+6ν−7ν2−2ν3

(1+ν)(1+3ν) a
ν
2

+
1√
2
.

Next, we use a ≥ 16384 ln2 4N
β ≥ 210 and obtain602

D1 +D2 ≤ 1

2
3+11ν+13ν2+13ν3

(1+ν)(1+3ν)

+
1√
2
.
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One can numerically verify that 1

2
3+11ν+13ν2+13ν3

(1+ν)(1+3ν)

+ 1√
2

is smaller than 1 for ν ∈ [0, 1]. Putting all603

together we conclude that probability event ET−1 implies604

‖∇f(xt+1)‖2 ≤
λt+1

2
(45)

for all t = 0, 1, . . . , T − 1. Having inequality (45) in hand we show in the rest of the proof that (41)605

holds for t = T with large enough probability. First of all, we introduce new random variables:606

ηl =

{
x∗ − zl, if ‖x∗ − zl‖2 ≤ CR0,

0, otherwise,
and ζl =

{
∇f(xl+1), if ‖∇f(xl+1)‖2 ≤ B

2αl+1
,

0, otherwise,
(46)

for l = 0, 1, . . . T − 1. Note that these random variables are bounded with probability 1, i.e. with607

probability 1 we have608

‖ηl‖2 ≤ CR0 and ‖ζl‖2 ≤
B

2αl+1
. (47)

Secondly, we use the introduced notation and get that ET−1 implies609

R2
T

(44),(41),(45),(46)
≤ R2

0 + 2
T−1∑
l=0

αl+1 〈θl+1, ηl〉+ 2
T−1∑
l=0

α2
l+1‖θl+1‖22 + 2

T−1∑
l=0

α2
l+1 〈θl+1, ζl〉+

ANε

2

= R2
0 +

T−1∑
l=0

αl+1 〈θl+1, 2ηl + 2αl+1ζl〉+ 2

T−1∑
l=0

α2
l+1‖θl+1‖22 +

ANε

2
.

Finally, we do some preliminaries in order to apply Bernstein’s inequality (see Lemma A.2) and610

obtain that ET−1 implies611

R2
T

(11)
≤ R2

0 +

T−1∑
l=0

αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉
︸ ︷︷ ︸

¬

+

T−1∑
l=0

αl+1

〈
θbl+1, 2ηl + 2αl+1ζl

〉
︸ ︷︷ ︸

­

+

T−1∑
l=0

4α2
l+1

(
‖θul+1‖22 − Eξl

[
‖θul+1‖22

])
︸ ︷︷ ︸

®

+

T−1∑
l=0

4α2
l+1Eξl

[
‖θul+1‖22

]
︸ ︷︷ ︸

¯

+

T−1∑
l=0

4α2
l+1‖θbl+1‖22︸ ︷︷ ︸

°

+
ANε

2
(48)

where we introduce new notations:612

θul+1
def
= ∇̃f(xl+1, ξl)− Eξl

[
∇̃f(xl+1, ξl)

]
, θbl+1

def
= Eξl

[
∇̃f(xl+1, ξl)

]
−∇f(xl+1), (49)

613

θl+1
(23)
= θul+1 + θbl+1.

It remains to provide tight upper bounds for ¬, ­, ®, ¯ and °, i.e. in the remaining part of the proof614

we show that ¬ + ­ + ® + ¯ + ° ≤ δC2R2
0 for some δ < 1.615

Upper bound for ¬. First of all, since Eξl [θ
u
l+1] = 0 summands in ¬ are conditionally unbiased:616

Eξl
[
αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉]
= 0.

Secondly, these summands are bounded with probability 1:617 ∣∣αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉∣∣ ≤ αl+1‖θul+1‖2 ‖2ηl + 2αl+1ζl‖2
(29),(47)
≤ 2αl+1λl+1 (2CR0 +B) = 2B(2CR0 +B)

=

(
1 +

1

32 ln 4N
β

)
C2R2

0

4 ln 4N
β

(33)
≤
(

1 +
1

64

)
C2R2

0

4 ln 4N
β

.
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Finally, one can bound conditional variances σ2
l

def
= Eξl

[
α2
l+1

〈
θul+1, 2ηl + 2αl+1ζl

〉2]
in the follow-618

ing way:619

σ2
l ≤ Eξl

[
α2
l+1

∥∥θul+1

∥∥2
2
‖2ηl + 2αl+1ζl‖22

]
(47)
≤ α2

l+1Eξl

[∥∥θul+1

∥∥2
2

]
(2CR0 +B)2 = 4α2

l+1Eξl

[∥∥θul+1

∥∥2
2

](
1 +

1

32 ln 4N
β

)2

C2R2
0

(33)
≤ 4α2

l+1Eξl

[∥∥θul+1

∥∥2
2

](
1 +

1

64

)2

C2R2
0. (50)

In other words, sequence
{
αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉}
l≥0 is a bounded martingale difference se-620

quence with bounded conditional variances {σ2
l }l≥0. Therefore, we can apply Bernstein’s inequal-621

ity, i.e. we apply Lemma A.2 with Xl = αl+1

〈
θul+1, 2ηl + 2αl+1ζl

〉
, c =

(
1 + 1

64

) C2R2
0

4 ln 4N
β

and622

F =
c2 ln 4N

β

18 and get that for all b > 0623

P

{∣∣∣∣∣
T−1∑
l=0

Xl

∣∣∣∣∣ > b and
T−1∑
l=0

σ2
l ≤ F

}
≤ 2 exp

(
− b2

2F + 2cb/3

)
or, equivalently, with probability at least 1− 2 exp

(
− b2

2F+2cb/3

)
624

either
T−1∑
l=0

σ2
l > F or

∣∣∣∣∣
T−1∑
l=0

Xl

∣∣∣∣∣︸ ︷︷ ︸
|¬|

≤ b.

