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Abstract
Multi-modal entity alignment (MMEA) aims to identify equivalent
entities between multi-modal knowledge graphs (MMKGs), where
entities can be associated with related images. Most existing studies
rely heavily on the automatically learned multi-modal fusion mod-
ules, which may allow redundant information such as misleading
clues in the generated entity representations, impeding the feature
consistency of equivalent entities. To this end, we propose a varia-
tional framework for MMEA via information bottleneck, termed as
IBMEA, by emphasizing alignment-relevant information while sup-
pressing alignment-irrelevant information in entity representations.
Specifically, we first develop multi-modal variational encoders that
represent modal-specific features as probability distributions. Then,
we propose four modal-specific information bottleneck regularizers
to limit the misleading clues in the modal-specific entity represen-
tations. Finally, we propose a modal-hybrid information contrastive
regularizer to integrate modal-specific representations and ensure
the similarity of equivalent entities between MMKGs to achieve
MMEA. We conduct extensive experiments on 2 cross-KG and 3
bilingual MMEA datasets. Experimental results demonstrate that
our model consistently outperforms previous state-of-the-art meth-
ods, and also shows promising and robust performance especially
in the low-resource and high-noise data scenarios.

CCS Concepts
• Information systems → Data mining; Multimedia informa-
tion systems; Information integration;
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1 Introduction
Recent years have witnessed the booming of multi-modal knowl-
edge graphs (MMKGs), which extend traditional knowledge graphs
(KGs) by introducing multi-modal data, such as the relevant im-
ages of entities, to provide physical world meanings to the symbols
of KGs. Along this line, various downstream applications can be
supported, such as visual question answering [52], recommenda-
tion systems [9, 48] and other applications [20, 50, 53]. However,
MMKGs are usually constructed from separate multi-modal re-
sources for different purposes, often suffering from the issue of
incompleteness and limited coverage [24]. Therefore, the task of
multi-modal entity alignment (MMEA) has been proposed, which
aims to identify equivalent entities between twoMMKGs, by access-
ing the multi-modal information of entities, such as their structures,
relations, attributes, and images. In this way, one MMKG can re-
trieve and acquire useful knowledge from other MMKGs.

To achieve MMEA, a prominent challenge is how to exploit the
feature consistency of equivalent entities between MMKGs from
their diverse and abundant multi-modal information. Pioneer meth-
ods such as PoE [24] concatenate all modality features to generate
holistic multi-modal entity representations, but neglect the diverse
importance of different modality features. Subsequently, effective
methods [3, 13, 22, 23] attempt sophisticated multi-modal fusion
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Figure 1: An example of the MMEA task between MMKGs,
where ImgSim denotes the similarity of the images. Given
Entity_1 inMMKG-1, the model aims to predict Entity_2 from
candidate entities in MMKG-2 as the true entity.

modules to focus more on the important modality features, bene-
fiting to emphasize consistent features for equivalent entities. For
example, EVA [23] learns global attention weights for different
modalities, and MEAformer [3] further develops dynamic modality
weights specifically for different entities. However, these methods
rely heavily on the automatically learned fusion module, which can
be hampered by the alignment-irrelevant information such as mis-
leading clues1 in the entities’ multi-modal information, especially
when there are only low-resource or high-noise training data.

In contrast, we argue that it is crucial to consider the misleading
clues in modalities for MMEA. As shown in Figure 1, given Entity_1

in MMKG-1, we are going to search the candidate entities (e.g.,
Entity_2, Entity_3, and so on) fromMMKG-2, and identify Entity_2

as the true equivalent entity. However, we accidentally find that
the image of Entity_1 has higher similarity2 with Entity_3 due to
the similar background color. Even though, we can still identify
Entity_1 and Entity_2 as the equivalent entities by recognizing the
details of human faces. Actually, in this case, the background color
reflects the misleading clue that is alignment-irrelevant for MMEA.
Existing methods usually struggle3 with this case since the multi-
modal fusion modules may hardly discern the alignment-relevant
information from the entire image information. This inspires us
to emphasize the alignment-relevant information explicitly, and
simultaneously surpass the alignment-irrelevant information in
modalities, to relieve the impact of misleading clues.

For this purpose, we explore information bottleneck (IB) [35, 36]
as a potential solution. In general, the IB principle aims to learn an
ideal representation that makes a trade-off between the fully data
descriptive information and the task predictive information [36].

1It is also usually called shortcuts in researches [14].
2Note that we select examples from real datasets, and obtain image features from
ResNet-152 to calculate cosine similarity. For details, please see Sec. 4.4.2.
3For details, we show empirical results in Figure. 5, 6, and 7.

For theMMEA task, we expect themulti-modal encoders of different
modalities to extract alignment-relevant features as the task predic-
tive information, while appropriately ignoring certain alignment-
irrelevant information in the data descriptive information. In this
way, the model is required to focus more on the necessary informa-
tion for MMEA from the contexts of entity pairs between MMKGs,
thus limiting the redundant information in entity representations
and improving the robustness to misleading clues.

Following the above idea, we propose a novel variational frame-
work forMulti-modalEntityAlignment via InformationBottleneck,
termed as IBMEA. Specifically, we first devise multi-modal vari-
ational encoders to capture the multi-modal features of each en-
tity, including its graph structures, images, relations and attributes,
and then represent them with probability distributions. Afterward,
we propose two kinds of multi-modal information regularizers: 1)
the modal-specific information bottleneck regularizer, which takes
each modal-specific representation as input, surpassing alignment-
irrelevant information and emphasizing alignment-relevant infor-
mation, 2) the modal-hybrid information contrastive regularizer,
which adaptively fuses all modal-specific representations to gen-
erate modal-hybrid representations, and further enhances entity
similarity between entity pairs to achieve MMEA. Our major con-
tributions can be summarized as follows:

• We introduce a novel perspective for MMEAwith IB, and propose
a variational framework as IBMEA. To our knowledge, we are
the first to explore IB to alleviate misleading clues in MMEA.

• We propose two kinds of regularizers to refine the modal-specific
and modal-hybrid features, which surpass alignment-irrelevant
information and emphasize alignment-relevant information, im-
proving the robustness with misleading clues.

• Experiments indicate that our model outperforms the comparison
state-of-the-art methods on 5 benchmarks, and obtains promising
and robust results in low-resource and high-noise scenarios.

2 Preliminaries
2.1 Task Formulation
Formally, the multi-modal knowledge graph (MMKG) can be
defined as G = (E,R,A,V), where E,R,A,V are the sets of enti-
ties, relations, attributes and visual images, respectively. Therefore,
the triples are defined as T ⊆ E × R × E, where each entity 𝑒 ∈ E
can be linked to attributes and images. Building on previous re-
search [3, 22, 23], we mainly focus four modalities𝑚 ∈ {𝑔, 𝑣, 𝑟, 𝑎} of
entities, including graph structures 𝑔, visual images 𝑣 , neighboring
relations 𝑟 and attributes 𝑎.

