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We thank all reviewers for their constructive feedback. Based on each concern, we have made and
summarized the following revisions.

1 Reviewer Tsty

1.1 Concern: How the stage 2 works based on the representation learning is
not clear.

We clarified the end-to-end data flow and wording: Stage 1 trains a contrastive encoder so that each 8 s
PPG window is mapped to a 512-dimensional embedding that is stable across device settings and motion
artifacts; Stage 2, grounded in the invariance learned in Stage 1, we operate on these encoder-derived
representations rather than on the raw waveforms. Specifically, we freeze the encoder, treat each 512-
D embedding as a one-dimensional signal, compute a four-scalar persistent-homology (PH) signature that
captures morphology/regularity, and cluster these 4-D signatures with HDBSCAN; the largest dense cluster
is labeled as clean, while all other points are labeled poor.

1.2 Concern: More evidences are required to convince readers that the aug-
mentation strategy can generate similar signal interferences to motion, per-
fusion loss, and ambient light.

We revised the description for each augmentation (jitter/Gaussian noise, magnitude scaling, time-warp,
blackout, frequency dropout, circular shift/polarity, crop) to map to the real nuisance it approximates, and
cited prior work that validates these choices in biosignal.

2 Reviewer LtAH

2.1 Concern: The dominant-cluster heuristic (largest/densest cluster = clean)
is fragile in regimes where noise overwhelms signal.

We explicitly documented this limitation and outlined practical safeguards that fit our framework without
retraining: (i) density-ratio checks between top clusters, (ii) weighting by intra-cluster persistence rather
than count, and (iii) Bayesian non-parametric mixtures to relax the largest-cluster assumption.

2.2 Concern: Lack of empirical validation of downstream benefit, making the
practical utility claim partially speculative.

We addressed this by clarifying how the SQI is used and why it should help in practice: the SQI serves
as a modular pre-filter that removes morphology-unstable windows before heart-rate, rhythm, or biometric
pipelines; this is consistent with prior evidence that gating low-quality biosignal segments reduces HR/rhythm
errors and improves biometric robustness. Operationally, our SQI filters∼24% of We-Be windows (dominated
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by motion/perfusion loss), a tunable trade-off between coverage and accuracy; the gate can be used in binary
or multi-level form depending on latency/tolerance requirements.

2.3 Concern: No head-to-head quantitative comparison to existing heuristic
and supervised baselines.

Beyond the deployment-focused comparison table (label cost, cross-device portability, interpretability), we
now provide an unlabeled, quantitative comparison via convergent validity with two public SQIs. Using
prevalence-matched binarization at q = 0.24 on N = 3600 windows, our SSL-TDA gate agreed with Neu-
roKit2 on 82.22% and with pyPPG on 87.44% of windows. This evaluates inter-SQI agreement and shows
that our label-free method reaches decisions consistent with established toolkits. We also continue to report
unsupervised clustering validity metrics (Silhouette ↑, Davies–Bouldin ↓, Calinski–Harabasz ↑) and avoid
cross-paper accuracy claims that would conflate differing datasets and label definitions.

3 Reviewer DavL

3.1 Concern: Unclear role of the SSL encoder.

We clarified the role of SSL and end-to-end data flow. See Section 1.1 for the full pipeline clarification.

3.2 Concern: Binary output only

We noted that HDBSCAN naturally yields multiple clusters and outlier scores; these can be mapped to
clean/borderline/poor or to a continuous index based on cluster density or distance-to-center, and we flagged
this as a straightforward extension.