The choice of F will be clarified below. Let us now choose b in such a way that 2 exp
(
− b2

2F+2cb/3

)
=625

β
2N . This implies that b is the positive root of the quadratic equation626

b2 −
2c ln 4N

β

3
b− 2F ln

4N

β
= 0,

hence627

b =
c ln 4N

β

3
+

√
c2 ln2 4N

β

9
+ 2F ln

4N

β
≤
c ln 4N

β

3
+

√
2c2 ln2 4N

β

9

=
1 +
√

2

3
c ln

4N

β
≤ c ln

4N

β
=

(
1 +

1

64

)
C2R2

0

4
=

(
1

4
+

1

256

)
C2R2

0.

That is, with probability at least 1− β
2N628

either
T−1∑
l=0

σ2
l > F or |¬| ≤

(
1

4
+

1

256

)
C2R2

0︸ ︷︷ ︸
probability eventE¬

.

Next, we notice that probability event ET−1 implies that629

T−1∑
l=0

σ2
l

(50)
≤ 4

(
1 +

1

64

)2

C2R2
0

T−1∑
l=0

α2
l+1Eξl

[∥∥θul+1

∥∥2
2

]
(32),(45)
≤ 72

(
1 +

1

64

)2

σ2C2R2
0

T−1∑
l=0

α2
l+1

ml

(34)
≤

(
1 + 1

64

)2
C4R4

0

288 ln 4N
β

T−1∑
l=0

1

N

T≤N
≤

(
1 + 1

64

)2
C4R4

0

288 ln 4N
β

=
c2 ln 4N

β

18
= F.
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Upper bound for ­. The probability event ET−1 implies630

αl+1

〈
θbl+1, 2ηl + 2αl+1ζl

〉
≤ αl+1

∥∥θbl+1

∥∥
2
‖2ηl + 2αl+1ζl‖2

(30),(47)
≤ αl+1 ·

4σ2

mlλl+1
(2CR0 +B)

=
4σ2α2

l+1

ml

(
1 +

2CR0

B

)
=

4σ2α2
l+1

(
1 + 32 ln 4N

β

)
ml

(34)
≤

4

(
1

ln 4N
β

+ 32

)
C2R2

0

20736N

(33)
≤ 11C2R2

0

1728N
.

This implies that631

­ =

T−1∑
l=0

αl+1

〈
θbl+1, 2ηl + 2αl+1ζl

〉 T≤N
≤ 11C2R2

0

1728
.

Upper bound for ®. We derive the upper bound for ® using the same technique as for ¬. First of632

all, we notice that the summands in ® are conditionally unbiased:633

Eξl
[
4α2

l+1

(
‖θul+1‖22 − Eξl

[
‖θul+1‖22

])]
= 0.

Secondly, the summands are bounded with probability 1:634 ∣∣4α2
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(
‖θul+1‖22 − Eξl

[
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])∣∣ ≤ 4α2
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)
= 32B2 =
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β
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16 ln 4N
β

def
= c1. (51)

Finally, one can bound conditional variances σ̂2
l

def
= Eξl

[∣∣4α2
l+1

(
‖θul+1‖22 − Eξl

[
‖θul+1‖22

])∣∣2] in635

the following way:636
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l
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In other words, sequence
{

4α2
l+1

(
‖θul+1‖22 − Eξl

[
‖θul+1‖22

])}
l≥0 is bounded martingale difference637

sequence with bounded conditional variances {σ̂2
l }l≥0. Therefore, we can apply Bernstein’s inequal-638

ity, i.e. we apply Lemma A.2 with Xl = X̂l = 4α2
l+1

(
‖θul+1‖22 − Eξl

[
‖θul+1‖22

])
, c = c1 =
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β

639

and F = F1 =
c21 ln 4N

β

18 and get that for all b > 0640

P
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∣∣∣∣∣
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As in our derivations of the upper bound for ¬ we choose such b that 2 exp
(
− b2

2F1+2c1b/3

)
= β

2N ,642

i.e.,643
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That is, with probability at least 1− β
2N644

either
T−1∑
l=0

σ̂2
l > F1 or |®| ≤ C2R2

0

16︸ ︷︷ ︸
probability eventE®

.

Next, we notice that probability event ET−1 implies that645
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≤ C4R4

0

4608 ln 4N
β

=
c21 ln 4N

β

18
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Upper bound for ¯. The probability event ET−1 implies646
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Upper bound for °. Again, we use corollaries of probability event ET−1:647
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Now we summarize all bounds that we have: probability event ET−1 implies648
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2
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and649
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Moreover, since N
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0

2
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0
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.

Taking into account these inequalities we get that probability event ET−1 ∩ E¬ ∩ E® implies653
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+
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+
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Moreover, using union bound we derive654

P {ET−1 ∩ E¬ ∩ E®} = 1− P
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≥ 1− Tβ

N
. (54)

That is, by definition of ET and ET−1 we have proved that655

P{ET }
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≥ P {ET−1 ∩ E¬ ∩ E®}

(54)
≥ 1− Tβ

N
,

which implies that for all k = 0, 1, . . . , N we have P{Ek} ≥ 1− kβ
N . Then, for k = N we have that656

with probability at least 1− β657
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In other words, clipped-SSTM with a = 16384 ln2 4N
β achieves f(yN )−f(x∗) ≤ εwith probability659

at least 1− β after O
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oracle calls.661

B.1.3 On the batchsizes and numerical constants662

The obtained complexity result is discussed in details in the main part of the paper. Here we discuss663

the choice of the parameters. For convenience, we provide all assumptions from Thm. B.1 on the664

parameters below:665

ln
4N

β
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0
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β
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β
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√
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We emphasize that (55), (58), and (59) are not restrictive at all since the target accuracy ε and671

confidence level β are often chosen to be small enough, whereas a can be made large enough.672

Next, one can notice that the assumptions on parameter a and batchsize mk contain huge numerical673

constants (see (56)-(57)) that results in large numerical constants in the expression for the number674

of iterations N and the total number of oracle calls required to guarantee accuracy ε of the solution.675

