Self-Supervised and Topological Signal-Quality Assessment for
Any PPG Device Revision Summary and Tracked Changes
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We thank all reviewers for their constructive feedback. Based on each concern, we have made and
summarized the following revisions.

1 Reviewer Tsty

1.1 Concern: How the stage 2 works based on the representation learning is
not clear.

We clarified the end-to-end data flow and wording: Stage 1 trains a contrastive encoder so that each 8s
PPG window is mapped to a 512-dimensional embedding that is stable across device settings and motion
artifacts; Stage 2, grounded in the invariance learned in Stage 1, we operate on these encoder-derived
representations rather than on the raw waveforms. Specifically, we freeze the encoder, treat each 512-
D embedding as a one-dimensional signal, compute a four-scalar persistent-homology (PH) signature that
captures morphology/regularity, and cluster these 4-D signatures with HDBSCAN; the largest dense cluster
is labeled as clean, while all other points are labeled poor.

1.2 Concern: More evidences are required to convince readers that the aug-
mentation strategy can generate similar signal interferences to motion, per-
fusion loss, and ambient light.

We revised the description for each augmentation (jitter/Gaussian noise, magnitude scaling, time-warp,
blackout, frequency dropout, circular shift/polarity, crop) to map to the real nuisance it approximates, and
cited prior work that validates these choices in biosignal.

2 Reviewer LtAH

2.1 Concern: The dominant-cluster heuristic (largest/densest cluster = clean)
is fragile in regimes where noise overwhelms signal.

We explicitly documented this limitation and outlined practical safeguards that fit our framework without
retraining: (i) density-ratio checks between top clusters, (ii) weighting by intra-cluster persistence rather
than count, and (iii) Bayesian non-parametric mixtures to relax the largest-cluster assumption.

2.2 Concern: Lack of empirical validation of downstream benefit, making the
practical utility claim partially speculative.

We addressed this by clarifying how the SQI is used and why it should help in practice: the SQI serves
as a modular pre-filter that removes morphology-unstable windows before heart-rate, rhythm, or biometric
pipelines; this is consistent with prior evidence that gating low-quality biosignal segments reduces HR /rhythm
errors and improves biometric robustness. Operationally, our SQI filters ~24% of We-Be windows (dominated



by motion/perfusion loss), a tunable trade-off between coverage and accuracy; the gate can be used in binary
or multi-level form depending on latency/tolerance requirements.

2.3 Concern: No head-to-head quantitative comparison to existing heuristic
and supervised baselines.

Beyond the deployment-focused comparison table (label cost, cross-device portability, interpretability), we
now provide an unlabeled, quantitative comparison via convergent validity with two public SQIs. Using
prevalence-matched binarization at ¢ = 0.24 on N = 3600 windows, our SSL-TDA gate agreed with Neu-
roKit2 on 82.22% and with pyPPG on 87.44% of windows. This evaluates inter-SQI agreement and shows
that our label-free method reaches decisions consistent with established toolkits. We also continue to report
unsupervised clustering validity metrics (Silhouette 1, Davies—Bouldin |, Calinski-Harabasz 1) and avoid
cross-paper accuracy claims that would conflate differing datasets and label definitions.

3 Reviewer DavL

3.1 Concern: Unclear role of the SSL encoder.

We clarified the role of SSL and end-to-end data flow. See Section for the full pipeline clarification.

3.2 Concern: Binary output only

We noted that HDBSCAN naturally yields multiple clusters and outlier scores; these can be mapped to
clean/borderline/poor or to a continuous index based on cluster density or distance-to-center, and we flagged
this as a straightforward extension.

3.3 Concern: Limited evaluation scope.

We clarified and justified the evaluation scope in light of our goals: the contribution targets scalability
(label-free), portability (cross-device/rate without re-tuning), and interpretability (four-scalar signature).
Accordingly, we prioritize unlabeled, cross-device validation and standard clustering validity metrics (Sil-
houette 1, Davies—Bouldin |, Calinski-Harabasz 1) over supervised accuracy on device-specific corpora, and
we now add an unlabeled, quantitative comparison via convergent validity with two public SQIs (NeuroKit2,
pyPPG), showing 82.22% and 87.44% agreement on N=3600 windows at ¢=0.24. The manuscript reports
structure quality across heterogeneous datasets and sampling rates (25-128 Hz) and includes ablations iso-
lating the impact of PH and clustering choices. Next steps are explicit: (i) pre/post SQI studies on shared
labeled corpora for HR/Rhythm /Biometrics, (ii) multi-level/continuous SQIs for tunable coverage-latency
trade-offs, and (iii) clinical validation with multi-LED and accelerometer fusion.