3.3 Concern: Limited evaluation scope.

We clarified and justified the evaluation scope in light of our goals: the contribution targets scalability
(label-free), portability (cross-device/rate without re-tuning), and interpretability (four-scalar signature).
Accordingly, we prioritize unlabeled, cross-device validation and standard clustering validity metrics (Sil-
houette ↑, Davies–Bouldin ↓, Calinski–Harabasz ↑) over supervised accuracy on device-specific corpora, and
we now add an unlabeled, quantitative comparison via convergent validity with two public SQIs (NeuroKit2,
pyPPG), showing 82.22% and 87.44% agreement on N=3600 windows at q=0.24. The manuscript reports
structure quality across heterogeneous datasets and sampling rates (25–128Hz) and includes ablations iso-
lating the impact of PH and clustering choices. Next steps are explicit: (i) pre/post SQI studies on shared
labeled corpora for HR/Rhythm/Biometrics, (ii) multi-level/continuous SQIs for tunable coverage–latency
trade-offs, and (iii) clinical validation with multi-LED and accelerometer fusion.

4 Additional Changes

• Tightened SSL, Augmentations, Topological signature, and Unsupervised quality discovery sections for
readability and space.

• Merged repeated content across the paper such as pipeline descriptions.

• Removed the separate subsection “Why topology after contrastive learning?” since its rationale is
already integrated earlier in the pipeline description.

• Removed Figures on training and cosine-similarity trace to prioritize core contributions.

• Removed the cosine-similarity discussion, which is not in the direct scope of the paper, to prioritize
core contributions.

• Editorial improvements.
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Abstract—Wearable photoplethysmography (PPG) is em-
bedded in billions of devices, yet its optical waveform is
easily corrupted by motion, perfusion loss, and ambient
light—jeopardizing downstream cardiometric analytics. Existing
signal-quality assessment (SQA) methods rely either on brittle
heuristics or on data-hungry supervised models. We introduce
the first fully unsupervised SQA pipeline for wrist PPG. Stage
1 trains a contrastive 1-D ResNet-18 on 276 h of raw, unlabeled
data from heterogeneous sources (varying in device and sam-
pling frequency), yielding optical-emitter– and motion-invariant
embeddings (i.e., the learned representation is stable across
differences in LED wavelength, drive intensity, and device optics,
as well as wrist motion). Stage 2 converts each 8 s window

::::
512-D

::::::
encoder

:::::::::
embedding

:
into a 4-D topological signature via persistent

homology (PH) and clusters these signatures with HDBSCAN.
To produce a binary signal-quality index (SQI), the acceptable
PPG signals are represented by the densest cluster while the
remainder

::::::::
remaining

:
clusters are assumed to mainly contain poor

::::::::::
poor-quality

:
PPG signals. Without re-tuning, the SQI attains

Silhouette, Davies–Bouldin, and Calinski–Harabasz scores of
0.72, 0.34, and 6,173, respectively, on a stratified sample of 10,000
windows. In this study, we propose a hybrid self-supervised-
learning–topological-data-analysis (SSL–TDA) framework that
offers a drop-in, scalable, cross-device quality gate for PPG
signals.

Index Terms—photoplethysmography, signal quality, self-
supervised learning, persistent homology, wearable sensing

I. INTRODUCTION

Wearable photoplethysmography (PPG) underpins today’s
cardiometric ecosystem—delivering heart rate, SpO2, respira-
tion, and nascent cuff-less blood-pressure estimates in smart-
watches, rings, and earbuds. Global shipments already exceed
millions of units per year, generating petabyte-scale PPG
streams. Yet the optical waveform is notoriously fragile: mo-
tion artifacts, ambient-light leakage, skin–sensor decoupling,
and perfusion changes routinely degrade signal quality [1]–
[3]. Without timely filtering, downstream algorithms can yield
grossly erroneous vitals, undermining user trust and clinical
adoption.

Commercial firmware embeds hand-tuned SQA

:::::::::::
signal-quality

:::::::::::
assessment

::::::::
(SQA)

:::
heuristics—thresholds

on amplitude, template correlation, or derivative

This work was funded in part by NSF CHEST industrial sponsors.

energy—engineered per LED wavelength and mechanical
stack; a firmware update or strap relocation can break these
rules. Supervised CNNs detect artifacts reliably [4], but each
hardware generation demands thousands of freshly labeled
windows, rendering cross-device scaling impractical.