However, for the sake of simplicity of the proofs, we do not try to provide an analysis with optimal676

or near-optimal dependence on the numerical constants. Moreover, the main goal in this paper is to677

derive improved high-probability complexity guarantees in terms of O(·)-notation – such guarantees678

are insensitive to numerical constants by definition.679
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Finally, (56) implies that the batchsize at iteration k is680
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meaning that for k ∼ N and a = O
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ln2 N
β

)
we have that the second term in the maximum is681

proportional to N
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1+ν . When ν is close to 1 and σ2 � 0 it implies that mk is huge for big682

enough k making the method completely impractical. Fortunately, this issue can be easily solved683

without sacrificing the oracle complexity of the method: it is sufficient to choose large enough a.684

Corollary B.1. Let the assumptions of Thm. B.1 hold and685
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Then for all k = 0, 1, . . . , N−1 we havemk = 1 and to achieve f(yN )−f(x∗) ≤ ε with probability686

at least 1− β clipped-SSTM requires687
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iterations/oracle calls.688

Proof. We start with showing that for the new choice of awe havemk = 1 for all k = 0, 1, . . . , N−1.689

Indeed, using the assumptions on the parameters from Thm. B.1 we derive690
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That is, with the choice of the stepsize parameter a as in (61) the method uses unit batchsizes at each691

iteration. Therefore, iteration and oracle complexities coincide in this case. Next, we consider two692

possible situations.693
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Putting all together we derive (62).696

B.2 Convergence in the strongly convex case697

In this section, we provide the full proof of Thm. 2.2 together with complete statement of the result.698

Note that due to strong convexity the solution x∗ is unique.699
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Then, after τ restarts R-clipped-SSTM produces x̂τ such that with probability at least 1− β708

f(x̂τ )− f(x∗) ≤ ε. (69)
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Proof. Applying Thm. B.1, we obtain that with probability at least 1− β
τ711

f(x̂1)− f(x∗) ≤ µR2
0

4
.

Since f is µ-strongly convex we have712

µ‖x̂1 − x∗‖22
2

≤ f(x̂1)− f(x∗).

Therefore, with probability at least 1− β
τ713

f(x̂1)− f(x∗) ≤ µR2
0

4
, ‖x̂1 − x∗‖22 ≤

R2
0

2
.
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From mathematical induction and the union bound for probability events it follows that inequalities714

f(x̂t)− f(x∗) ≤ µR2
0

2t+1
, ‖x̂t − x∗‖22 ≤

R2
0

2t

hold simultaneously for t = 1, . . . , τ with probability at least 1− β. In particular, it means that after715

τ =
⌈
log2

µR2
0

ε

⌉
− 1 restarts R-clipped-SSTM finds an ε-solution with probability at least 1− β.716

The total number of iterations N̂ is717

τ∑
t=1

Nt = O

 τ∑
t=1

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

2
(1+ν)t
1+3ν ε

2
1+3ν

t

ln
2(1+ν)
1+3ν

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0 τ

2
(1+ν)t
1+3ν ε

2
1+3ν

t β


= O

 τ∑
t=1

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0 2
2t

1+3ν

2
(1+ν)t
1+3ν µ

2
1+3νR

4
1+3ν

0

ln
2(1+ν)
1+3ν

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0 2
2t

1+3ν τ

2
(1+ν)t
1+3ν µ

2
1+3νR

4
1+3ν

0 β


= O

 τ∑
t=1

M
2

1+3ν
ν 2

(1−ν)t
1+3ν

µ
2

1+3νR
2(1−ν)
1+3ν

0

ln
2(1+ν)
1+3ν

M
2

1+3ν
ν 2

(1−ν)t
1+3ν τ

µ
2

1+3νR
2(1−ν)
1+3ν

0 β


= O

M
2

1+3ν
ν max

{
τ, 2

(1−ν)τ
1+3ν

}
µ

2
1+3νR

2(1−ν)
1+3ν

0

ln
2(1+ν)
1+3ν

M
2

1+3ν
ν 2

(1−ν)τ
1+3ν τ

µ
2

1+3νR
2(1−ν)
1+3ν

0 β


= O

max

{(
Mν

µR1−ν
0

) 2
1+3ν

ln
µR2

0

ε
,

(
M2
ν

µ1+νε1−ν

) 1
1+3ν

}
ln

2(1+ν)
1+3ν

M
2

1+3ν
ν ln

µR2
0

ε

µ
1+ν
1+3ν ε

1−ν
1+3ν β

 ,

and the total number of oracle calls equals718

τ∑
t=1

Nt−1∑
k=0

mt
k = O

max


τ∑
t=1

Nt,

τ∑
t=1

σ2R2
0

2tε2t
ln
M

2
1+3ν
ν 2

(1−ν)t
1+3ν τ

µ
2

1+3νR
2(1−ν)
1+3ν

0 β




= O

max

N̂,
τ∑
t=1

σ2 · 2t

µ2R2
0

ln
M

2
1+3ν
ν 2

(1−ν)τ
1+3ν τ

µ
2

1+3νR
2(1−ν)
1+3ν

0 β




= O

max

N̂, σ2

µε
ln
M

2
1+3ν
ν ln

µR2
0

ε

µ
1+ν
1+3ν ε

1−ν
1+3ν β


 .

719

One can also derive a similar result for R-clipped-SSTM when stepsize parameter a is chosen as in720

Cor. B.1 for all restarts.721
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C SGD with clipping: missing details and proofs722

C.1 Convex case723

In this section, we provide a full statement of Thm. 3.1 together with its proof. The proof is based on724

a similar idea as the proof of the complexity bounds for clipped-SSTM.725

Theorem C.1. Assume that function f is convex, achieves its minimum at a point x∗, and its726

gradients satisfy (3) with ν ∈ [0, 1], Mν on Q = B7R0
= {x ∈ Rn | ‖x − x∗‖2 ≤ 7R0}, where727