4 Additional Changes

e Tightened SSL, Augmentations, Topological signature, and Unsupervised quality discovery sections for
readability and space.

e Merged repeated content across the paper such as pipeline descriptions.

e Removed the separate subsection “Why topology after contrastive learning?” since its rationale is
already integrated earlier in the pipeline description.

e Removed Figures on training and cosine-similarity trace to prioritize core contributions.

e Removed the cosine-similarity discussion, which is not in the direct scope of the paper, to prioritize
core contributions.

e Editorial improvements.
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Abstract—Wearable photoplethysmography (PPG) is em-
bedded in billions of devices, yet its optical waveform is
easily corrupted by motion, perfusion loss, and ambient
light—jeopardizing downstream cardiometric analytics. Existing
signal-quality assessment (SQA) methods rely either on brittle
heuristics or on data-hungry supervised models. We introduce
the first fully unsupervised SQA pipeline for wrist PPG. Stage
1 trains a contrastive 1-D ResNet-18 on 276 h of raw, unlabeled
data from heterogeneous sources (varying in device and sam-
pling frequency), yielding optical-emitter— and motion-invariant
embeddings (i.e., the learned representation is stable across
differences in LED wavelength, drive intensity, and device optics,
as well as wrist motion). Stage 2 converts each 8s-window-512-D
encoder embedding into a 4-D topological signature via persistent
homology (PH) and clusters these signatures with HDBSCAN.
To produce a binary signal-quality index (SQI), the acceptable
PPG signals are represented by the densest cluster while the
remainderremaining clusters are assumed to mainly contain peor
poor-quality PPG signals. Without re-tuning, the SQI attains
Silhouette, Davies—-Bouldin, and Calinski-Harabasz scores of
0.72, 0.34, and 6,173, respectively, on a stratified sample of 10,000
windows. In this study, we propose a hybrid self-supervised-
learning-topological-data-analysis (SSL-TDA) framework that
offers a drop-in, scalable, cross-device quality gate for PPG
signals.

Index Terms—photoplethysmography, signal quality,
supervised learning, persistent homology, wearable sensing

self-

I. INTRODUCTION

Wearable photoplethysmography (PPG) underpins today’s
cardiometric ecosystem—delivering heart rate, SpO,, respira-
tion, and nascent cuff-less blood-pressure estimates in smart-
watches, rings, and earbuds. Global shipments already exceed
millions of units per year, generating petabyte-scale PPG
streams. Yet the optical waveform is notoriously fragile: mo-
tion artifacts, ambient-light leakage, skin—sensor decoupling,
and perfusion changes routinely degrade signal quality [1]-
[3]. Without timely filtering, downstream algorithms can yield
grossly erroneous vitals, undermining user trust and clinical

adoption.

Commercial  firmware embeds hand-tuned SQA
signal-quality  assessment heuristics—thresholds
on amplitude, template correlation, or derivative

This work was funded in part by NSF CHEST industrial sponsors.

energy—engineered per LED wavelength and mechanical
stack; a firmware update or strap relocation can break these
rules. Supervised CNNs detect artifacts reliably [4], but each
hardware generation demands thousands of freshly labeled
windows, rendering cross-device scaling impractical.

Wearables already store hundreds of hours of unlabeled
wrist-PPG per user. Contrastive self-supervised learning (SSL)
can harness this fiee free data, but SSL alone does not output
a human-interpretable SQIsignal-quality index (SQI). Con-
versely, topology-based descriptors capture waveform mor-
phology in a few numbers, yet they have never been paired
with modern deep encoders. Persistent homology (PH) has
characterized cardiac periodicity and gait regularity [5]; to our
knowledge, we are the first to use PH as a morphology prior
for wrist-PPG quality.