Based upon, multi-modal entity alignment (MMEA) aims to
identify equivalent entities from two different MMKGs. Formally,
given two MMKGs G (1) and G (2) with their relational triples and
multi-modal attributes, the goal of MMEA task is to identify equiva-
lent entity pairs {⟨𝑒 (1) , 𝑒 (2) ⟩|𝑒 (1) ∈ G (1) , 𝑒 (2) ∈ G (2) , 𝑒 (1) ≡ 𝑒 (2) }.
During training, the model utilizes a set of pre-aligned entity pairs
S as alignment seeds, while testing focuses on predicting equivalent
entity pairs across MMKGs. In this paper, we aim to achieve MMEA
by learning entity representations from both G (1) and G (2) , empha-
sizing alignment-relevant information while surpassing alignment-
irrelevant information to bridge between MMKGs.
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Figure 2: The framework of the proposed IBMEA for the multi-modal entity alignment task.

2.2 Information Bottleneck
We adopt the information bottleneck (IB) principle [35, 36] to learn
general entity representations across MMKGs. The IB principle
aims to find a maximally compressed representation 𝒁 of the input
𝑿 while preserving information about the target 𝒀 , which achieved
by minimizing the objective function:

L𝐼𝐵 = 𝛽𝐼 (𝒁 ;𝑿 ) − 𝐼 (𝒁 ; 𝒀 ), (1)

where 𝐼 (·; ·) denotes mutual information, and 𝛽 > 0 is a Lagrangian
multiplier controlling the trade-off between compression and in-
formation preservation. Minimizing the first term penalizes the
information between 𝒁 and 𝑿 , encouraging the latent variable 𝑍
to forget irrelevant information. Maximizing the second term en-
courages 𝒁 to be predictive of 𝒀 . Consequently, the IB principle
enables 𝒁 to capture relevant factors for prediction while compress-
ing irrelevant parts [6]. This aligns with the notion of 𝒁 acting as a
minimal sufficient statistic of 𝑿 for predicting 𝒀 [5].

Although the IB principle is appealing, computing mutual infor-
mation poses computational challenges. To overcome this, the VIB
(Variational Information Bottleneck) [5] method proposes a varia-
tional approximation approach for the IB objective. It minimizes
the following formulation:

LVIB = 𝛽 E
𝒙
[KL [𝑝𝜃 (𝒛 |𝒙) | |𝑟 (𝒛)]] − E

𝒛∼𝑝𝜃 (𝒛 |𝒙 )

[
log𝑞𝜙 (𝒚 |𝒛)

]
, (2)

where 𝑝𝜃 (𝒛 |𝒙) is an estimate of posterior probability to generate
𝒛 from data 𝒙 , 𝑟 (𝒛) is an estimate of the prior probability 𝑝 (𝒛) to
describe 𝒛, and 𝑞𝜙 (𝒚 |𝒛) is a parametric approximation of 𝑝 (𝒚 |𝒛)
to predict target 𝒚. Intuitively, the encoder generates 𝑝𝜃 (𝒛 |𝒙) with
parameter 𝜃 , and the decoder achieves 𝑞𝜙 (𝒚 |𝒛) with parameter 𝜙 .
Actually, Eq. (2) resembles a likelihood-prior trade-off, since the
first term applies KL-divergence with uninformative prior, penal-
izing the too complex encoded representations, and the second
term approximates the log-likelihood expectation, requiring the
representations to achieve task prediction.

3 Methodology
The overall framework of IBMEA is illustrated in Figure 2. Our
model mainly consists of two components: 1) Multi-modal Varia-
tional Encoder, which represents multi-modal information of enti-
ties from both MMKGs into random variables, and 2) Multi-modal
Information Regularizer, which imposes IB regularization on each
modal-specific representations, and facilitates MMEA with con-
trastive regularization upon modal-hybrid representations.

3.1 Multi-modal Variational Encoder
To capture entity features from all modalities, including the graph
structure 𝑔, visual image 𝑣 , relation 𝑟 and attribute 𝑎. We devise the
modal-specific variational encoder and generate the modal-specific
feature variables as 𝒛𝑚 with𝑚 ∈ {𝑔, 𝑣, 𝑟, 𝑎}, respectively.

3.1.1 Variational Graph Encoder. To fully leverage the graph struc-
tures of MMKGs, we devise a variational graph encoder. Consid-
ering the neighbors of an entity can have different importance for
entity alignment, we adopt (two attention heads and two layers)
graph attention network (GAT) [40] to capture graph structures.
To better depict the information of the graph structural feature,
we represent it with a variable 𝒛𝑔 of the probability distribution.
Practically, we assume the variable as Gaussian distributions as
widely used in variational studies [5, 16, 44], and represent 𝒛𝑔 with
mean vector 𝝁𝑔 and variance vector 𝝈𝑔 , derived by separate GATs
with different learnable parameters [16]:

𝝁𝑔 = GAT(𝑨, 𝒙𝑔 ;𝜃𝑔,𝜇 ),
𝝈𝑔 = GAT(𝑨, 𝒙𝑔 ;𝜃𝑔,𝜎 ),
𝒛𝑔 ∼ N(𝝁𝑔, diag(𝝈2

𝑔 )),
(3)

where 𝒙𝑔 ∈ R𝑑𝑔 is the randomly initialized node features,𝑨 denotes
the adjacent matrix of the given MMKG. To alleviate the negative
impacts of structural heterogeneity, we encode both MMKGs with
shared GATs to project entities into the same embedding space [18].
The learnable parameters can be summarized as 𝜃𝑔 ≜ {𝜃𝑔,𝜇 , 𝜃𝑔,𝜎 }.
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3.1.2 Variational Visual, Attribute and Relation Encoder. To high-
light the information of relations, attributes, and images, we devise
separate fully connected layers as multi-modal encoders to learn
interim representations for each modality𝑚′ ∈ {𝑣, 𝑎, 𝑟 } as follows:

�̂�𝑚′ = 𝛿 (FCm′ (𝑾𝑚′ , 𝒙𝑚′ )), (4)

where 𝑾𝑚′ ∈ R𝑑𝑚′×𝑑 and 𝛿 is the ReLU activation. Here, 𝒙𝑚′ ∈
R𝑑𝑚′ denotes the initialized feature for𝑚′-modality. For images,
we utilize pre-trained visual encoders to obtain effective image
features. For entities without images, we average the images of their
neighbors as the initial feature [19]. For attributes and relations, the
bag-of-attributes and bag-of-relations features [49] are employed.

Based on these interim representations, we employ multi-layer
perceptrons (MLPs) to derive modal-specific feature variables. As-
suming these variables follow a Gaussian distribution and employ
separateMLPs to learn mean vector 𝝁𝑚′ and variance vector 𝝈𝑚′ :

𝝁𝑚′ = MLP(�̂�𝑚′ ;𝜃𝑚′,𝜇 ),

𝝈𝑚′ = MLP(�̂�𝑚′ ;𝜃𝑚′,𝜎 ),
𝒛𝑚′ ∼ N(𝝁𝑚′ , diag(𝝈2

𝑚′ )),

(5)

where the learnable parameters for𝑚′-modality can be summarized
as 𝜃𝑚′ ≜ {𝜃𝑚′,𝜇 , 𝜃𝑚′,𝜎 ,𝑾𝑚′ } with𝑚′ ∈ {𝑣, 𝑎, 𝑟 }.