R0 ≥ ‖x0 − x∗‖2. Then, for all β ∈ (0, 1) and N such that728

ln
4N

β
≥ 2, (72)

we have that after N iterations of clipped-SGD with729

λ =
R0

γ ln 4N
β

, m ≥ max

{
1,

81Nσ2

λ2 ln 4N
β

}
(73)

and stepsize730

γ ≤ min

{
ε

1−ν
1+ν

8M
2

1+ν
ν

,
R0

√
2Nε

ν
1+νM

1
1+ν
ν

,
R1−ν

0

2CνMν ln 4N
β

}
, (74)

with probability at least 1− β it holds that731

f(x̄N )− f(x∗) ≤ C2R2
0

γN
, (75)

where x̄N = 1
N

∑N−1
k=0 x

k and732

C = 7. (76)

In other words, clipped-SGD with γ = min

{
ε
1−ν
1+ν

8M
2

1+ν
ν

, R0

√
2Nε

ν
1+νM

1
1+ν
ν

,
R1−ν

0

2CνMν ln 4N
β

}
achieves733

f(x̄N )−f(x∗) ≤ ε with probability at least 1−β afterO

(
max

{
M

2
1+ν
ν R2

0

ε
2

1+ν
,
MνR

1+ν
0

ε ln
MνR

1+ν
0

εβ

})
734

iterations and requires735

O

max

M
2

1+ν
ν R2

0

ε
2

1+ν

,max

{
MνR

1+ν
0

ε
,
σ2R2

0

ε2

}
ln
MνR

1+ν
0

εβ


 (77)

oracle calls.736

Proof. Since f(x) is convex and its gradients satisfy (3), we get the following inequality under737

assumption that xk ∈ B7R0
(x∗):738

‖xk+1 − x∗‖22 = ‖xk − γ∇̃f(xk, ξk)− x∗‖22
= ‖xk − x∗‖22 + γ2‖∇̃f(xk, ξk)‖22 − 2γ

〈
xk − x∗, ∇̃f(xk, ξk)

〉
= ‖xk − x∗‖22 + γ2‖∇f(xk) + θk‖22 − 2γ

〈
xk − x∗,∇f(xk) + θk

〉
(11)
≤ ‖xk − x∗‖22 + 2γ2‖∇f(xk)‖22 + 2γ2‖θk‖22 − 2γ

〈
xk − x∗,∇f(xk) + θk

〉
(21)
≤ ‖xk − x∗‖22 − 2γ

(
1− 2γ

(
1

ε

) 1−ν
1+ν

M
2

1+ν
ν

)(
f(xk)− f(x∗)

)
+ 2γ2‖θk‖22

−2γ
〈
xk − x∗, θk

〉
+ 2γ2ε

2ν
1+νM

2
1+ν
ν ,

where θk = ∇̃f(xk, ξk)−∇f(xk) and the last inequality follows from the convexity of f . Using739

notation Rk
def
= ‖xk − x∗‖2, k > 0 we derive that for all k ≥ 0740

R2
k+1 ≤ R2

k−2γ

(
1− 2γ

(
1

ε

) 1−ν
1+ν

M
2

1+ν
ν

)(
f(xk)− f(x∗)

)
+2γ2‖θk‖22−2γ

〈
xk − x∗, θk

〉
+2γ2ε

2ν
1+νM

2
1+ν
ν
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under assumption that xk ∈ B7R0
(x∗). Let us define A = 2γ

(
1− 2γ

(
1
ε

) 1−ν
1+ν M

2
1+ν
ν

)
(74)
≥ γ > 0,741

then742

A
(
f(xk)− f(x∗)

)
≤ R2

k −R2
k+1 + 2γ2‖θk‖22 − 2γ

〈
xk − x∗, θk

〉
+ 2γ2ε

2ν
1+νM

2
1+ν
ν

under assumption that xk ∈ B7R0
(x∗). Summing up these inequalities for k = 0, . . . , N − 1, we743

obtain744

A

N

N−1∑
k=0

[
f(xk)− f(x∗)

]
≤ 1

N

N−1∑
k=0

(
R2
k −R2

k+1

)
+ 2γ2ε

2ν
1+νM

2
1+ν
ν +

2γ2

N

N−1∑
k=0

‖θk‖22

−2γ

N

N−1∑
k=0

〈
xk − x∗, θk

〉
=

1

N

(
R2

0 −R2
N

)
+ 2γ2ε

2ν
1+νM

2
1+ν
ν +

2γ2

N

N−1∑
k=0

‖θk‖22

−2γ

N

N−1∑
k=0

〈
xk − x∗, θk

〉
under assumption that xk ∈ B7R0(x∗). Noticing that for x̄N = 1

N

N−1∑
k=0

xk Jensen’s inequality gives745

f(x̄N ) = f

(
1
N

N−1∑
k=0

xk
)
≤ 1

N

N−1∑
k=0

f(xk), we have746

AN
(
f(x̄N )− f(x∗)

)
≤ R2

0 −R2
N + 2γ2Nε

2ν
1+νM

2
1+ν
ν + 2γ2

N−1∑
k=0

‖θk‖22 − 2γ

N−1∑
k=0

〈
xk − x∗, θk

〉
(78)

under assumption that xk ∈ B7R0(x∗) for k = 0, 1, . . . , N − 1. Taking into account that f(x̄N )−747

f(x∗) ≥ 0 and changing the indices we get that for all k = 0, 1, . . . , N748

R2
k ≤ R2

0 + 2γ2kε
2ν

1+νM
2

1+ν
ν + 2γ2

k−1∑
l=0

‖θl‖22 − 2γ

k−1∑
l=0

〈
xl − x∗, θk

〉
. (79)

under assumption that xl ∈ B7R0(x∗) for l = 0, 1, . . . , k−1. The remaining part of the proof is based749

on the analysis of inequality (79). In particular, via induction we prove that for all k = 0, 1, . . . , N750

with probability at least 1− kβ
N the following statement holds: inequalities751

R2
t

(79)
≤ R2

0 + 2γ2tε
2ν

1+νM
2

1+ν
ν + 2γ2

t−1∑
l=0

‖θk‖22 − 2γ

t−1∑
l=0

〈
xk − x∗, θk

〉
≤ C2R2

0 (80)

hold for t = 0, 1, . . . , k simultaneously where C is defined in (76). Let us define the probability752

event when this statement holds as Ek. Then, our goal is to show that P{Ek} ≥ 1 − kβ
N for all753

k = 0, 1, . . . , N . For t = 0 inequality (80) holds with probability 1 since C ≥ 1. Next, assume754

that for some k = T − 1 ≤ N − 1 we have P{Ek} = P{ET−1} ≥ 1 − (T−1)β
N . Let us prove755

that P{ET } ≥ 1 − Tβ
N . First of all, probability event ET−1 implies that xt ∈ B7R0

