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1 SUPPLEMENTARY ANALYSIS
1.1 Hyper-parameters Analysis

To analyze how the information bottleneck principle works, we
explore how the Lagrangian multipliers 8, in Eq. (7) of the paper
with m € {g,v, a, r} influence the final performances. We conduct
detailed experiments on the FB15K-DB15K dataset (20% seed align-
ments). Take f; as an example, we maintain constant values for
Bu,a,r parameters, while varying §; within the range of [1e-4, 1e-3,
le-2, 1e-1]. The overall comparative results are shown in Figure 1.
As the values of S, increase, the evaluation curves tend to increase
at first and decline later on. The observed effect is attributed to the
fact that a very small f,,, value weakens the minimality term’s im-
pact, hindering the exclusion of alignment-irrelevant information.
On the other hand, an excessively large f;, overly amplifies the
minimality term’s influence. In this way, we verify the necessity
of balancing information compression and prediction ability. Gen-
erally, the comprehensive results demonstrate the effectiveness of
achieving tradeoffs two-fold purposes.
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Figure 1: Impact of § in IB regularizers on FB15K-DB15K.

1.2 Efficiency Analysis

To gain further insights into our model, we examine the efficiency
behaviors of the three MMEA models on FB15K-DB15K dataset (20%
seed alignments). As shown in Table 1, IBMEA training time was
approximately 2 to 3 times faster than the others models (MCLEA,
Meaformer) with similar parameter amounts, and it produces a
considerable advantage in H@1 and MRR metrics. The extended
training time of MCLEA may be due to its complex contrastive
learning for learning, and MEAFormer may be due to its intricate
transformer-based calculation of multi-modal weights. We con-
tribute the enhanced performance of our model to our efficient
variational encoder and the information regularizer. Our model
efficiently computes likelihood and KL divergence to suppress
alignment-irrelevant information while retaining critical alignment-
related information. This approach facilitates the generation of
more expressive entity representations, leading to a faster conver-
gence rate compared to the other models.

Table 1: Efficiency comparison on FB15K-DB15K dataset.

Methods Params Training Time H@1 MRR
MCLEA 89M 4707 s .445 .534
MEAformer 10.5 M 5160 s .578 .661
IBMEA 109M 1797 s .631 .697

2 SUPPLEMENTARY DEATAILS
2.1 Datasets details

In our experiments, we use two types of multi-modal EA datasets. (1)
Cross-KG datasets: we select FB15K-DB15K and FB15K-YAGO15K
public datasets, which are deemed as the most typical datasets in
multi-modal entity alignment tasks built-in [4]. FB15K is a represen-
tative subset extracted from the Freebase knowledge base. Aiming
to maintain an approximate entity number of FB15K, DB15K from
DBpedia, and YAGO15K from YAGO are mainly selected based
on the entities aligned with FB15K. (1) Bilingual datasets: DBP15k
is a widely used cross-lingual EA benchmark. It consists of four
language-specific knowledge graphs from DBpedia and includes
three bilingual entity alignment settings: French-English (FR-EN),
Japanese-English (JA-EN), and Chinese-English (ZH-EN). Addi-
tionally, DBpedia has released images for the English, French, and
Japanese versions. Since Chinese images are not released in DBpe-
dia, EVA [3] extracted them from the raw Chinese Wikipedia dump
with the same process as described by Lehmann et al. The details
of all multi-modal EA datasets are listed in 2.

Table 2: Statistics of the Datasets (Rel.: Relation, Rel tr.: Rela-
tion triple, Attr.: Attribute, Rel tr.: Attribute triple.).

Dataset KG #Ent.  #Rel. #Reltr.  #Attr. #Attrtr.  #Image  #EA pairs
FB15K 14951 1,345 592213 116 29395 13444
FBISK-DBISK DB15K 12,842 279 89,197 225 48080 12,837 12,846
FB15K 14951 1,345 592213 116 29395 13444
FBISKYAGOLSK  yaGo1sK 15404 32 122,886 7 23532 11,194 11,199
ZH (Chinese) 19,388 1,701 70414 8111 248,035 15912

DBP15Kzp-EN 15,000

EN (English) 19,572 1,323 95,142 7,173 343218 14,125

JA (Japanese) 19814 1299 77,214 5882 248991 12,739
EN (English) 19,780 1,153 93484 6,066 320,616 13,741

FR (French) 19,661 903 105,998 4,547 273,825 14,174
EN (English) 19,993 1,208 115722 6,422 351,094 13,858

DBP15Kj4-EN 15,000

DBP15KFRr-EN 15,000

2.2 Metric Details

To evaluate our IBMEA approach, we adopt the classical rank-
based evaluation protocol of knowledge graph entity alignment.
The following metrics are used:

e Hits@N: Hits@N is the proportion of true aligned entities that
appear in the first N entities of the sorted rank list. Hits@N can
be defined as