3.1.3 Multi-modal Representation Implementation. Since themodal-
specific variables are intractable for neural networks, we leverage
the reparameterization trick [16] to sample deterministic repre-
sentations from probability distributions. For each modality𝑚 ∈
{𝑔, 𝑣, 𝑎, 𝑟 }, the sampled representation 𝒛𝑚 is obtained as follows:

𝒛𝑚 = 𝝁𝑚 + 𝝈𝑚 ⊙ 𝝐, 𝝐 ∼ N(0, diag(𝑰 )), (6)

where 𝝁𝑚 and 𝝈𝑚 are the corresponding mean and standard devi-
ation of𝑚-modality, respectively. 𝝐 is a standard Gaussian noise,
and ⊙ denotes the element-wise production. In this way, we obtain
the deterministic modal-specific representations for entities, which
can be further integrated to acquire entire (modal-hybrid) entity
representations to make predictions for MMEA.

3.2 Multi-modal Information Regularizer
In this section, we introduce two kinds of regularizers from mutual
information perspective, which refine the modal-specific represen-
tations with limited alignment-irrelevant information, and derive
better modal-hybrid representations for MMEA.

3.2.1 Modal-specific Information Bottleneck Regularizer. As claimed
in Sec. 1, there may exist alignment-irrelevant misleading clues in
distinct modalities. For each modality𝑚 ∈ {𝑔, 𝑣, 𝑎, 𝑟 }, we expect
the learned modal-specific feature variables 𝒛𝑚 to contain less
alignment-irrelevant information while retaining more alignment-
relevant information between MMKGs. Following this idea, we
propose the information bottleneck regularizer L𝑚 for𝑚-modality
feature variables of the paired entities from the two MMKGs:

L𝑚 =
∑︁

𝑖∈{1,2}

[
𝛽𝑚𝐼 (𝒁 (𝑖 )

𝑚 ;𝑿 (𝑖 )
𝑚 ) − 𝐼 (𝒁 (𝑖 )

𝑚 ; 𝒀 )
]
,

= 𝛽𝑚
[
𝐼 (𝒁 (1)

𝑚 ;𝑿 (1)
𝑚 ) + 𝐼 (𝒁 (2)

𝑚 ;𝑿 (2)
𝑚 )

]︸                                        ︷︷                                        ︸
Minimality

− 𝐼 (𝒁 (1)
𝑚 ,𝒁 (2)

𝑚 ; 𝒀 )︸              ︷︷              ︸
Alignment

,
(7)

where 𝑿 (1)
𝑚 and 𝑿 (2)

𝑚 denotes the original 𝑚-modality features
from G (1) and G (2) , respectively. 𝒁 (1)

𝑚 and 𝒁 (2)
𝑚 are obtained by

Eq. (6) over the two MMKGs. 𝒀 denotes the supervised information,
indicating whether the paired entities are equivalent. Note that
the minimality term penalizes the information from its own MMKG,
while the alignment term encourages the representations to be ca-
pable of entity alignment. In this way, the redundant information
is surpassed by minimality term, alleviating alignment-irrelevant
misleading clues in the modal-specific representations. On the other
hand, the alignment-relevant information is simultaneously em-
phasized, since we require the modal to make prediction by the
alignment term with tailored information. For tractable objective
function, please refer to Sec. 3.3.1.

To refine modal-specific representations of all modalities, the
overall IB regularizer L𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐 is defined as follows:

L𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐 =
∑
𝑚∈{𝑔,𝑣,𝑎,𝑟 } L𝑚 . (8)

In this way, we encourage each modality of information to remain
consistency between MMKGs, benefiting to entire representations.

3.2.2 Modal-hybrid Information Contrastive Regularizer. To fully
leverage information of all modalities for MMEA, we propose a
modal-hybrid information contrastive regularizer. We first generate
modal-hybrid feature variables by integrating all the modal-specific
feature variables. Specifically, for each entity, we measure the dis-
tinct importance of its modality information with attention mecha-
nism, and employ the attention weights to integrate modal-specific
feature variables (sampled from Eq. (6)) as follows:

𝑠𝑚 = 𝒒𝑇𝑜 tanh(𝑾𝑚𝒛𝑚 + 𝑏𝑚),

𝛼𝑚 =
exp(𝑠𝑚)∑

𝑘∈{𝑔,𝑣,𝑎,𝑟 } exp(𝑠𝑘 )
,

𝒛𝑜 =
∑
𝑚∈{𝑔,𝑣,𝑎,𝑟 }𝛼𝑚𝒛𝑚,

(9)

where 𝛼𝑚 is the attention weight for modality𝑚, taking the differ-
ent nature of entities into consideration. In addition, 𝒒𝑜 ∈ R𝑑 ,
𝑾𝑚 ∈ R𝑑×𝑑𝑚 and 𝑏𝑚 ∈ R𝑑 are learnable parameters. In this
way, we obtain modal-hybrid feature variables considering the dis-
tinct modality importance of the entity and leverage the IB-refined
modal-specific feature variables.

Based on the derived modal-hybrid feature variable, we aim to
measure the mutual information between paired entities from the
two MMKGs. Our main intuition is that, given an entity in the one
MMKG, the equivalent entity in the other MMKG would have higher
mutual information than other candidate entities. Following this
intuition, we propose the modal-hybrid information contrastive
regularizer Lℎ𝑦𝑏𝑟𝑖𝑑 as follows:

Lℎ𝑦𝑏𝑟𝑖𝑑 = − 𝐼 (𝒁 (1)
𝑜 ;𝒁 (2)

𝑜 )︸          ︷︷          ︸
Contrastive term

.
(10)

In this way, we measure the consistency between paired entities
from the two MMKGs, which fully leverages all the IB-refined
modal-specific features to constitute the entire entity representa-
tions. For tractable objective function, please refer to Sec. 3.3.2.
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3.3 Tractable Optimization Objective
Theoretically, direct optimization of mutual information can be
intractable considering the intractable integrals [6, 29]. Therefore,
we derive tractable objectives with variational approximation [38].

3.3.1 Tractable Information Bottleneck Objective. To optimize the
information bottleneck regularizer in Eq. (7), we derive the varia-
tional lower bound for the minimality and alignment term.

For the minimality term, we measure it by Kullback-Leibler
(KL) divergence [4] with variational approximation posterior distri-
butions. Specifically, recall that we are given the original feature 𝒙𝑚
of𝑚-modality from G (𝑚 ∈ {𝑔, 𝑣, 𝑟, 𝑎}, and we omit the subscript
of different MMKGs), and the feature variable 𝒛𝑚 can be approx-
imated by the𝑚-th modality variational encoder. We can derive
the approximation upper bound [29] of the minimality term, and
minimize it as the tractable objective function:

𝐼 (𝒁𝑚 ;𝑿𝑚) ≤ D𝐾𝐿 (𝑝𝜃 (𝒛𝑚 |𝒙𝑚) | |𝑟 (𝒛𝑚))
= D𝐾𝐿 (N (𝝁𝑚, diag(𝝈2

𝑚)) | |N (0, diag(𝑰 ))) .
(11)

Here, to approximate true posterior distributions 𝑝 (𝒛𝑚 |𝒙𝑚), we
adopt the𝑚-modality variational encoder parameterized by 𝜃 (omit
subscript 𝑚 of 𝜃𝑚) to generate approximated posterior distribu-
tion as 𝑝𝜃 (𝒛𝑚 |𝒙𝑚). Besides, following existing variational meth-
ods [5, 16, 44], we also assume the prior distribution 𝑟 (𝒛𝑚) as a
standard Gaussian distributionN(0, diag(𝑰 )) for convenience. Such
a procedure holds for both MMKG G (1) and G (2) . In this way, we
compress redundant information in the𝑚-modality representation.