(x∗) for756

t = 0, 1, . . . , T − 1, and, as a consequence, (79) holds for k = T . Since ∇f(x) is (ν,Mν)-Hölder757

continuous on B7R0(x∗), we have that probability event ET−1 implies758 ∥∥∇f(xt)
∥∥
2

(3)
≤ Mν‖xt − x0‖ν ≤MνC

νRν0
(74)
≤ λ

2
(81)

for t = 0, . . . , T − 1. Next, we introduce new random variables:759

ηl =

{
x∗ − xl, if ‖x∗ − xl‖2 ≤ CR0,

0, otherwise,
(82)
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for l = 0, 1, . . . T − 1. Note that these random variables are bounded with probability 1, i.e. with760

probability 1 we have761

‖ηl‖2 ≤ CR0. (83)
Using the introduced notation, we obtain that ET−1 implies762

R2
T

(73),(74),(79),(80),(82)
≤ 2R2

0 + 2γ

T−1∑
l=0

〈θl, ηl〉+ 2γ2
T−1∑
l=0

‖θl‖22.

Finally, we do some preliminaries in order to apply Bernstein’s inequality (see Lemma A.2) and763

obtain that ET−1 implies764

R2
T

(11)
≤ 2R2

0 + 2γ

T−1∑
l=0

〈θul , ηl〉︸ ︷︷ ︸
¬

+ 2γ

T−1∑
l=0

〈
θbl , ηl

〉
︸ ︷︷ ︸

­

+ 4γ2
T−1∑
l=0

(
‖θul ‖22 − Eξl

[
‖θul ‖22

])
︸ ︷︷ ︸

®

+ 4γ2
T−1∑
l=0

Eξl
[
‖θul ‖22

]
︸ ︷︷ ︸

¯

+ 4γ2
T−1∑
l=0

‖θbl ‖22︸ ︷︷ ︸
°

, (84)

where we introduce new notations:765

θul
def
= ∇̃f(xl, ξl)− Eξl

[
∇̃f(xl, ξl)

]
, θbl

def
= Eξl

[
∇̃f(xl, ξl)

]
−∇f(xl), (85)

766

θl = θul + θbl .

It remains to provide tight upper bounds for ¬, ­, ®, ¯ and °, i.e. in the remaining part of the proof767

we show that ¬ + ­ + ® + ¯ + ° ≤ δC2R2
0 for some δ < 1.768

Upper bound for ¬. First of all, since Eξl [θ
u
l ] = 0 summands in ¬ are conditionally unbiased:769

Eξl [2γ 〈θul , ηl〉] = 0.

Secondly, these summands are bounded with probability 1:770

|2γ 〈θul , ηl〉| ≤ 2γ‖θul ‖2 ‖ηl‖2
(29),(83)
≤ 4γλCR0.

Finally, one can bound conditional variances σ2
l

def
= Eξl

[
4γ2 〈θul , ηl〉

2
]

in the following way:771

σ2
l ≤ Eξl

[
4γ2 ‖θul ‖

2
2 ‖ηl‖

2
2

] (83)
≤ 4γ2(CR0)2Eξl

[
‖θul ‖

2
2

]
.

In other words, sequence {2γ 〈θul , ηl〉}l≥0 is a bounded martingale difference sequence with bounded772

conditional variances {σ2
l }l≥0. Therefore, we can apply Bernstein’s inequality, i.e., we apply773

Lemma A.2 with Xl = 2γ 〈θul , ηl〉, c = 4γλCR0 and F =
c2 ln 4N

β

6 and get that for all b > 0774

P

{∣∣∣∣∣
T−1∑
l=0

Xl

∣∣∣∣∣ > b and
T−1∑
l=0

σ2
l ≤ F

}
≤ 2 exp

(
− b2

2F + 2cb/3

)
or, equivalently, with probability at least 1− 2 exp

(
− b2

2F+2cb/3

)
775

either
T−1∑
l=0

σ2
l > F or

∣∣∣∣∣
T−1∑
l=0

Xl

∣∣∣∣∣︸ ︷︷ ︸
|¬|

≤ b.

The choice of F will be clarified further, let us now choose b in such a way that 2 exp
(
− b2

2F+2cb/3

)
=776

β
2N . This implies that b is the positive root of the quadratic equation777

b2 −
2c ln 4N

β

3
b− 2F ln

4N

β
= 0,
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hence778

b =
c ln 4N

β

3
+

√
c2 ln2 4N

β

9
+ 2F ln

4N

β
=
c ln 4N

β

3
+

√
4c2 ln2 4N

β

9

= c ln
4N

β
= 4γλCR0 ln

4N

β
.

That is, with probability at least 1− β
2N779

either
T−1∑
l=0

σ2
l > F or |¬| ≤ 4γλCR0 ln

4N

β︸ ︷︷ ︸
probability eventE¬

.

Next, we notice that probability event ET−1 implies that780

T−1∑
l=0

σ2
l ≤ 4γ2(CR0)2

T−1∑
l=0

Eξl
[
‖θul ‖22

] (32)
≤ 72γ2(CR0)2σ2 T

m

T≤N
≤ 72γ2(CR0)2σ2N

m
≤
c2 ln 4N

β

6
= F,

where the last inequality follows from c = 4γλCR0 and simple arithmetic.781

Upper bound for ­. First of all, we notice that probability event ET−1 implies782

2γ
〈
θbl , ηl

〉
≤ 2γ

∥∥θbl ∥∥2 ‖ηl‖2 (30),(83)
≤ 2γ

4σ2

mλ
CR0 =

8γσ2CR0

mλ
.