We fuse SSL and topological data analysis (TDA) into the
first fully—unsupervised—device-agnostie fully unsupervised,
device-agnostic SQA pipeline, shown in Fig. 1:

1) Contrastive representation learning: A—+-DResNet18

learns beddinesi . Litude—phase—and
T L

2) Tepelegy—dfweﬂ—quah%y—diseeverr Each—trains_a_

contrastive encoder so that each 8 window-is-distitled

into—aPPG_window is mapped to a S12-dimensional

embedding that is_stable across device settings and

3) Topology-driven quality discovery: grounded in the

invariance learned in Stage 1, we operate on_these
encoder-derived representations rather than on the raw
waveforms. Specifically, we freeze the encoder, treat

each 512-D embedding as a one-dimensional signal
compute a four-scalar PH veetor—and—elustered—via

HDBSCAN—The—densest—ecluster—is—deemed—clean;
everything-else; poor—yielding-a-binary-SQl—signature
of the embedding landscape and cluster these 4-D
signatures with HDBSCAN; the largest dense cluster is.
labeled clean, while all other points are labeled poor.
key-
The key novelties are (i) the first SSL-TDA fusion for SQA,

(ii) cross-device wvalidation—(sampling—rate—of25—+to—128Hz)



and -sampling rate portability without re-tuning, and (iii) a
an _interpretable four-number signature enabling MCU-level

inference.

II. BACKGROUND

A. Self-supervised learning for physiological signals

Contrastive objectives such as SimCLR [6] and BYOL [7]
maximize agreement between two independently augmented
views of the same instance; this technique outperforms au-
toencoders on ECG and PPG [8], [9] and on other biosignals
by capturing invariance to amplitude scaling and temporal
distortion with zere zero annotation effort.

B. Persistent homology in time-series

Topological-data-anatysistFPA-TDA quantifies the shape

of data. Sublevel-set PH has characterized cardiac periodic-
ity and gait regularity [5], [10]. Clean, quasi-periodic PPG
produces long-lived H; loops, whereas noisy windows do
not, making PH an attractive #nsupervised unsupervised mor-
phology cue. In addition, PH reduces encoder embeddings to
morphology-aware scalars, adding an explicit morphological
prior—capturing beat regularity versus artifact, and providing
a compact and interpretable input to clustering,

C. Density-based clustering for quality discovery

HDBSCAN extends DBSCAN with variable-density cluster
extraction and explicit noise labeling [11]. It automatically
chooses the number of clusters and handles non-Gaussian
shapes—ideal for heterogeneous wrist data where artifacts are
rare and scattered.

III. METHODOLOGY

A. Pipeline-Overview
q L . PPG—sional i -
.t]. : £5 £ E

A. Corpora and signal conditioning

TABLE 1 lists the two datasets used in this study.

Why these datasets: WildPPG offers long, mostly clean
wrist recordings, whereas We-Be provides lower-rate, motion-
rich wrist data. Joint training therefore encourages the encoder

to generalise-generalize across hardware and noise regimes.

Signal conditioning: A 0.5-8 Hz third-order, zero-phase
Butterworth filter removes baseline wander and LED noise.
Traces are resampled to a common 25 Hz, z-scored, and
segmented into 8 s windows (200 samples, 50 % overlap)

B. Self-supervised
Learning)

a) Contrastive—itearningloss __function:  Contrastive
bieetives i | effoctive. for ECG—arthvihmi
; lassifieati (o3 luced . ble.
deviee-agnoestie-SQI-The NT-Xent loss encourages invariance
to amplitude and phase jitter—precisely the nuisance factors
in wrist PPG—while requiring no annotations.

b) Encoder: A 1-D ResNet-18 processes 1 x 200 inputs,
followed by a projection MLP (512—512—512). The output
is ¢y-nermalised—-normalized with e = 107°.

¢) Augmentation strategy: Each view applies the-a de-
terministic band-pass filter, then draws #ivo-tofour two to four
of the following transforms:

« Band-pass——Random ___ crop ___ (alwayskeep
50-70% ):ensures—the—network—never—sees—drift—or
high-frequeney-noise—

+ Randem-erep(50-70—%): mimics—packet-drop/sereen
blackouts: packet loss, strap adjustment, transient motion

£4ps:
o Time-warp (13 % ):models—: natural heart-rate variabil-

ity, slow sensor drift.

« Jitter / Gaussian noise (1% &SD):injeets—sensor-noise:

sensor electronic noise, ambient light flicker.
o Magnitude scaling (££5% ):emulates—EED-current

fluetwations: LED  drive-current  fluctuations, skin

perfusion changes.
« Frequency dropout :(narrowband remoyalrandomty
] . ] I e in il

frequeney—demain: ambient light interference, missin
harmonics.

e Circular shift (xX+1s) and polarity inversion:cover
o Segment blackout (10—40 samples):imitates—transient

moetion—artifact; short motion spikes (e.g., hand taps).