For the alignment term, we also adopt variational approxima-
tion posterior distribution to render. The goal of the alignment term
is to make prediction with the learned feature variables. Therefore,
we rewrite the alignment term with likelihood of the entity align-
ment task, which is the variational lower bound for maximization
as the tractable objective function:

𝐼 (𝒁 (1)
𝑚 ,𝒁 (2)

𝑚 ; 𝒀 )

≥ E
𝒛 (1)
𝑚 ,𝒛 (2)

𝑚 ∼𝑝𝜃 (𝒛 (1)
𝑚 |𝒙 (1)

𝑚 ),𝑝𝜃 (𝒛 (2)
𝑚 |𝒙 (2)

𝑚 ) [log𝑞𝜙 (𝒚 |𝒛
(1)
𝑚 , 𝒛 (2)𝑚 )],

(12)

where the variable 𝒚 denotes whether the entity pair is equiva-
lent, and 𝑞𝜙 (𝒚 |𝒛

(1)
𝑚 , 𝒛 (2)𝑚 ) is the entity alignment decoder to make

prediction. Generally, the likelihood can be achieved by binary
cross-entropy, and here we use InfoNCE [39] to better consider all
the candidate entities in ranking, which can be formed as:

𝐼 (𝒁 (1)
𝑚 ,𝒁 (2)

𝑚 ; 𝒀 ) ≥
∑︁

(𝒛 (1)
𝑚 ,𝒛 (2)

𝑚 ) ∈S

[
log exp(cos(𝒛 (1)𝑚 , 𝒛 (2)𝑚 )/𝜏)

−
∑︁

(𝒛 (1)
𝑚 ,�̂� (2)

𝑚 )∉S

log exp(cos(𝒛 (1)𝑚 , �̂� (2)𝑚 )/𝜏)
]
,

(13)

where S is the seed alignments (i.e., pre-aligned entity pairs), 𝜏
is the temperature factor. �̂� (2)𝑚 is the negative entity obtained by
randomly replacing the true entity of seed alignments.

3.3.2 Tractable Information Contrastive Objective. To optimize the
contrastive term, we follow the idea of InfoMax [41] by measuring
the mutual information with neural networks. Specifically, we use
another discriminator D to measure the consistency between enti-
ties, and the lower bound of the contrastive term can be derived

as:
𝐼 (𝒁 (1)

𝑜 ;𝒁 (2)
𝑜 ) = E

𝑝 (𝒛 (1)𝑜 |𝒙 (1) )𝑝 (𝒛 (2)𝑜 |𝒙 (2) ) [logD(𝒛 (1)𝑜 , 𝒛 (2)𝑜 ) ]

≥
∑︁

(𝒛 (1)𝑜 ,𝒛
(2)
𝑜 ) ∈S

log(D(𝒛 (1)𝑜 , 𝒛 (2)𝑜 ) ) +
∑︁

(𝒛 (1)𝑜 ,𝒛
(2)
𝑜 )∉S

log(1 − D(𝒛 (1)𝑜 , 𝒛 (2)𝑜 ) ), (14)

where 𝒛 (1)𝑜 and 𝒛 (2)𝑜 are modal-hybrid variables for G (1) and G (2)

from Eq. (9) respectively, which encode all the original modality
features (𝒙 ≜ {𝑥𝑔, 𝑥𝑣, 𝑥𝑎, 𝑥𝑟 }) in the corresponding MMKG. Here
we can achieve the discriminator D with inner production followed
by sigmoid. Inspired by Boudiaf et al. [8], we adopt multi-similarity
loss [43] to further consider the impact of different entities in con-
trastive learning. In this way, we encourage the modal-hybrid rep-
resentations of the equivalent entities to be relevant and thereupon
achieve the MMEA task with all modality information.

3.3.3 Overall Objective Function. Sincewe have imposed constraints
on both the modal-specific and modal-hybrid representations, the
overall objective function is defined in a joint paradigm as follows:

L𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = L𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐 + Lℎ𝑦𝑏𝑟𝑖𝑑 . (15)

In summary, the proposed IB regularizers enable us to suppress
alignment-irrelevant information and emphasize the alignment-
relevant information to fulfill the MMEA task.

4 Experiments
In this section, we conduct extensive experiments to evaluate the
effectiveness. More analyses are detailed in Appendix4.

4.1 Experimental Settings
4.1.1 Datasets and Evaluation Metrics. In this study, we evalu-
ate our proposed IBMEA on five multi-modal EA datasets, cat-
egorized into two types. (1) Cross-KG [24] datasets, comprising
FB15K-DB15K and FB15K-YAGO15K, with 128,486 and 11,199 la-
beled pre-aligned entity pairs, respectively. (2) Bilingual datasets
also named DBP15K [23, 32], which are including DBP15KZH-EN,
DBP15KJA-EN andDBP15KFR-EN from the multilingual versions of
DBpedia, each with approximately 400K triples and 15K pre-aligned
entity pairs. EVA [23] provided images of entities for the DBP15K
dataset. Following previous works [3, 22, 23], we utilize 20%, 50%,
80% of true entity pairs as alignment seeds for training on cross-KG
datasets, and 30% for bilingual datasets. We use Hits@1 (H@1),
Hits@10 (H@10), and Mean Reciprocal Rank (MRR) as evaluation
metrics. Hits@N denotes the proportion of correct entities in the
top N ranks, while MRR is the average reciprocal rank. For both
metrics, higher values indicate better alignment results.

4.1.2 Baselines. To verify the effectiveness of IBMEA, we select
several typical and competitive methods as baselines. We manifest
these methods into two groups: Traditional Entity Alignment
methods. We choose 6 prominent EA methods proposed in re-
cent years, which achieve entity alignment based on the graph
structures and do not introduce multi-modal information, including
TransE [7], IPTransE [54], GCN-align [45], KECG [18], BootEA [33],
and NAEA [55].MMEAmethods.We further collect 10 state-of-
the-art MMEA methods, which incorporate entity images as input
features to enrich entity representations, including POE [24], Chen
4Our Appendix and code are available at https://github.com/sutaoyu/IBMEA.

https://github.com/sutaoyu/IBMEA
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Table 1: Experimental results on 2 cross-KG datasets where X% represents the percentage of seed alignments used for training.
The best result is bold-faced and the runner-up is underlined. ∗ indicates results reproduced using the official source code.