This implies that783

­ = 2γ

T−1∑
l=0

〈
θbl , ηl

〉 T≤N
≤ 8γσ2CR0N

mλ

(73)
≤ 8

81
λγCR0 ln

4N

β
.

Upper bound for ®. We derive the upper bound for ® using the same technique as for ¬. First of784

all, we notice that the summands in ® are conditionally unbiased:785

Eξl
[
4γ2

(
‖θul ‖22 − Eξl

[
‖θul ‖22

])]
= 0.

Secondly, the summands are bounded with probability 1:786 ∣∣4γ2 (‖θul ‖22 − Eξl
[
‖θul ‖22

])∣∣ ≤ 4γ2
(
‖θul ‖22 + Eξl

[
‖θul ‖22

]) (29)
≤ 4γ2

(
4λ2 + 4λ2

)
= 32γ2λ2

def
= c1. (86)

Finally, one can bound conditional variances σ̂2
l

def
= Eξl

[∣∣4γ2 (‖θul ‖22 − Eξl
[
‖θul ‖22

])∣∣2] in the787

following way:788

σ̂2
l

(86)
≤ c1Eξl

[∣∣4γ2 (‖θul ‖22 − Eξl
[
‖θul ‖22

])∣∣]
≤ 4γ2c1Eξl

[
‖θul ‖22 + Eξl

[
‖θul ‖22

]]
= 8γ2c1Eξl

[
‖θul ‖22

]
. (87)

In other words, sequence
{

4γ2
(
‖θul ‖22 − Eξl

[
‖θul ‖22

])}
l≥0 is a bounded martingale difference se-789

quence with bounded conditional variances {σ̂2
l }l≥0. Therefore, we can apply Bernstein’s inequality,790

i.e. we apply Lemma A.2 with Xl = X̂l = 4γ2
(
‖θul ‖22 − Eξl

[
‖θul ‖22

])
, c = c1 = 32γ2λ2 and791

F = F1 =
c21 ln 4N

β

18 and get that for all b > 0792

P

{∣∣∣∣∣
T−1∑
l=0

X̂l

∣∣∣∣∣ > b and
T−1∑
l=0

σ̂2
l ≤ F1

}
≤ 2 exp

(
− b2

2F1 + 2c1b/3

)
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or, equivalently, with probability at least 1− 2 exp
(
− b2

2F1+2c1b/3

)
793

either
T−1∑
l=0

σ̂2
l > F1 or

∣∣∣∣∣
T−1∑
l=0

X̂l

∣∣∣∣∣︸ ︷︷ ︸
|®|

≤ b.

As in our derivations of the upper bound for ¬ we choose such b that 2 exp
(
− b2

2F1+2c1b/3

)
= β

2N ,794

i.e.,795

b =
c1 ln 4N

β

3
+

√
c21 ln2 4N

β

9
+ 2F1 ln

4N

β
≤ c1 ln

4N

β
= 32γ2λ2 ln

4N

β
.

That is, with probability at least 1− β
2N796

either
T−1∑
l=0

σ̂2
l > F1 or |®| ≤ 32γ2λ2 ln

4N

β︸ ︷︷ ︸
probability eventE®

.

Next, we notice that probability event ET−1 implies that797

T−1∑
l=0

σ̂2
l

(87)
≤ 8γ2c1

T−1∑
l=0

Eξl

[
‖θul ‖

2
2

] (32)
≤ 144γ2c1σ

2 T

m

T≤N
≤ 144γ2c1σ

2N

m
=
c21 ln 4N

β

18
≤ F1.

Upper bound for ¯. The probability event ET−1 implies798

¯ = 4γ2
T−1∑
l=0

Eξl
[
‖θul ‖22

] (32)
≤ 72γ2σ2

T−1∑
l=0

1

m

T≤N
≤ 72γ2Nσ2

m

(73)
≤ 8

9
λ2γ2 ln

4N

β
.

Upper bound for °. Again, we use corollaries of probability event ET−1:799

° = 4γ2
T−1∑
l=0

‖θbl ‖22
(30)
≤ 64γ2σ4 T

m2λ2

T≤N
≤ 64γ2σ4 N

m2λ2

(73)
≤ 64

6561

λ2γ2 ln2 4N
β

N
.

Now we summarize all bound that we have: probability event ET−1 implies800

R2
T

(79)
≤ 2R2

0 + 2γ2
T−1∑
l=0

‖θl‖22 − 2γ

T−1∑
l=0

〈
xl − x∗, θl

〉
(84)
≤ 2R2

0 + ¬ + ­ + ® + ¯ + °,

­ ≤ 8

81
λγCR0 ln

4N

β
, ¯ ≤ 8

9
λ2γ2 ln

4N

β
, ° ≤ 64

6561

λ2γ2 ln2 4N
β

N
,

T−1∑
l=0

σ2
l ≤ F,

T−1∑
l=0

σ̂2
l ≤ F1

and801

P{ET−1} ≥ 1− (T − 1)β

N
, P{E¬} ≥ 1− β

2N
, P{E®} ≥ 1− β

2N
,

where802

E¬ =

{
either

T−1∑
l=0

σ2
l > F or |¬| ≤ 4γλCR0 ln

4N

β

}
,

E® =

{
either

T−1∑
l=0

σ̂2
l > F1 or |®| ≤ 32γ2λ2 ln

4N

β

}
.
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Taking into account these inequalities and our assumptions on λ and γ (see (73) and (74)) we get that803

probability event ET−1 ∩ E¬ ∩ E® implies804

R2
T

(79)
≤ 2R2

0 + 2γ2
T−1∑
l=0

‖θl‖22 − 2γ

T−1∑
l=0

〈
xl − x∗, θl

〉
≤ 2R2

0 +

(
4

7
+

8

567
+

16

49
+

4

441
+

64

321489

)
C2R2

0

(76)
≤ C2R2

0. (88)

Moreover, using union bound we derive805

P {ET−1 ∩ E¬ ∩ E®} = 1− P
{
ET−1 ∪ E¬ ∪ E®

}
≥ 1− Tβ

N
. (89)

That is, by definition of ET and ET−1 we have proved that806

P{ET }
(88)
≥ P {ET−1 ∩ E¬ ∩ E®}

(89)
≥ 1− Tβ

N
,

which implies that for all k = 0, 1, . . . , N we have P{Ek} ≥ 1− kβ
N . Then, for k = N we have that807

with probability at least 1− β808

AN
(
f(x̄N )− f(x∗)

) (78)
≤ 2R2

0 + 2γ2
N−1∑
k=0

‖θk‖22 − 2γ
N−1∑
k=0

〈
xk − x∗, θk

〉 (80)
≤ C2R2

0.