Wearables already store hundreds of hours of unlabeled
wrist-PPG per user. Contrastive self-supervised learning (SSL)
can harness this free

:::
free

:
data, but SSL alone does not output

a human-interpretable SQI
:::::::::::
signal-quality

:::::
index

::::::
(SQI). Con-

versely, topology-based descriptors capture waveform mor-
phology in a few numbers, yet they have never been paired
with modern deep encoders. Persistent homology (PH) has
characterized cardiac periodicity and gait regularity [5]; to our
knowledge, we are the first to use PH as a morphology prior
for wrist-PPG quality.

We fuse SSL and topological data analysis (TDA) into the
first fully unsupervised, device-agnostic

::::
fully

::::::::::::
unsupervised,

:::::::::::::
device-agnostic SQA pipeline, shown in Fig. 1:

1) Contrastive representation learning: A 1-D ResNet-18
trained with NT-Xent on 276 h of heterogeneous data
learns embeddings invariant to amplitude, phase, and
sampling-rate differences.

2) Topology-driven quality discovery: Each
::::
trains

:::
a

:::::::::
contrastive

:::::::
encoder

::
so

::::
that

::::
each

:
8 s window is distilled

into a
::::
PPG

:::::::
window

::
is
::::::::

mapped
::
to

::
a
:::::::::::::::

512-dimensional

:::::::::
embedding

::::
that

:::
is

::::::
stable

::::::
across

::::::
device

:::::::
settings

:::::
and

::::::
motion

:::::::
artifacts.

:

3)
::::::::::::::
Topology-driven

:::::::
quality

::::::::::
discovery:

::::::::
grounded

::
in

::::
the

::::::::
invariance

:::::::
learned

:::
in

::::::
Stage

::
1,
::::

we
:::::::

operate
:::

on
::::::

these

:::::::::::::
encoder-derived

:::::::::::::
representations

:::::
rather

:::::
than

::
on

::::
the

::::
raw

:::::::::
waveforms.

:::::::::::
Specifically,

::::
we

::::::
freeze

:::
the

::::::::
encoder,

:::::
treat

::::
each

::::::
512-D

::::::::::
embedding

:::
as

::
a
::::::::::::::
one-dimensional

:::::::
signal,

:::::::
compute

::
a
:

four-scalar PH vector and clustered via
HDBSCAN. The densest cluster is deemed clean;
everything else, poor, yielding a binary SQI.

::::::::
signature

::
of

:::
the

:::::::::::
embedding

:::::::::
landscape

::::
and

:::::::
cluster

:::::
these

:::::
4-D

::::::::
signatures

::::
with

:::::::::::
HDBSCAN;

:::
the

::::::
largest

:::::
dense

:::::::
cluster

::
is

::::::
labeled

:::::
clean,

:::::
while

:::
all

:::::
other

:::::
points

::::
are

::::::
labeled

:::::
poor.

:

Key

:::
The

:::
key

:
novelties are (i) the first SSL–TDA fusion for SQA,

(ii) cross-device validation (sampling rate of 25 to 128 Hz)



:::
and

:::::::::
-sampling

::::
rate

:::::::::
portability

:
without re-tuning, and (iii) a

::
an

:::::::::::
interpretable

:
four-number signature enabling MCU-level

inference.

II. BACKGROUND

A. Self-supervised learning for physiological signals

Contrastive objectives such as SimCLR [6] and BYOL [7]
maximize agreement between two independently augmented
views of the same instance; this technique outperforms au-
toencoders on ECG and PPG [8], [9] and on other biosignals
by capturing invariance to amplitude scaling and temporal
distortion with zero

:::
zero

:
annotation effort.