Methods
FB15K-DB15K (20%) FB15K-DB15K (50%) FB15K-DB15K (80%) FB15K-YAGO15K (20%) FB15K-YAGO15K (50%) FB15K-YAGO15K (80%)

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

TransE [7] .078 .240 .134 .230 .446 .306 .426 .659 .507 .064 .203 .112 .197 .382 .262 .392 .595 .463
IPTransE [54] .065 .215 .094 .210 .421 .283 .403 .627 .469 .047 .169 .084 .201 .369 .248 .401 .602 .458
GCN-align [45] .053 .174 .087 .226 .435 .293 .414 .635 .472 .081 .235 .153 .235 .424 .294 .406 .643 .477
KECG* [18] .128 .340 .200 .167 .416 .251 .235 .532 .336 .094 .274 .154 .167 .381 .241 .241 .501 .329

POE [24] .126 .151 .170 .464 .658 .533 .666 .820 .721 .113 .229 .154 .347 .536 .414 .573 .746 .635
Chen et al. [10] .265 .541 .357 .417 .703 .512 .590 .869 .685 .234 .480 .317 .403 .645 .486 .598 .839 .682
HMEA [15] .127 .369 - .262 .581 - .417 .786 - .105 .313 - .265 .581 - .433 .801 -
EVA [23] .134 .338 .201 .223 .471 .307 .370 .585 .444 .098 .276 .158 .240 .477 .321 .394 .613 .471
MSNEA [11] .114 .296 .175 .288 .590 .388 .518 .779 .613 .103 .249 .153 .320 .589 .413 .531 .778 .620
ACK-MMEA [19] .304 .549 .387 .560 .736 .624 .682 .874 .752 .289 .496 .360 .535 .699 .593 .676 .864 .744
UMAEA* [13] .560 .719 .617 .701 .801 .736 .789 .866 .817 .486 .642 .540 .600 .726 .644 .695 .798 .732
MCLEA [22] .445 .705 .534 .573 .800 .652 .730 .883 .784 .388 .641 .474 .543 .759 .616 .653 .835 .715
MEAformer [3] .578 .812 .661 .690 .871 .755 .784 .921 .834 .444 .692 .529 .612 .808 .682 .724 .880 .783

IBMEA (Ours) .631 .813 .697 .742 .880 .793 .821 .922 .859 .521 .708 .584 .655 .821 .714 .751 .890 .800

et al. [10], HMEA [15], EVA [23], ACK-MMEA [19], MSNEA [11],
PSNEA [28], UMAEA [13], MCLEA [22], and MEAformer [3]. For
more details, please refer to Sec. 5. Among the methods, MCLEA
and MEAformer are typical competitive methods.

4.1.3 Implementation Details. In our experiments, the GAT has
two layers with a hidden size of 𝑑𝑔 = 300. For visual embeddings,
following [3, 22, 23], we leverage a pre-trained VGG-16 model
[31] for cross-KG datasets with 𝑑𝑣 = 4096 and ResNet-152 for
bilingual datasets with 𝑑𝑣 = 2048 to obtain initial features from the
penultimate layer. Following [3, 22], the Bag-of-Words method is
chosen to encode both attributes (𝒙𝑎) and relations (𝒙𝑟 ) as fixed-
length vectors, where𝑑𝑎 and𝑑𝑟 are both 1000. The graph embedding
output is 300, and other modality embeddings are 100. Training
is conducted over 1000 epochs with a batch size of 7,500, using
AdamW optimizer [26] with a learning rate of 6e-3 and a weight
decay of 1e-2. Hyper-parameters 𝛽𝑔, 𝛽𝑣, 𝛽𝑎, 𝛽𝑟 in Eq. (7) are tune
in [1e-4, 1e-3, 1e-2, 1e-1], yielding optimal results at 1e-3, 1e-2,
1e-2, 1e-2, respectively. Consistent with prior studies [3, 22, 23],
we adopt an iterative training strategy to overcome the lack of
training data and exclude entity names for fair comparison. Our
best hyper-parameters are tuned by grid search according to the
prediction accuracy of MMEA, detailed in Appendix.

4.2 Overall Results
The overall average results on cross-KG and bilingual datasets are
displayed in Table 1 and Table 2, respectively. From the tables, we
have several observations: 1) Our proposed IBMEA model outper-
forms all baseline models on 5 benchmarks with different data set-
tings, including two cross-KG datasets and three bilingual datasets,
excelling in all key metrics (H@1, H@10, and MRR), which demon-
strates the model’s generality. Specifically, under 50% and 80% align-
ment seed settings on 2 cross-KG datasets, our model achieved an
average increase of 4.2% and 3.0% in H@1 scores, and 3.5% and 2.1%
in MRR scores, respectively. Moreover, our model still exceeds those
high-performing baselines and increases the current SOTA Hits@1
scores from .847/.842/.845 to .859/.856/.864 on ZH-EN/JA-EN/FR-EN
datasets with the DBP15K, respectively. 2) Our model achieves bet-
ter results in relatively low-resource data scenario. Compared to the

Table 2: Experimental results on 3 bilingual datasets . The
best result is bold-faced and the runner-up is underlined. ∗
indicates results reproduced using the official source code.

Methods
DBP15KZH-EN DBP15KJA-EN DBP15KFR-EN

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

GCN-align [45] .434 .762 .550 .427 .762 .540 .411 .772 .530
KECG [18] .478 .835 .598 .490 .844 .610 .486 .851 .610
BootEA [33] .629 .847 .703 .622 .854 .701 .653 .874 .731
NAEA [55] .650 .867 .720 .641 .873 .718 .673 .894 .752

EVA [23] .761 .907 .814 .762 .913 .817 .793 .942 .847
MSNEA [11] .643 .865 .719 .572 .832 .660 .584 .841 .671
UMAEA* [13] .807 .967 .867 .806 .967 .832 .820 .979 .881
PSNEA [28] .816 .957 .869 .819 .963 .868 .844 .982 .891
MCLEA [22] .816 .948 .865 .812 .952 .865 .834 .975 .885
MEAformer [3] .847 .970 .892 .842 .974 .892 .845 .976 .894

IBMEA (Ours) .859 .975 .903 .856 .978 .902 .864 .985 .911

runner-up method results, our model achieves an average increase
of 4.4% in H@1 and 4.0% in MRR on cross-KG datasets with a 20%
alignment seed setting. It demonstrates that using the IB principle,
the model can better grasp alignment-relevant information, alle-
viating overfitting on pieces of predictive clues with limited seed
alignments. 3) The MMEA baseline model generally outperforms the
EA baseline. Remarkably, our model utilizing 20% of the seeds sur-
passes the H@1 performance of the EA baseline at 80% in cross-KG
datasets. It demonstrates that introducing multi-modal information
can enrich entity information, and significantly help entity align-
ment with limited seed alignments. All the results demonstrate the
effectiveness of our proposed IBMEA, and we will further examine
our model on hard data scenarios to show the results in Sec. 4.4.

4.3 Ablation Study
To evaluate the unity of all regularizers, we conduct ablation study
on FB15K-DB15K dataset. From the Table 3, we can observe that:
1) The removal of any modal-specific IB regularizer consistently
leads to significant reductions across all metrics, thereby validating
its efficacy for modal-specific IB regularizers. 2) As the proportion
of alignment seeds increases, the negative impact of removing the



IBMEA: Exploring Variational Information Bottleneck for Multi-modal Entity Alignment MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Table 3: Ablation study on IB regularizers. G-IB, V-IB, A-IB,
and R-IB are modal-specific IB regularizers (Graph, Visual,
Attribute, and Relation) for short. Hybrid-IB refers to using
an IB regularizer on the representations after fusion.