. 1 .
Hits@N = E q;sl[[rank(l) < NJ, )
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where S is the number of all testing alignment sets, rank; refers
to the rank position of the first correct mapping for the i-th query
entities, and I[rank(i) < N] yields 1if i is ranked between 1 and
S, 0 otherwise. This metric is bounded in the [0, 1] range and its
values increase with S, where the higher the better. Note that,
Hits@1 should be preferable, and it is equivalent to precision
widely-used in conventional entity alignment.

o MRR: Mean reciprocal rank (MRR) measures the number of
aligned entity pairs predicted correctly. MRR is the average of
the reciprocal ranks of results for a sample of candidate alignment
entities:

~ Ly
Hits@N = |S] Z rank(i)’ @
qeS

MRR is a useful metric because it not only considers if the EA
algorithm correctly aligns entities, but also the rank of the first
correctly aligned entity. This means that MRR penalizes lower
ranks more severely than higher ones, which is often more re-
flective of real-world performance. Higher MRR values indicate
better performance, with 1 being the maximum achievable value.

2.3 Implementation details

We report our best hyper-parameter settings across two MMKGs
datasets and hyper-parameter search space in Table 3. It’s notewor-
thy that all hyperparameter configurations were carefully tuned
using a 10-trial grid search technique. Instead of always choosing
the best-performing model, we balance the memory limit and model
performance. We train and evaluate all our models on a machine
with the specifications listed in Table 4.

Table 3: Best hyper-parameter settings of model and the
search space for hyper-parameters used.

Hyper-parameters ‘ Best setting Search space

Batch size 7500 1000, 1500, 3500, 7500, 10000
Train epoch 1000 500, 1000, 1500, 2000
Learning rate 5e-3 3e-4, 6e-4, 3e-3, 6e-3, 3e-2
Weight Decay le-2 le-3, 5e-3, le-2, 5e-2
Random Dropouts Rate 0.45 0.25, 0.35, 0.45, 0.55
GAT input hidden dimension 300 200, 300, 400, 500
Graph feature size 300 100, 200, 300, 400, 500
Visual feature size 100 100, 200, 300, 400, 500
Attribute feature size 100 100, 200, 300, 400, 500
Relation feature size 100 100, 200, 300, 400, 500
By le-3 le-4, le-3, le-2, le-1
Po le-2 le-4, le-3, le-2, le-1
Pa le-2 le-4, le-3, le-2, le-1
Br le-2 le-4, le-3, le-2, le-1

Table 4: Hardware specifications of the used machine.

hardware specification
RAM 251 GB
CPU Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz
GPU NVIDIA(R) A100(80GB) x 4

Anonymous Authors

3 SUPPLEMENTARY THEORY

3.1 Mutual Information

Mutual information (MI) measures the amount of information ob-
tained about one random variable after observing another random
variable. Formally given two random variables x and y with joint
distribution p(x, y) and marginal densities p(x) and p(y) their MI
is defined as the KL-divergence between the joint density and the
product of their marginal densities

I(x;y) = I(y; x)
= KL(p(x.)llp(x)p(v))

gM] (3)
P()p(y)

=/dxdyp(x,y)10g1%

=Exy)~p(x.y) [10

3.2 Information Bottleneck

Information Bottleneck(IB) regards supervised learning as a repre-
sentation learning problem, seeking a stochastic map from input
data x to some latent representation z that can still be used to pre-
dict the labels y, under a constraint on its total complexity. The
joint distribution p(x, y, z) can be factorised as follows:

p(xy.2) = pz [ y)p(y | )p(x) = p(z | )p(y | X)p(x),  (4)
which corresponds to the following Markov Chain
y—ox oz (5)

The goal is to learn an encoding that is maximally informative
about the target y measured by I(y; z). While a straightforward
approach would be to opt for the identity encoding x = z, such
a solution lacks practical utility. To address this, we introduce a
constraint aiming to balance informativeness and usefulness. The
optimization problem becomes:

max I(y;2)

(6)

subject to I(x;2) < I,

where I, is the information constraint. The Lagrangian of the above-
constrained optimization problem, which we would like to maxi-
mize is
Lig = ﬂ(I(x;z) - Ic) —I(y; 2)
= PI(x;2) = I(y; 2),

where > 0 is a Lagrange multiplier. Intuitively, the first term
encourages z to be predictive of y, whilst the second term encour-
ages z to "forget" x. In essence, IB principle explicitly enforces the
learned representation z retains only the relevant information from
x necessary for predicting y, effectively capturing the minimal suf-
ficient statistics of x for y. Eq.(7) here corresponds to Eq. (1) in
the body of the paper.