Empirical studies confirm that augmentations including jitter
(Gaussian noise), scaling, time-warp, and polarity inversion
reliably mimic_motion, noise, and perfusion artifacts_in
contrastive learning for ECG/PPG signals [9], [17].

representation  learning  (Contrastive

TABLE I
UNLABELLED PPG CORPORA USED FOR PIPELINE DEVELOPMENT.

Corpus Site  Native f; Hours LED
WildPPG [12] wrist 128 Hz 216 green
We-Be [13], [14]  wrist 25 Hz 60 green
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Fig. 1.

d) Training details: By exploring hyperparameter tuning,
we use the feHewingsfollowing: NT-Xent with 7 = 0.1; batch
size 512; AdamW (learning rate 2 x 10~%, weight decay 10~%);
200 epochs; mixed precision.

C. Topological signature

. 1 III I 5 It‘l .
whereas—noisy—windows—do—net—For—We_convert each 85
WWWWMW
trained encoder (frozen). Interpreting this embeddin a
one-dimensional scalar signal, we compute persistent homol-
ogy on a 1-D cubical complex (GUDHI) and retain four
interpretable features:

[nHl, Y»H,, max Hy, meanHo] e R*.

These four values summarize the structure in the embeddin
and are the inputs to HDBSCAN in Stage 2.

D. Unsupervised quality discovery

The 4-D persistence vectors are clustered with HDBSCAN.
It adapts the number of clusters automatically, flags sparse
points as noise, and handles non-Gaussian shapes—desirable
for heterogeneous wrist PPG.

A binary SQI is assigned as-such that the largest non-noise
cluster is deemed efeanclean, and the remaining points (noise
plus smaller clusters) are poor—poor.,

E. Overall Performance
Because the pipeline is label-free and device-agnostic

by design, we evaluate structure quality using standard
clusterin validit scores (silhouette, Davies—Bouldin,

Calinski—Harabasz) rather than supervised accuracy. These
metrics capture separability and compactness of the discovered

Proposed two-stage pipeline

uality strata, which is appropriate when the objective is
scalable, cross-device gating without annotation.

IV. EVALUATION

A. Encoder convergence

Fig—??-shows—the-The NT-Xent loss deereasing-decreases

smoothly from 3.44 — 0.95 across 200 epochs, while the mean
cosine similarity (cos) between the two augmented views
rises from 0.67 — 0.77shewn—in—Fig—2??—, The coupled
evolution of loss @#d and cosine confirms that the encoder
learns discriminative directions rather than collapsing to a
trivial representation.

B. Quality of topological features

The 150000 x 4 persistence matrix exhibits _a clear
morphology gradient: clean windows populate the high-ny,,
high-» ° H; corner, whereas noisy windows cluster near the
outcome: the densest HDBSCAN cluster comprises 76 % of
all_windows_and_corresponds to_textbook pulsatile traces,
explaining the great performance achieved by the SSL-TDA
configuration.

C. Ablation study

TABLE II shows the ablation study results. Removing the
topological signature (SSE—~+-HDBSEANSSL + HDBSCAN)
collapses the sitheuette—Silhouette from 0.72 to 0.05: in
512D, the contrastive embeddings form a diffuse manifold
that density-based clustering labels as almost homogeneous.
Conversely, retaining PH but swapping HDBSCAN for k-
means halves the sitheuetteSilhouette, showing that the density
prior is also essential. The full SSE=FBA—fusien SSL-TDA
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Fig. 2. Mean-cosine-similarity—traceVisualization of the clustering result.

TABLE II
ABLATION ON 10 K WINDOW S—HISGHERFSBEFFER FOR-SH-HOUEFFEAND
CAEINSKI-HARABASZCH); FOWER FOR DAVES—BoUEbIN-(DB)-

Configuration SiL.(1) DB(}) CH(])
SSL+PH+HDBSCAN (eursSSL-TDA)  0.72 0.34 6173
SSL+HDBSCAN (no PH) 0.05 4.60 29
SSL+PH+k-means (no density) 0.39 0.89 7177
SSL+k-means (SSL only) 0.01 7.33 141

fusion therefore yields the most compact and well-separated
clusters.