Model
FB15K-DB15K (20%) FB15K-DB15K (50%) FB15K-DB15K (80%)

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

IBMEA .631 .813 .697 .742 .880 .793 .821 .922 .859

w/o G-IB .597 .780 .660 .707 .852 .759 .806 .903 .843
w/o V-IB .623 .785 .680 .725 .862 .774 .816 .908 .850
w/o A-IB .613 .782 .672 .721 .858 .771 .807 .898 .840
w/o R-IB .625 .799 .686 .720 .862 .772 .816 .914 .851
Hybrid-IB .468 .614 .518 .643 .762 .686 .748 .837 .780
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Figure 3: Results of removing different modalities on FB15K-
DB15K dataset. w/o means removing the modality.

regularizer diminishes. We believe there may exist more misleading
information in low-resource settings, thus the modal-specific IB
regulariser has a greater effect. 3) Compared with other w/o vari-
ants, w/o G-IB variant exhibits the most dramatic decline in overall
results, indicating that the graph structure information plays an im-
portant role in MMEA. 4) Comparing hybrid-IB and IBMEA, we see
that hybrid-IB results are much lower than IBMEA results, which
indicates applying the IB to each modality before fusion is more ef-
fective than post-fusion. The IB regularizer used after fusion might
indirectly refine essential multi-modal information, thereby hinder-
ing the model’s capacity to effectively retain alignment-relevant
information while suppressing alignment-irrelevant information.

To further evaluate the impact of different modalities, we report
the results by deleting different modalities on FB15K-DB15K dataset,
shown in Figure 3. We notice that: 1) Removing each modality
will reduce the final result, proving each modality’s importance. 2)
Comparedwith the high proportion of seeds (50% and 80% ratio), the
effect of differentmodalities information on the overall performance
is more obvious in the low proportion of seeds. This indicates that
our model can extract crucial information of each modality, thus
obtaining better results in the case of the low proportion of seeds.

4.4 Further Analysis
4.4.1 Performance on extreme low-resource training data. To fur-
ther explore the performance with few training data, where the
alignment seed ratio ranges from 5% to 30%. Specifically, we select
MCLEA and MEAformer as baselines, and the results are depicted
in Figure 4. We can observe that as the proportion of alignment
seeds decreases, the performance of all models would also decrease
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Figure 4: Results in the low-resource data scenario with pro-
portions of seed alignments on FB15K-DB15K dataset.
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Figure 5: Results on the samples with low-similarity image
in FB15K-DB15K dataset.

in terms of metrics. However, it is obvious that our IBMEA con-
tinuously outperforms MCLEA and MEAformer, indicating the
effectiveness of our proposed method. Moreover, it is worth noting
that the gap between them is much more significant when the seed
alignments are extremely few (5%), which confirms the superior-
ity of our proposed method to alleviate the overfitting of shortcut
misleading clues in low-resource scenarios.

4.4.2 Performance on samples with low-similarity image. To ex-
amine the effectiveness of our models on hard samples, we select
samples with low-similarity image in FB15K-DB15K dataset (20%
seed alignments) and examine the performance of the three MMEA
models on these samples. The similarity between the images is cal-
culated by the cosine similarity of the features extracted from the
pre-trained visual encoder. Considering alignment entity pairs with
low-similarity image, they tend to contain more task-irrelevant
misleading information. As shown in Figure 5, our model achieves
the best results on both the H@1 and MRR metrics with different
entity image similarity settings. We believe that our model can
effectively leverage IB principle in training, which encourages the
model to focus more on the task-relevant image information for
prediction rather than the overall redundant image information.

4.4.3 Performance on samples with high-noise image. To explore
the efficacy of entity alignment in noisy data scenarios, we uti-
lize FB15K-DB15K dataset (20% seed alignments) and add artificial
noise to the images for experiments. Specifically, we first obtain
the entity’s image embedding from the pre-trained visual encoder,
and then impose random dropout to them with a dropout rate to
control the noise rate. As depicted in Figure 6, results indicate that
all models reflect a performance decline with increasing the image
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Figure 6: Results on the samples with noisy image in
FB15K-DB15K dataset. We impose random dropout to images
as noise and control the dropout rate for analysis.

noise rate. However, even under a higher noise rate, our model
maintains relatively high H@1 and MRR metrics. Considering the
higher noise rate tends to have more misleading clues, the results
demonstrate the effectiveness of our model with IB regularizers,
which successfully preserves alignment-relevant information while
suppressing alignment-irrelevant information, thereby sustaining
superior alignment performance in noisy environments.

4.4.4 Case study. To detail the model prediction, we present typ-
ical cases of aligned entities from DBP15KZH-EN with relatively
low-similarity figures in Figure 7. Case 1 shows characters with
different clothes but similar facial features. Case 2 displays maps
with different background colors yet identical contour features. In
Case 3, a statue and a black-and-white photo of the same person
exhibit similar facial traits, providing crucial information for en-
tity alignment. The three cases reflect misleading clues in images.
As in the predictions, it was found that MCLEA and MEAformer
predict the true entity with a lower ranking. Note that in Case 3,
the MEAformer model predicts worse, likely due to being misled
by differences in entity forms. In contrast, our model accurately
predicted in all cases, thus demonstrating its superior ability to
handle misleading information for the MMEA task.

5 Related work
5.1 Entity Alignment
Entity Alignment (EA) aims to identify equivalent entities across dif-
ferent knowledge graphs (KGs) to facilitate knowledge fusion. The
majority of existing EA methods focus on traditional knowledge
graphs can be classified into two categories: 1) Structure-based tech-
niques focus on employing knowledge embedding [1, 7, 12, 33, 54]
to capture the entity structure information from relational triples,
or utilize graph-based models [18, 27, 34, 45] for neighborhood
entity feature aggregation [17, 21, 30, 40]. 2) Side information-based
methods [2, 25, 32, 37, 46] integrate side information (e.g., entity
name, entity attribute, relation predicates) to learn more informa-
tive entity representation. As previous studies [25, 51] have shown,
the structure-based techniques assume that aligned entities should
share similar neighborhoods, the side information-based methods
regard equivalent entities usually contain similar side information.
Nevertheless, these methods mainly solely on structural informa-
tion and utilize textual side information, making them incapable of
handling the visual data of entities in actual scenes.
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ImgSim

Rank in Prediction

MCLEA MEAformer IBMEA

①
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0.76 14 13 1

②
List of 

counties 

in Oregon 

0.74 9 13 1

③
Run 

Run Shaw 

0.57 12 46 1

Figure 7: Case study on entities with image similarity.