@)

3.3 Variational Information Bottleneck

To optimize the objective function in Eq. (7), leverage the approach
introduced in the VIB [1] framework. Focusing on the first term in
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Eq. (7), we can write out the term as:

p(x2)
p(x)p(2)
p(z|x)
p(2)
Introducing a variational approximation g(z) to the marginal distri-

bution p(z), we use the Kullback-Leibler (KL) divergence to derive
an upper bound on I(x; z):

I(x;z):/dxdzp(x,z) log
®
/dxdzp(x z) log ————

KL(p@llg(2) > 0= [ dzp(o)logp(a)
©)
> [ azptogqta)

which yields:

I(x;z) = / dxdzp(x,z)logp(z | x) — / dzp(z) log p(z)

S/dxdzp(x,z) logp(z|x)—/dzp(z) logq(z) (10)

p(z|x)
q(2)

For the second term, I(y; z), it is expressed as:

/dxdzp(x)p(z | x)log ———

2) = P2
14i2) = [ dudzp(y.2)1og F 2 "
p(y12)
/dydzp(y, z) log o)
where p(y | z) is defined as:
Pyl o) = dx”—""(yf’
(12)

2 PE 0P [ 0)p(x)
p(2)

5

which is intractable. Introducing a variational approximation q(y |
z) to p(y | z), we utilize the KL divergence to obtain a lower bound
on I(y; z):

Ki(p(y | 2llaty 12) > 0= [ dypty] 2)1ogp(y |2 .,
> [ dup(y | 2)togq(y | 2). "

Thus, we have:
14:2) = [ dydzp(u ) logp(u | )~ [ dyp(w)logp(w)
> [ audzp(ulogqtyl 2~ [ dupy)togpt) (19

- / dxdydzp(z | D)p(y | 9)p(x) logq(y | 2).

where the entropy of the labels H(y) = — f dyp(y) log p(y) is in-
dependent of our optimization and thus can be disregarded.
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Combining the above two bounds, the Lagrangian to minimize
is expressed as:

Lig = Bl(x;2) — I(y; 2)

<ﬂ/dxdzp(x)p(l | x) 1o gp( 21

q(2)
- / dxdydzp(z | x)p(y | x)p(x)logq(y | 2)

~p [ dxdydzp(z | Dp(x )KL (p(z | 9lq(a)
- [ dxdydzpz |0p(v. 0 gty | 2

=E(x,y)~p(x.y).z~p(zlx) [ﬂKL(p(Z | x)”q(z)) —logq(y | Z)]

=JiB.
(15)
To compute the upper bound practically, we make certain as-
sumptions. We approximate p(x, y) using the empirical data distri-
bution p(x,y) = % 2" i = 16x;(x)dy,; (y), resulting in:

p(z]x)
q(2)

- / dxdydzp(z | )p(y | )p(x) loga(y | 2)

1 w p(z | xi)
- dzp(z | x;) log
n Z‘[ / q(2)

_ / dzp(z | xi)log q(y; | Z)]

JiB = ﬁ/ dxdzp(x)p(z | x) log

n

= %Z [,BKL(P(Z | xi)llq(z)) —/dzp(z [ x;) log q(y; | Z)]
i=1

(16)
By utilizing an encoder parameterized as multivariate Gaussian:

py(z|x) = N(z; p¢(x),2¢(x)), (17)

then we can use the reparameterization trick such that z = 94 (e, %),
which is a deterministic function of x and the Gaussian random
variable € ~ p(e) = N(0,I). Consequently, the ultimate objective
to minimize becomes:

]132%2

i=1

(18)
where pg(z | x) represents the encoder, parameterized as a mul-
tivariate Gaussian. Eq. (18) here corresponds to Eq. (2) in the
body of the paper. The decoder gg(y | z) is parameterized as
independent Bernoulli distributions for each element y; of y (in the
case of binary data):

9o (y; | 2) = Ber(jig (2)), (19)

and the approximated latent marginal q(z) is typically fixed to a
standard normal distribution:

q0(2) =N (z; 0, Ik), (20)

BKL(p(z | x0)114(2)) = Bevpie) | oga(yi | g¢<e,x>)]},
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By using the specified decoder parameterization qg(y | z) as in-
dependent Bernoulli distributions, the expression for the negative
logarithm of gg(y | z) simplifies to:

—logge(yl2) = ~|ylogg+(1-ylog(1-9)|,  (21)
which is commonly referred to as the Binary Cross Entropy loss.

We calculate I(Z,,,; X;,), I(Z,(,,l), Z,(,?);Y) in eq. (7) of the paper
according to eq. (17) and eq. (21).
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