B. Persistent homology in time-series

Topological data analysis (TDA )
::::
TDA quantifies the shape

of data. Sublevel-set PH has characterized cardiac periodic-
ity and gait regularity [5], [10]. Clean, quasi-periodic PPG
produces long-lived H1 loops, whereas noisy windows do
not, making PH an attractive unsupervised

:::::::::::
unsupervised

:
mor-

phology cue.
::
In

::::::::
addition,

:::
PH

:::::::
reduces

:::::::
encoder

::::::::::
embeddings

::
to

:::::::::::::::
morphology-aware

:::::::
scalars,

::::::
adding

:::
an

:::::::
explicit

::::::::::::
morphological

:::::::::::::
prior—capturing

::::
beat

:::::::::
regularity

::::::
versus

::::::
artifact,

::::
and

::::::::
providing

:
a
:::::::
compact

::::
and

:::::::::::
interpretable

:::::
input

::
to

:::::::::
clustering,

:

C. Density-based clustering for quality discovery

HDBSCAN extends DBSCAN with variable-density cluster
extraction and explicit noise labeling [11]. It automatically
chooses the number of clusters and handles non-Gaussian
shapes—ideal for heterogeneous wrist data where artifacts are
rare and scattered.

III. METHODOLOGY

A. Pipeline Overview

Our goal is to estimate PPG signal quality without
expert labels. Accordingly, we build a two-stage unsupervised
pipeline:

1) Representation learning. A self-supervised 1-D ResNet
is trained with strong temporal augmentations so that
windows containing the same physiology map to nearby
points in embedding space, regardless of amplitude,
phase, or motion artifact.

2) Topology-driven quality discovery.
Persistent-homology features are extracted from
each raw window and clustered with HDBSCAN. The
largest, densest cluster is interpreted as clean PPG;
all others are labelled poor (noise), yielding a binary
signal-quality index (SQI).

The remainder of this section justifies each design choice.

A. Corpora and signal conditioning

TABLE I lists the two datasets used in this study.
Why these datasets: WildPPG offers long, mostly clean

wrist recordings, whereas We-Be provides lower-rate, motion-
rich wrist data. Joint training therefore encourages the encoder
to generalise

::::::::
generalize

:
across hardware and noise regimes.

Signal conditioning: A 0.5–8 Hz third-order, zero-phase
Butterworth filter removes baseline wander and LED noise.
Traces are resampled to a common 25 Hz, z-scored, and
segmented into 8 s windows (200 samples, 50 % overlap)

B. Self-supervised representation learning
::::::::::
(Contrastive

::::::::
Learning)

a) Contrastive learning
::::
Loss

:::::::::
function: Contrastive

objectives have proved effective for ECG arrhythmia
detection [15], [16]. In PPG, early work focused solely on
heart-rate classification [9]; none produced an interpretable,
device-agnostic SQI. The NT-Xent loss encourages invariance
to amplitude and phase jitter—precisely the nuisance factors
in wrist PPG—while requiring no annotations.

b) Encoder: A 1-D ResNet-18 processes 1× 200 inputs,
followed by a projection MLP (512→512→512). The output
is ℓ2-normalised

::::::::::
-normalized with ε = 10−6.

c) Augmentation strategy: Each view applies the
:
a
:
de-

terministic band-pass filter, then draws two to four
:::
two

::
to
::::

four
of the following transforms:

• Band-pass
::::::::
Random

:::::::::
crop

:::::
(always

::::
keep

:::::::
50–70%):ensures the network never sees drift or
high-frequency noise.

• Random crop (50–70 %): mimics packet drop / screen
blackouts:

::::::
packet

::::
loss,

:::::
strap

::::::::::
adjustment,

:::::::
transient

::::::
motion

::::
gaps.

• Time-warp (±
:
±3%):models

:
:
::::::
natural heart-rate variabil-

ity
:
,
::::
slow

::::::
sensor

::::
drift.

• Jitter
:
/
:::::::::
Gaussian

:::::
noise (1% σ

:::
SD):injects sensor noise:

:::::
sensor

:::::::::
electronic

:::::
noise,

:::::::
ambient

:::::
light

:::::
flicker.

• Magnitude scaling (±
::
±5%):emulates LED-current

fluctuations
:
:
::::::

LED
:::::::::::::

drive-current
::::::::::::

fluctuations,
:::::

skin

::::::::
perfusion

:::::::
changes.

