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A DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPMs) Ho et al. (2020) is a class of latent variable
models designed to learn a joint data distribution. The forward diffusion process defines a Markov
chain that gradually adds Gaussian noise to an image y0 and produces a set of latent variables
y1,...,yT in the same sample space as y0. The reverse process is also Markovian, which progressively
denoises the input white noise into an image.

DDPMs can be expressed as a sequence of denoising autoencoders ϵθ(yt, t), which are trained to
predict the noise added at timestep t from the noisy image yt. The objective can be defined as:

LDM = Ey,ϵ∼N (0,1),t

[
∥ϵθ (yt, t)− ϵ ∥22

]
, (1)

where yt =
√
αt y0 +

√
1−αt ϵ, with αt being the noise level indicator at time step t and ϵ being

the actual noise added.

B ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide additional details on how to prepare our custom benchmark dataset based
on REDS Nah et al. (2019). As presented in the main paper, REDS contains 300 videos (1280× 720
resolution), with each video sequence containing 100 pairs of sharp and blurry frames. Our custom
dataset contains sharp images and five different editing effects applied to each sharp image, including
motion blur, film grain, color transfer, inpainting, and sharpening.

Motion Blur. The motion blur effects are directly obtained from REDS dataset, by directly
cropping a 256× 256 patch randomly from each pair of frames. The rest of the editing effects are
generated using these preprocessed cropped sharp images.

Film Grain. We utilize the open source code in Newson (2017) for the method proposed
by Newson et al. (2017) for film grain synthesis. Following Ameur et al. (2022), we generate grain
effects for each sharp image at five different radii {0.010, 0.025, 0.050, 0.075, 0.100}.

Color Transfer. The color transfer effects are generated using the algorithm proposed by Rein-
hard et al. (2001). For each sharp image, we randomly selected another sharp image from the training
set as the color reference image. Specifically, we utilize the open source implementation in Rosebrock
(2014).

Inpainting. For the inpainting task, we utilize the algorithm proposed by Yu et al. (2019) to
generate free-form masks for each sharp image. Specifically, we adopt the open source implementation
in Nippert (2022) using the default configurations.

Sharpening. For the sharpening task, we apply the unsharp masking algorithm proposed in Pole-
sel et al. (2000). This algorithm takes as input a user-defined sharpness intensity and threshold
parameter. The pseudocode is presented in Algorithm 1. For the sake of simplicity, we generate
sharpening effects using a default Gaussian blur kernel with size µ = 3 and standard deviation σ = 1.
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Algorithm 1 Unsharp Masking

1: Input: source image x, amount λ, threshold µ, Gaussian kernel size s, Gaussian kernel standard
deviation σ

2: function UNSHARPMASK(x, µ, λ)
3: xblurred ← GaussianBlur(x, s = 3, σ = 1)
4: M← |x− xblurred| ≤ µ
5: xsharpened ← x+ λ · (x− xblurred)
6: x←Where(M,xsharpened)
7: return x
8: end function
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Figure 1: Fine-grained user control on single-task editing. Editing results were attained by progressively
increasing the intensity level of the target effect (motion blur, film, grain, and sharpening), applying various
arbitrary inpainting mask regions (inpainting), or randomly switching the reference image (color transfer).

C ADDITIONAL RESULTS

Fine-grained user editing control. We demonstrate fine-grained user control on single-task
editing in Fig. 1 and on multi-task editing in Fig. 2. Note that the user can incrementally increase the
blur, film grain, and sharpening level. In addition, the user can transfer global color palettes from
a variety of reference images and freely select different inpainting masks, spanning both small and
large image regions. Fig. 2 shows that our model can handle multitask edits for motion blur, film
grain, color transfer and sharpening but fails on inpainting task.

Generalization to unseen datasets. To show the generalization capabilities of our approach
to unseen data, we show additional qualitative comparisons on FFHQ dataset Karras et al. (2019)
in Fig. 3. While our proposed method achieves comparable results to Palette++ and our task-specific
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Figure 2: Fine-grained user control on multi-task editing. Editing results were attained by progressively
increasing the intensity level of the target effect (motion blur, film grain, and sharpening), applying various
arbitrary inpainting mask regions (inpainting), or randomly switching the reference image (color transfer).

baseline on single-task editing, it outperforms all baselines on multi-task editing. For instance, our
approach faithfully reproduces color transfer effects even when graining and sharpening effects are
additionally added to the input image. It also better preserves the blur and grain intensity level when
both blur and grain are combined together.
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Figure 3: Multi-task image editing results on FFHQ dataset. We show additional single- and multi-task
editing results on FFHQ Karras et al. (2019) using the model trained on our custom dataset.

D MULTI-TASK EDITING DISENTANGLEMENT

Contrastive-based feature disentanglement. We provide further analysis of the experiments
with the N-pair loss. To achieve better disentanglement for multitask editing, we added an additional
N-pair loss to the training objective in our experiments. We have tested two configurations by applying
the contrastive N-pair loss on 1) the bottleneck features of the denoising U-Net and 2) the label
features fθ(C). Figure 4 shows the t-SNE Van der Maaten & Hinton (2008) plots of the bottleneck
features (left) and the label features (right) for our approach and the two additional experiments.
The left column shows that both configurations with N-pair losses achieve better disentanglement
of the bottleneck features than our approach. The right column shows that our approach already
naturally disentangles the label features by design. However, the quantitative metrics in Table 5 of
the main paper show that applying N-pair loss shows no noticeable improvements to the baseline on
single-task edits, and even a drop in performance on multi-task edits. While the t-SNE plots show
that the contrastive N-pair loss is trained successfully for latent feature disentanglement, it has in
practice very little impact on the quality of the editing results. Applying contrastive constraints to
diffusion models thus remains an interesting future research direction.
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Figure 4: Feature visualization. Left: t-SNE plots of bottleneck feature maps. Right: t-SNE plots of input label
feature maps. + N-pair Config A and B refer to our model trained with an additional contrastive N-pair loss
applied to the bottleneck features and label features, respectively.

E LIMITATIONS

Image quality and DDIM inversion. Fig. 5 presents qualitative results obtained with and
without DDIM inversion (the latter our choice). For each task shown on the top row, the left column
shows the ground truth edits, while the right column shows the result obtained by our approach, with
or without DDIM inversion applied during the sampling process. Note that the first column is the
input sharp image. For each editing result, we also calculate ℓ1, SSIM, and LPIPS with regard to the
ground truth edit. Although the results generated with DDIM inversion might look crisper, e.g., on
the first image row, the edits do not faithfully reproduce the desired target effect, thus resulting in
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Figure 5: Comparison between our approach and DDIM Inversion Dhariwal & Nichol (2021) on single-task
image editing. Blue denotes our proposed model.

higher errors as reported by the aforementioned image metrics. Thus, results produced without DDIM
inversion attain higher-quality photo filter effects, yet at the expense of less crisp output images.
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