Since A = 2γ

(
1− 2γ

(
1
ε

) 1−ν
1+ν M

2
1+ν
ν

)
(74)
≥ γ we get that with probability at least 1− β809

f(x̄N )− f(x∗) ≤ C2R2
0

AN
=
C2R2

0

γN
.

When810

γ = min

{
ε

1−ν
1+ν

8M
2

1+ν
ν

,
R0

√
2Nε

ν
1+νM

1
1+ν
ν

,
R1−ν

0

2CνMν ln 4N
β

}
we have that with probability at least 1− β811

f(x̄N )− f(x∗) ≤ max

8C2M
2

1+ν
ν R2

0

ε
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,

√
2C2M

1
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ν R0ε
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√
N
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1+ν
0 ln 4N

β

N

 .

Next, we estimate the iteration and oracle complexities of the method and consider 3 possible812

situations.813

1. If γ = ε
1−ν
1+ν

8M
2

1+ν
ν

, then with probability at least 1− β814

f(x̄N )− f(x∗) ≤ 8C2M
2

1+ν
ν R2

0

ε
1−ν
1+νN

.

In other words, clipped-SGD achieves f(x̄N )− f(x∗) ≤ ε with probability at least 1− β815

after816

O

M 2
1+ν
ν R2

0

ε
2
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
iterations and requires817
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

oracle calls.818
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2. If γ = R0

√
2Nε

ν
1+νM

1
1+ν
ν

, then with probability at least 1− β819

f(x̄N )− f(x∗) ≤
√

2C2M
1

1+ν
ν R0ε

ν
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√
N

.

In other words, clipped-SGD achieves f(x̄N )− f(x∗) ≤ ε with probability at least 1− β820

after821

O
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
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oracle calls.823

3. If γ =
R1−ν

0

2CνMν ln 4N
β

, then with probability at least 1− β824

f(x̄N )− f(x∗) ≤
2C2+νMνR

1+ν
0 ln 4N

β

N
.

In other words, clipped-SGD achieves f(x̄N )− f(x∗) ≤ ε with probability at least 1− β825

after826

O
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0 ln
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Putting all together and noticing that ln
M

2
1+ν
ν R2

0

ε
2

1+ν β
= O

(
ln

MνR
1+ν
0

εβ

)
we get the desired result.829

As for clipped-SSTM it is possible to get rid of using large batchsizes without sacrificing the oracle830

complexity via a proper choice of γ, i.e., it is sufficient to choose831

γ = min

{
ε

1−ν
1+ν

8M
2

1+ν
ν

,
R0

√
2Nε

ν
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2CνMν ln 4N
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9σN ln 4N
β

}
.

C.2 Strongly convex case832

In this section, we provide a full statement of Thm. 3.2 together with its proof. Note that due to833

strong convexity the solution x∗ is unique.834
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Theorem C.2. Assume that function f is µ-strongly convex and its gradients satisfy (3) with ν ∈ [0, 1],835

Mν > 0 on Q = B2R0 = {x ∈ Rn | ‖x − x∗‖2 ≤ 2R0}, where R0 ≥ ‖x0 − x∗‖2. Let ε > 0,836

β ∈ (0, 1), and for all t = 1, . . . , τ837
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Then R-clipped-SGD achieves f(x̄τ )− f(x∗) ≤ ε with probability at least 1− β after840

O
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1 ln
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oracle calls, where842

D1 =
Mν

µR1−ν
0

, D2 =
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µ
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2
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µR2
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ε
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Proof. Applying Thm. C.1, we obtain that with probability at least 1− β
τ843

f(x̂1)− f(x∗) ≤ µR2
0

4
.

Since f is µ-strongly convex we have844

µ‖x̂1 − x∗‖22
2

≤ f(x̂1)− f(x∗).

Therefore, with probability at least 1− β
τ845

f(x̂1)− f(x∗) ≤ µR2
0

4
, ‖x̂1 − x∗‖22 ≤

R2
0

2
.

From mathematical induction and the union bound for probability events it follows that inequalities846

f(x̂t)− f(x∗) ≤ µR2
0

2t+1
, ‖x̂t − x∗‖22 ≤

R2
0

2t

hold simultaneously for t = 1, . . . , τ with probability at least 1− β. In particular, it means that after847

τ =
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µR2
0

ε
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− 1 restarts R-clipped-SGD finds an ε-solution with probability at least 1− β. The848
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τ∑
t=1

Nt = O

 τ∑
t=1

max

M
2

1+ν
ν R2

0

2tε
2

1+ν

t

,
MνR

1+ν
0

2
(1+ν)t

2 εt
ln
MνR

1+ν
0 τ

2
(1+ν)t

2 εtβ




= O

 τ∑
t=1

max

M
2

1+ν
ν · 2

(1−ν)t
1+ν

µ
2

1+νR
2(1−ν)
1+ν

0

,
Mν · 2

(1−ν)t
2

µR1−ν
0

ln
Mν · 2

(1−ν)τ
2 τ

µR1−ν
0 β




= O

max

 M
2

1+ν
ν

µ
2

1+νR
2(1−ν)
1+ν

0

,
Mν

µR1−ν
0

ln
Mν ln

µR2
0

ε

µ
1+ν
2 ε

1−ν
2 β

 ·max

{
ln
µR2

0

ε
,

(
µR2

0

ε

) 1−ν
2

}
= O

(
max

{
D

2
1+ν

1 ln
µR2

0

ε
,D

2
1+ν

2 ,max

{
D1 ln

µR2
0

ε
,D2

}
ln
D

β

})
,

41



where850
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µR1−ν
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µ
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2
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Finally, the total number of oracle calls equals851
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D Additional experimental details853