• Frequency dropout :
:::::::::::
(narrowband

:::::::::
removal)randomly

removes harmonicsto prevent shortcut learning in the
frequency domain

:
:
:::::::
ambient

:::::
light

:::::::::::
interference,

:::::::
missing

::::::::
harmonics.

• Circular shift (±
::
±1 s) and polarity inversion:cover

strap-orientation errors:
:::::

strap
:::::::::
orientation

::::::
errors,

:::::::
polarity

:::::::::
mismatches.

• Segment blackout (10–40 samples):imitates transient
motion artifact

:
:
::::
short

:::::::
motion

:::::
spikes

:::::
(e.g.,

:::::
hand

::::
taps).

::::::::
Empirical

::::::
studies

:::::::
confirm

::::
that

::::::::::::
augmentations

:::::::::
including

::::
jitter

::::::::
(Gaussian

::::::
noise),

:::::::
scaling,

::::::::::
time-warp,

::::
and

:::::::
polarity

::::::::
inversion

::::::
reliably

:::::::
mimic

:::::::
motion,

::::::
noise,

:::::
and

:::::::::
perfusion

:::::::
artifacts

:::
in

:::::::::
contrastive

:::::::
learning

:::
for

:::::::::
ECG/PPG

::::::
signals

::::::::
[9], [17]

:
.
:

TABLE I
UNLABELLED PPG CORPORA USED FOR PIPELINE DEVELOPMENT.

Corpus Site Native fs Hours LED

WildPPG [12] wrist 128 Hz 216 green
We-Be [13], [14] wrist 25 Hz 60 green



Fig. 1. Proposed two-stage pipeline

d) Training details: By exploring hyperparameter tuning,
we use the followings

::::::::
following: NT-Xent with τ = 0.1; batch

size 512; AdamW (learning rate 2×10−4, weight decay 10−4);
200 epochs; mixed precision.

C. Topological signature

Clean, quasi-periodic PPG traces generate pronounced
one-dimensional loops (H1) in their sublevel filtrations,
whereas noisy windows do not. For

:::
We

:::::::
convert

:
each 8s

window
:
s
::::::::

window
::::

into
:::

a
::::::

512-D
:::::::::::

embedding
:::::

using
::::

the

::::::
trained

:::::::
encoder

::::::::
(frozen).

:::::::::::
Interpreting

::::
this

::::::::::
embedding

::
as

::
a

:::::::::::::
one-dimensional

::::::
scalar

::::::
signal,

:
we compute persistent homol-

ogy on a 1-D cubical complex (GUDHI) and retain four
interpretable features:[

nH1
, ΣH1, maxH0, meanH0

]
∈ R4.

:::::
These

::::
four

:::::
values

:::::::::
summarize

:::
the

::::::::
structure

::
in

:::
the

:::::::::
embedding

:::
and

:::
are

:::
the

::::::
inputs

::
to

::::::::::
HDBSCAN

:::
in

:::::
Stage

::
2.

:

D. Unsupervised quality discovery

The 4-D persistence vectors are clustered with HDBSCAN.
It adapts the number of clusters automatically, flags sparse
points as noise, and handles non-Gaussian shapes—desirable
for heterogeneous wrist PPG.

A binary SQI is assigned as such that the largest non-noise
cluster is deemed clean

::::
clean, and the remaining points (noise

plus smaller clusters) are poor.
::::
poor.

:

E.
::::::
Overall

:::::::::::
Performance

:::::::
Because

::::
the

:::::::
pipeline

:::
is

:::::::::
label-free

::::
and

::::::::::::::
device-agnostic

::
by

:::::::
design,

::::
we

::::::::
evaluate

::::::::
structure

:::::::
quality

::::::
using

::::::::
standard

::::::::
clustering

::::::::
validity

:::::::
scores

::::::::::::
(silhouette,

:::::::::::::::
Davies–Bouldin,

::::::::::::::::
Calinski–Harabasz)

::::::
rather

::::
than

::::::::::
supervised

::::::::
accuracy.