5.2 Multi-Modal Entity Alignment
Due to the increasing popularity of multi-modal knowledge graphs,
how to incorporate visual modalities in EA, i.e. multi-modal entity
alignment (MMEA), has attracted research attention. The pioneer
method PoE [24] defines overall probability distribution as the
product of all uni-modal experts. Chen et al. [10] design a multi-
modal fusion module for integrating different modal embeddings.
HMEA [15] combines the structure and visual representations in
hyperbolic space. MSNEA [11] and XGEA [47] integrate visual fea-
tures to guide relational and attribute learning, with the former
using a translation-based KG embedding method and the latter
using a graph neural network (GNN) approach. ACK-MMEA [19]
proposes a method for uniformizing multi-modal attributes, while
UMAEA [13] introduces multi-scale modality hybrid and circu-
larly missing modality imagination. PSNEA [28] and PCMEA [42]
dynamically generate pseudo-label data to improve alignment per-
formance. EVA [23] allows the alignment model to obtain the impor-
tance of different modality weights to fuse multi-modal information
from KGs into a joint embedding. MCLEA [22] follows the EVA
fusion method and then obtains informative entity representations
based on contrastive learning. MEAformer [3] develops UMAEA
and dynamically learns modality weights for each entity via the
transformer-based attention fusion method. However, the above
existing methods rarely explicitly address the misleading alignment-
irrelevant information in each modality, resulting in incomplete
utilization of the alignment-relevant information.

6 Conclusion
In this paper, we explore MMEA to identify equivalent entities be-
tween MMKGs. To address alignment-irrelevant misleading clues
in modalities, we propose a novel MMEA framework termed as
IBMEA, which aims to emphasize alignment-relevant information
and simultaneously suppress alignment-irrelevant information in
modalities. Particularly, we devise multi-modal variational encoders
to represent multi-modal information with probability distributions
and propose information bottleneck regularizers and an informa-
tion contrastive regularizer. Experimental results indicate that our
model outperforms previous state-of-the-art methods, and shows
promising capability for misleading information alleviation, espe-
cially in the low-resource and high-noise data scenarios.



IBMEA: Exploring Variational Information Bottleneck for Multi-modal Entity Alignment MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Acknowledgments
This work was supported by the National Key Research and Devel-
opment Program of China (Grant No.2021YFB3100600), the Youth
Innovation Promotion Association of CAS (No.2021153), and the
Postdoctoral Fellowship Program of CPSF (No.GZC20232968).

References
[1] 2019. Transedge: Translating relation-contextualized embeddings for knowledge

graphs. In Proceedings of ISWC. Springer, 612–629.
[2] 2020. COTSAE: co-training of structure and attribute embeddings for entity

alignment. In Proceedings of AAAI, Vol. 34. 3025–3032.
[3] 2023. Meaformer: Multi-modal entity alignment transformer for meta modality

hybrid. In Proceedings of the ACM MM. 3317–3327.
[4] Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and Kevin

Murphy. 2018. Fixing a broken ELBO. In Proceedings of ICML. PMLR, 159–168.
[5] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. 2017. Deep

Variational Information Bottleneck. In Proceedings of ICLR.
[6] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua

Bengio, Aaron Courville, and Devon Hjelm. 2018. Mutual Information Neural
Estimation. In Proceedings of ICML.

[7] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In Proceedings of NeurIPS. 2787–2795.

[8] Malik Boudiaf, Jérôme Rony, Imtiaz Masud Ziko, Eric Granger, Marco Pedersoli,
Pablo Piantanida, and Ismail Ben Ayed. 2020. A Unifying Mutual Information
View of Metric Learning: Cross-Entropy vs. Pairwise Losses. In Proceedings of
ECCV, Vol. 12351. 548–564.

[9] Xianshuai Cao, Yuliang Shi, Jihu Wang, Han Yu, Xinjun Wang, and Zhongmin
Yan. 2022. Cross-modal Knowledge Graph Contrastive Learning for Machine
Learning Method Recommendation. In Proceedings of the ACMMM. 3694–3702.

[10] Liyi Chen, Zhi Li, Yijun Wang, Tong Xu, Zhefeng Wang, and Enhong Chen. 2020.
MMEA: entity alignment for multi-modal knowledge graph. In Proceedings of
KSEM. Springer, 134–147.

[11] Liyi Chen, Zhi Li, Tong Xu, Han Wu, Zhefeng Wang, Nicholas Jing Yuan, and
Enhong Chen. 2022. Multi-modal siamese network for entity alignment. In
Proceedings of KDD. 118–126.

[12] Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo Zaniolo. 2017. Multilin-
gual Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment. In
Proceedings of IJCAI. 1511–1517.

[13] Zhuo Chen, Lingbing Guo, Yin Fang, Yichi Zhang, Jiaoyan Chen, Jeff Z. Pan,
Yangning Li, Huajun Chen, and Wen Zhang. 2023. Rethinking Uncertainly
Missing and Ambiguous Visual Modality in Multi-Modal Entity Alignment. In
Proceedings of ISWC. 121–139.

[14] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard S. Zemel,
Wieland Brendel, Matthias Bethge, and Felix A. Wichmann. 2020. Shortcut
learning in deep neural networks. Nat. Mach. Intell. 2, 11 (2020), 665–673.

[15] Hao Guo, Jiuyang Tang, Weixin Zeng, Xiang Zhao, and Li Liu. 2021. Multi-modal
entity alignment in hyperbolic space. Neurocomputing 461 (2021), 598–607.

[16] Diederik P Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
Proceedings of ICLR.

[17] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv:1609.02907 [cs.LG]

[18] Chengjiang Li, Yixin Cao, Lei Hou, Jiaxin Shi, Juanzi Li, and Tat-Seng Chua. 2019.
Semi-supervised Entity Alignment via Joint Knowledge Embedding Model and
Cross-graph Model. In Proceedings of EMNLP. 2723–2732.

[19] Qian Li, Shu Guo, Yangyifei Luo, Cheng Ji, Lihong Wang, Jiawei Sheng, and
Jianxin Li. 2023. Attribute-Consistent Knowledge Graph Representation Learning
for Multi-Modal Entity Alignment. In Proceedings of WWW. 2499–2508.

[20] Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenxuan Tu, Siwei Wang, Sihang
Zhou, Xinwang Liu, Fuchun Sun, and Kunlun He. 2024. A survey of knowl-
edge graph reasoning on graph types: Static, dynamic, and multi-modal. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2024).

[21] Ke Liang, Lingyuan Meng, Sihang Zhou, Wenxuan Tu, Siwei Wang, Yue Liu,
Meng Liu, Long Zhao, Xiangjun Dong, and Xinwang Liu. 2024. MINES: Message
Intercommunication for Inductive Relation Reasoning over Neighbor-Enhanced
Subgraphs. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 38. 10645–10653.

[22] Zhenxi Lin, Ziheng Zhang, MengWang, Yinghui Shi, XianWu, and Yefeng Zheng.
2022. Multi-modal Contrastive Representation Learning for Entity Alignment. In
Proceedings of COLING. 2572–2584.

[23] Fangyu Liu, Muhao Chen, Dan Roth, and Nigel Collier. 2021. Visual pivoting for
(unsupervised) entity alignment. In Proceedings of AAAI, Vol. 35. 4257–4266.

[24] Ye Liu, Hui Li, Alberto García-Durán, Mathias Niepert, Daniel Oñoro-Rubio,
and David S. Rosenblum. 2019. MMKG: Multi-modal Knowledge Graphs. In
Proceedings of ESWC, Vol. 11503. 459–474.