D. Unlabeled comparison with existing works

We assess convergent validity by comparing our SSL-TDA
pipeline with two baselines on the same unlabeled corpus. For
NeuroKit2_[18]. we compute per-beat PPG template-matching
scores and aggregate them to per-window values (median); for
pYPPG_[19]. we use its 0-1 template-matching SQIL To obtain
binary outputs without labels, we prevalence-match thresholds
s0 each method accepts the same fraction g = 0.24 of windows
(equal to_our acceptance rate). On N = 3600 windows, it
agreed _with NeuroKit2 on 82.22% and with pyPPG on
87.44%. These agreements indicate that our label-free method
aligns with existing methods on most windows.

i ] . achieved—_byv_the_PH
HPBSCAN-configuration—
V. DISCUSSION

a) Why——topology——after————contrastive
tearning?Dominant-cluster _heuristic:  Contrastive earning
yields—a—featitre—space in—which—pulses—with—the—same
underlying—haemodynamies—are—elose;—yetitis—agnestic—to

3 Q 3 - 1Q a
the-absolute-shape-ofthe sighal.—Persistent homologyadds
only-four-seatars—TFhis-hybrid-design-outperforms-Our current
implementation assumes that the largest and densest cluster
discovered by HDBSCAN corresponds to physiologically
clean PPG, while smaller or scattered clusters_correspond
to_artifacts. This_assumption holds in our corpora, where
most windows contain usable signal, but it may break down
in_regimes dominated by noise. In such cases, the “clean =
largest cluster” rule could invert. To mitigate this, one can (i)
clustering—directly—in—embeddingspace—and-compute density
ratios between the top two clusters and reject segments when
the ratio falls below a threshold, (i) PH-alone-witheut SSE;
weight clusters by intra-cluster persistence rather than point
count, or (iii) use Bayesian non-parametric mixtures that relax
framework_can_accommodate them without retraining the

encoder.
b) Dominant-cluster—henristicPractical  utili and

downstream effects: Selecting-the-largest-densest HDBSCAN

persistenee—instead—of—eountA natural question is whether

the proposed SQA improves downstream analytics such

as_heartrate estimation, rhythm classification, or biometric
authentication. While we_do_not_include full downstream
validation here, prior studies have established that discarding
poor-quality PPG segments reduces error rates in heartrate
monitoring and arrhythmia detection, and improves biometric
authentication accuracy [4], [15], [20]. Our binary SQI
removes roughly 24% of windows in the We-Be dataset; in
practice, this would filter the inputs to cardiometric pipelines
so_that algorithms operate on cleaner segments, reducing
spurious beats and missed intervals. We position this work
as a modular “quality gate” that can be inserted before such
pipelines. A _systematic evaluation of downstream_ benefits,
such as pre/post SQI studies on shared labeled corpora—heart

rate, rhythm classification, and biometrics, is an important
direction for future work.

c) Future—workBeyond bina uality: New—we-asstume




fusing—In_this paper we report a binary SQI for clarity,

assigning the largest dense cluster as clean and all others as
poor. However, the clustering framework naturally produces
multiple clusters and outlier scores, which could be mapped
to finer-grained categories (e.g., clean / borderline / poor) or
even a continuous quality index based on cluster density or
silhouette distance. Such multi-level outputs may better match
downstream applications (e.g., arrhythmia screening, where

“borderline” segments should be flagged but not discarded).

d) Multi-modality: Fusing accelerometer and PPG em-
beddings during contrastive pre-training may boost robustness
to motion spikes that currently leak into the clean cluster.
In addition, We-Be’s LED channels other than green green
were not exploited; multi-channel PH may further improve
robustness. Finally, clinical validation against simultaneous

ECG or invasive pressure would solidify the findings.

e)

VI. CONCLUSION

We presented the first fully unsupervised two-stage pipeline

that converts raw wrist-PPG into a binary signal-quality-index
SQI without device-specific thresholds or expert labels;—.
Rather than optimizing supervised SQA accuracy, we prioritize
scalability (no labels), portability (no device-specific re-tuning
across 25-128 Hz), and interpretability (four-scalar signature),

positioning the method as a practical quality gate for diverse
PPG devices, achieving Silhouette 0.72, Davies—Bouldin 0.34,
and Calinski-Harabasz 6,173 on 276 h of heterogeneous
data. Since it requires zero zero labels and no hardware
calibration, the SSL-TDA framework can serve as a drop-
in quality gate for any wrist-based phetoplethysmography
PPG pipeline—paving the way for more reliable heart-rate,
rhythm, and biometric-security analytics across the billions of

wearables already in use.
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