::::::
These

::::::
metrics

::::::
capture

::::::::::
separability

:::
and

:::::::::::
compactness

::
of

:::
the

:::::::::
discovered

::::::
quality

::::::
strata,

::::::
which

::
is

::::::::::
appropriate

::::::
when

:::
the

:::::::::
objective

::
is

:::::::
scalable,

:::::::::::
cross-device

:::::
gating

:::::::
without

::::::::::
annotation.

IV. EVALUATION

A. Encoder convergence

Fig. ?? shows the
:::
The

:
NT-Xent loss decreasing

:::::::
decreases

smoothly from 3.44 → 0.95 across 200 epochs, while the mean
cosine similarity

(
cos

)
between the two augmented views

rises from 0.67 → 0.77shown in Fig. ??.
:
.
:
The coupled

evolution of loss and
:::
and

:
cosine confirms that the encoder

learns discriminative directions rather than collapsing to a
trivial representation.

NT-Xent loss over 200 epochs.

B.
::::::
Quality

::
of

::::::::::
topological

:::::::
features

:::
The

::::::::::::
150 000× 4

::::::::::
persistence

:::::::
matrix

::::::::
exhibits

:::
a
:::::

clear

::::::::::
morphology

::::::::
gradient:

:::::
clean

::::::::
windows

:::::::
populate

::::
the

::::::::
high-nH1

,

:::::::::
high-

∑
H1:::::::

corner,
:::::::
whereas

:::::
noisy

::::::::
windows

:::::::
cluster

::::
near

:::
the

:::::
origin.

:

:::
Fig.

::
2

:::::
shows

::
a
::::::::::::
representative

:::::::::::
visualization

::
of

:::
the

::::::::
clustering

:::::::
outcome:

::::
the

::::::
densest

:::::::::::
HDBSCAN

::::::
cluster

:::::::::
comprises

:::::
76 %

::
of

::
all

::::::::
windows

::::
and

:::::::::::
corresponds

:::
to

::::::::
textbook

::::::::
pulsatile

::::::
traces,

::::::::
explaining

::::
the

::::
great

:::::::::::
performance

::::::::
achieved

:::
by

:::
the

:::::::::
SSL–TDA

:::::::::::
configuration.

:

C. Ablation study

TABLE II shows the ablation study results. Removing the
topological signature (SSL + HDBSCAN

:::
SSL

::
+
:::::::::::

HDBSCAN)
collapses the silhouette

::::::::
Silhouette

::
from 0.72 to 0.05: in

512 D, the contrastive embeddings form a diffuse manifold
that density-based clustering labels as almost homogeneous.
Conversely, retaining PH but swapping HDBSCAN for k-
means halves the silhouette

::::::::
Silhouette, showing that the density

prior is also essential. The full SSL–TDA fusion
::::::::
SSL–TDA
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Fig. 2. Mean cosine similarity trace
:::::::::
Visualization

:
of
:::

the
:::::::
clustering

::::
result.

TABLE II
ABLATION ON 10 K WINDOWS—HIGHER IS BETTER FOR SILHOUETTE AND

CALINSKI–HARABASZ (CH), LOWER FOR DAVIES–BOULDIN (DB).

Configuration Sil.
::
(↑) DB

::
(↓) CH

::
(↑)

::::
SSL+PH+HDBSCAN (ours

:::::::
SSL-TDA) 0.72 0.34 6 173

SSL+HDBSCAN (no PH) 0.05 4.60 29
::::
SSL+PH+k-means (no density) 0.39 0.89 7 177
SSL+k-means

::::
(SSL

::::
only)

:
0.01 7.33 141

:::::
fusion

:
therefore yields the most compact and well-separated

clusters.

D. Quality of topological features

The 150 000× 4 persistence matrix exhibits a clear
morphology gradient: clean windows populate the high-nH1 ,
high-

∑
H1 corner, whereas noisy windows cluster near the

origin.

D.
::::::::
Unlabeled

::::::::::
comparison

:::::
with

::::::
existing

::::::
works

:::
We

:::::
assess

::::::::::
convergent

::::::
validity

:::
by

:::::::::
comparing

::::
our

::::::::
SSL-TDA

::::::
pipeline

:::::
with

:::
two

::::::::
baselines

:::
on

:::
the

::::
same

:::::::::
unlabeled

::::::
corpus.