[25] Zhiyuan Liu, Yixin Cao, Liangming Pan, Juanzi Li, and Tat-Seng Chua. 2020.
Exploring and Evaluating Attributes, Values, and Structures for Entity Alignment.
In Proceedings of EMNLP. 6355–6364.

[26] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In Proceedings of ICLR.

[27] Xin Mao, Wenting Wang, Huimin Xu, Man Lan, and Yuanbin Wu. 2020. MRAEA:
an efficient and robust entity alignment approach for cross-lingual knowledge
graph. In Proceedings of WSDM. 420–428.

[28] Wenxin Ni, Qianqian Xu, Yangbangyan Jiang, Zongsheng Cao, Xiaochun Cao, and
Qingming Huang. 2023. PSNEA: Pseudo-Siamese Network for Entity Alignment
between Multi-modal Knowledge Graphs. In Proceedings of the ACMMM. 3489–
3497.

[29] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker.
2019. On variational bounds of mutual information. In Proceedings of ICML.
PMLR, 5171–5180.

[30] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,
Ivan Titov, andMaxWelling. 2018. Modeling Relational Data with Graph Convolu-
tional Networks. In Proceedings of ESWC (Lecture Notes in Computer Science,
Vol. 10843). 593–607.

[31] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In Proceedings of ICLR, Yoshua Bengio
and Yann LeCun (Eds.).

[32] Zequn Sun, Wei Hu, and Chengkai Li. 2017. Cross-Lingual Entity Alignment via
Joint Attribute-Preserving Embedding. In Proceedings of ISWC. 628–644.

[33] Zequn Sun, Wei Hu, Qingheng Zhang, and Yuzhong Qu. 2018. Bootstrapping
Entity Alignment with Knowledge Graph Embedding. In Proceedings of IJCAI.
4396–4402.

[34] Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen, Jian Dai, Wei Zhang, and
Yuzhong Qu. 2020. Knowledge graph alignment network with gated multi-hop
neighborhood aggregation. In Proceedings of AAAI, Vol. 34. 222–229.

[35] Naftali Tishby, Fernando C Pereira, and William Bialek. 1999. The information
bottleneck method. Annual Allerton Conf. on Communication, Control, and
Computing (1999).

[36] Naftali Tishby and Noga Zaslavsky. 2015. Deep Learning and The Information
Bottleneck Principle. In IEEE Information Theory Workshop (ITW).

[37] Bayu Distiawan Trisedya, Jianzhong Qi, and Rui Zhang. 2019. Entity alignment
between knowledge graphs using attribute embeddings. In Proceedings of AAAI,
Vol. 33. 297–304.

[38] Dimitris G Tzikas, Aristidis C Likas, and Nikolaos P Galatsanos. 2008. The varia-
tional approximation for Bayesian inference. IEEE Signal Processing Magazine
25, 6 (2008), 131–146.

[39] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2019. Representation Learning
with Contrastive Predictive Coding. arXiv:1807.03748 [cs.LG]

[40] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Proceedings of
ICLR.

[41] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R. Devon Hjelm. 2019. Deep Graph Infomax. In Proceedings of ICLR.

[42] LuyaoWang, PengnianQi, Xigang Bao, Chunlai Zhou, and BiaoQin. 2024. Pseudo-
Label Calibration Semi-supervisedMulti-Modal Entity Alignment. In Proceedings
of AAAI. 9116–9124.

[43] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R. Scott.
2019. Multi-Similarity Loss With General Pair Weighting for Deep Metric Learn-
ing. In Proceedings of CVPR. 5022–5030.

[44] Zifeng Wang, Xi Chen, Rui Wen, Shao-Lun Huang, Ercan E Kuruoglu, and Yefeng
Zheng. 2020. Information Theoretic Counterfactual Learning from Missing-Not-
At-Random Feedback. In Proceedings of NeurIPS.

[45] Zhichun Wang, Qingsong Lv, Xiaohan Lan, and Yu Zhang. 2018. Cross-lingual
knowledge graph alignment via graph convolutional networks. In Proceedings
of EMNLP. 349–357.

[46] Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, and Dongyan Zhao. 2019.
Jointly Learning Entity and Relation Representations for Entity Alignment. In
Proceedings of EMNLP. 240–249.

[47] Baogui Xu, Chengjin Xu, and Bing Su. 2023. Cross-Modal Graph Attention
Network for Entity Alignment. In Proceedings of the ACM MM. 3715–3723.

[48] Guohai Xu, Hehong Chen, Feng-Lin Li, Fu Sun, Yunzhou Shi, Zhixiong Zeng,
Wei Zhou, Zhongzhou Zhao, and Ji Zhang. 2021. Alime mkg: A multi-modal
knowledge graph for live-streaming e-commerce. In Proceedings of CIKM. 4808–
4812.

[49] Hsiu-Wei Yang, Yanyan Zou, Peng Shi, Wei Lu, Jimmy Lin, and Xu Sun. 2019.
Aligning Cross-Lingual Entities with Multi-Aspect Information. In Proceedings
of EMNLP. 4430–4440.

[50] Huaiwen Zhang, Quan Fang, Shengsheng Qian, and Changsheng Xu. 2019. Multi-
modal knowledge-aware eventmemory network for social media rumor detection.
In Proceedings of the ACM MM. 1942–1951.

[51] Rui Zhang, Bayu Distiawan Trisedya, Miao Li, Yong Jiang, and Jianzhong Qi. 2022.
A benchmark and comprehensive survey on knowledge graph entity alignment
via representation learning. The VLDB Journal 31, 5 (2022), 1143–1168.

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1807.03748


MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Taoyu Su et al.

[52] Yingying Zhang, Shengsheng Qian, Quan Fang, and Changsheng Xu. 2019. Multi-
modal Knowledge-awareHierarchical AttentionNetwork for ExplainableMedical
Question Answering. In Proceedings of the ACM MM. 1089–1097.

[53] Fei Zhao, Chunhui Li, Zhen Wu, Shangyu Xing, and Xinyu Dai. 2022. Learn-
ing from Different text-image Pairs: A Relation-enhanced Graph Convolutional
Network for Multimodal NER. In Proceedings of the ACM MM. 3983–3992.

[54] Hao Zhu, Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2017. Iterative Entity
Alignment via Joint Knowledge Embeddings. In Proceedings of IJCAI. 4258–4264.

[55] Qiannan Zhu, Xiaofei Zhou, Jia Wu, Jianlong Tan, and Li Guo. 2019.
Neighborhood-Aware Attentional Representation for Multilingual Knowledge
Graphs. In Proceedings of IJCAI. 1943–1949.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Task Formulation
	2.2 Information Bottleneck

	3 Methodology
	3.1 Multi-modal Variational Encoder
	3.2 Multi-modal Information Regularizer
	3.3 Tractable Optimization Objective

	4 Experiments
	4.1 Experimental Settings
	4.2 Overall Results
	4.3 Ablation Study
	4.4 Further Analysis

	5 Related work
	5.1 Entity Alignment
	5.2 Multi-Modal Entity Alignment

	6 Conclusion
	Acknowledgments
	References