D.1 Main experiment hyper-parameters854

In our experiments, we use standard implementations of Adam and SGD from PyTorch [32], we855

write only the parameters we changed from the default.856

To conduct these experiments we used Nvidia RTX 2070s. The longest experiment (evolution of the857

noise distribution for image classification task) took 53 hours (we iterated several times over train858

dataset to build better histogram, see Appendix D.3).859

D.1.1 Image classification860

For ResNet-18 + ImageNet-100 the parameters of the methods were chosen as follows:861

• Adam: lr = 1e− 3 and a batchsize of 4× 32862

• SGD: lr = 1e− 2, momentum = 0.9 and a batchsize of 32863

• clipped-SSTM: ν = 1, stepsize parameter α = 1e−3 (in code we use separately lr = 1e−2864

and L = 10 and α = lr
L ), norm clipping with clipping parameter B = 1 and a batchsize of865

2 × 32. We also upper bounded the ratio Ak/Ak+1 by 0.99 (see a_k_ratio_upper_bound866

parameter in code).867

• clipped-SGD: lr = 5e − 2, momentum = 0.9, coordinate-wise clipping with clipping868

parameter B = 0.1 and a batchsize of 32869

The main two parameters that we grid-searched were lr and batchsize. For both of them we used870

logarithmic grid (i.e. for lr we used 1e− 5, 2e− 5, 5e− 5, 1e− 4, . . . , 1e− 2, 2e− 2, 5e− 2 for871

Adam). Batchsize was chosen from 32, 2 · 32, 4 · 32 and 8 · 32. For SGD we also tried various872

momentum parameters.873

For clipped-SSTM and clipped-SGD we used clipping level of 1 and 0.1 respectively. Too small874

choice of the clipping level, e.g. 0.01, slow downs the convergence significantly.875

Another important parameter for clipped-SSTM here, was a_k_ratio_upper_bound – we used it to876

upper bound the maximum ratio of Ak/Ak+1. Without this modification the method is to conservative.877

e.g., after 104 steps Ak/Ak+1 ∼ 0.9999. Effectively, it can be seen as momentum parameter of SGD.878

D.1.2 Text classification879

For BERT + CoLA the parameters of the methods were chosen as follows:880

• Adam: lr = 5e− 5, weight_decay = 5e− 4 and a batchsize of 32881

• SGD: lr = 1e− 3, momentum = 0.9 and a batchsize of 32882

• clipped-SSTM: ν = 1, stepsize parameter α = 8e − 3, norm clipping with clipping883

parameter B = 1 and a batchsize of 8× 32884

• clipped-SGD: lr = 2e − 3, momentum = 0.9, coordinate-wise clipping with clipping885

parameter B = 0.1 and a batchsize of 32886

There we used the same grid as in the previous task. The main difference here is that we didn’t bound887

clipped-SSTM Ak/Ak+1 ratio – there are only ∼ 300 steps of the method (because the batch size is888

8 · 32), thus the the method is still not too conservative.889

D.2 On the relation between stepsize parameter α and batchsize890

In our experiments, we noticed that clipped-SSTM show similar results when the ration bs2/α is kept891

unchanged, where bs is batchsize (see Fig. 3). We compare the performance of clipped-SSTM with892

4 different choices of α and the batchsize.893
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Figure 3: Train and validation loss + accuracy for clipped-SSTM with different parameters. Here
α0 = 0.000125, bsmeans batchsize. As we can see from the plots, increasing α 4 times and batchsize
2 times almost does not affect the method’s behavior.

Thm. B.1 explains this phenomenon in the convex case. For the case of ν = 1 we have (from (34)894

and (39)):895

α ∼ 1

aM1
, αk ∼ kα, mk ∼

Naσ2α2
k+1

C2R2
0 ln 4N

β

, N ∼ a
1
2CR0M

1
2
1

ε
1
2

∼ CR0

α
1
2 ε

1
2

,

whence896

mk ∼
CR0aσ

2α2(k + 1)2

α
1
2 ε

1
2C2R2

0 ln 4N
β

∼ σ2α2(k + 1)2

α
1
2αM1ε

1
2CR0 ln 4N

β

∼ α 1
2 ,

where the dependencies on numerical constants and logarithmic factors are omitted. Therefore,897

the observed empirical relation between batchsize (mk) and α correlates well with the established898

theoretical results for clipped-SSTM.899

D.3 Evolution of the noise distribution900

In this section, we provide our empirical study of the noise distribution evolution along the trajectories901

of different optimizers. As one can see from the plots, the noise distribution for ResNet-18 +902

ImageNet-100 task is always close to Gaussian distribution, whereas for BERT + CoLA task it is903

significantly heavy-tailed.
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Figure 4: Evolution of the noise distribution for BERT + CoLA task.
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Figure 5: Evolution of the noise distribution for ResNet-18 + ImageNet-100 task.

45


	Introduction
	Preliminaries
	Contributions
	Related work

	Clipped Stochastic Similar Triangles Method
	SGD with clipping
	Numerical experiments
	Basic facts, technical lemmas, and auxiliary results
	Notation, missing definitions, and useful inequalities
	Auxiliary lemmas
	Technical lemmas

	Clipped Similar Triangles Method: missing details and proofs
	Convergence in the convex case
	Two lemmas
	Proof of Theorem 2.1
	On the batchsizes and numerical constants

	Convergence in the strongly convex case

	SGD with clipping: missing details and proofs
	Convex case
	Strongly convex case

	Additional experimental details
	Main experiment hyper-parameters
	Image classification
	Text classification

	On the relation between stepsize parameter  and batchsize
	Evolution of the noise distribution