:::
For

:::::::::
NeuroKit2

::::
[18]

:
,
::
we

::::::::
compute

:::::::
per-beat

::::
PPG

:::::::::::::::
template-matching

:::::
scores

:::
and

:::::::::
aggregate

::::
them

::
to
:::::::::::
per-window

:::::
values

:::::::::
(median);

::
for

::::::
pyPPG

::::
[19]

:
,
:::
we

:::
use

::
its

:::
0-1

::::::::::::::::
template-matching

::::
SQI.

:::
To

:::::
obtain

:::::
binary

:::::::
outputs

::::::
without

::::::
labels,

:::
we

:::::::::::::::
prevalence-match

::::::::
thresholds

::
so

::::
each

::::::
method

:::::::
accepts

:::
the

::::
same

:::::::
fraction

::::::::
q = 0.24

::
of

:::::::
windows

:::::
(equal

:::
to

:::
our

::::::::::
acceptance

:::::
rate).

::::
On

:::::::::
N = 3600

:::::::::
windows,

::
it

:::::
agreed

:::::
with

::::::::::
NeuroKit2

:::
on

::::::::
82.22%

::::
and

:::::
with

:::::::
pyPPG

:::
on

:::::::
87.44%.

:::::
These

::::::::::
agreements

:::::::
indicate

:::
that

::::
our

::::::::
label-free

::::::
method

:::::
aligns

::::
with

:::::::
existing

::::::::
methods

::
on

:::::
most

::::::::
windows.

:

Visualization of the clustering result.
Fig. 2 shows a representative visualization of the clustering

outcome: the densest HDBSCAN cluster comprises 76 % of
all windows and corresponds to textbook pulsatile traces,

explaining the great performance achieved by the PH +
HDBSCAN configuration.

V. DISCUSSION

a) Why topology after contrastive
learning?

::::::::::::::
Dominant-cluster

::::::::
heuristic: Contrastive learning

yields a feature space in which pulses with the same
underlying haemodynamics are close, yet it is agnostic to
the absolute shape of the signal. Persistent homology adds
an explicit morphological prior—capturing beat regularity
versus artifact—while compressing a 512-D embedding to
only four scalars. This hybrid design outperforms

:::
Our

::::::
current

:::::::::::::
implementation

:::::::
assumes

::::
that

:::
the

:::::::
largest

:::
and

:::::::
densest

::::::
cluster

:::::::::
discovered

:::
by

:::::::::::
HDBSCAN

:::::::::::
corresponds

:::
to

:::::::::::::
physiologically

::::
clean

::::::
PPG,

:::::
while

:::::::
smaller

:::
or

::::::::
scattered

:::::::
clusters

::::::::::
correspond

::
to

::::::::
artifacts.

::::
This

:::::::::::
assumption

:::::
holds

:::
in

::::
our

:::::::
corpora,

::::::
where

::::
most

::::::::
windows

:::::::
contain

:::::
usable

:::::::
signal,

:::
but

::
it

::::
may

:::::
break

:::::
down

::
in

:::::::
regimes

:::::::::
dominated

:::
by

:::::
noise.

:::
In

:::::
such

:::::
cases,

:::
the

::::::
“clean

::
=

:::::
largest

:::::::
cluster”

::::
rule

:::::
could

::::::
invert.

:::
To

:::::::
mitigate

::::
this,

:::
one

::::
can

:
(i)

clustering directly in embedding space and
:::::::
compute

::::::
density

::::
ratios

::::::::
between

:::
the

:::
top

::::
two

:::::::
clusters

:::
and

:::::
reject

::::::::
segments

:::::
when

::
the

:::::
ratio

::::
falls

::::::
below

:
a
:::::::::

threshold,
:
(ii) PH alone without SSL;

both configurations achieve markedly lower silhouette scores.

:::::
weight

:::::::
clusters

:::
by

:::::::::::
intra-cluster

::::::::::
persistence

:::::
rather

::::
than

:::::
point

:::::
count,

::
or

::::
(iii)

:::
use

::::::::
Bayesian

:::::::::::::
non-parametric

:::::::
mixtures

::::
that

::::
relax

::
the

:::::::::::::
largest-cluster

:::::::::::
assumption.

:::
We

:::::
note

::::
that

:::
the

:::::::::
clustering

:::::::::
framework

::::
can

::::::::::::
accommodate

:::::
them

::::::::
without

:::::::::
retraining

:::
the

:::::::
encoder.

b) Dominant-cluster heuristic
::::::::
Practical

:::::::
utility

:::::
and

::::::::::
downstream

:::::
effects: Selecting the largest, densest HDBSCAN

cluster as clean is justified by the empirical observation that
true physiology occupies a contiguous, high-density region
of feature space, whereas motion artifacts are sporadic and
diverse. On datasets where noise dominates (e.g. ICU data),
one could invert the rule or re-weight clusters by intra-cluster
persistence instead of count

::
A

::::::
natural

::::::::
question

:::
is

:::::::
whether

::
the

:::::::::
proposed

::::::
SQA

:::::::::
improves

:::::::::::
downstream

::::::::
analytics

:::::
such

::
as

::::::::
heart-rate

::::::::::
estimation,

:::::::
rhythm

::::::::::::
classification,

:::
or

::::::::
biometric

::::::::::::
authentication.

::::::
While

:::
we

::::
do

:::
not

:::::::
include

::::
full

:::::::::::
downstream

::::::::
validation

:::::
here,

::::
prior

:::::::
studies

::::
have

::::::::::
established

:::
that

:::::::::
discarding

::::::::::
poor-quality

::::
PPG

:::::::::
segments

:::::::
reduces

:::::
error

::::
rates

:::
in

::::::::
heart-rate

:::::::::
monitoring

:::
and

::::::::::
arrhythmia

::::::::
detection,

::::
and

::::::::
improves

::::::::
biometric

:::::::::::
authentication

:::::::::::::::::::::
accuracy [4], [15], [20]

:
.
:::::

Our
:::::::

binary
:::::

SQI

:::::::
removes

:::::::
roughly

::::
24%

:::
of

::::::::
windows

::
in

::::
the

::::::
We-Be

:::::::
dataset;

::
in

:::::::
practice,

:::
this

::::::
would

:::::
filter

:::
the

:::::
inputs

:::
to

::::::::::
cardiometric

::::::::
pipelines

::
so

::::
that

::::::::::
algorithms

:::::::
operate

:::
on

:::::::
cleaner

:::::::::
segments,

::::::::
reducing

:::::::
spurious

:::::
beats

::::
and

::::::
missed

:::::::::
intervals.

:::
We

:::::::
position

::::
this

:::::
work

::
as

:
a
::::::::

modular
:::::::
“quality

:::::
gate”

::::
that

:::
can

:::
be

:::::::
inserted

::::::
before

::::
such

::::::::
pipelines.

::
A

::::::::::
systematic

:::::::::
evaluation

:::
of

:::::::::::
downstream

:::::::
benefits,

::::
such

::
as

:::::::
pre/post

::::
SQI

::::::
studies

:::
on

:::::
shared

:::::::
labeled

::::::::::::
corpora—heart

:::
rate,

:::::::
rhythm

::::::::::::
classification,

::::
and

::::::::::
biometrics,

:::
is

:::
an

::::::::
important

:::::::
direction

:::
for

::::::
future

::::
work.

c) Future work
::::::
Beyond

::::::
binary

::::::
quality: Now we assume

the clean cluster is densest; long recordings dominated by
corruption may violate this. Density-ratio tricks or Bayesian
non-parametrics could relax the assumption. In addition,



fusing
::
In

::::
this

::::::
paper

:::
we

::::::
report

::
a
:::::::

binary
::::
SQI

::::
for

::::::
clarity,

::::::::
assigning

:::
the

::::::
largest

:::::
dense

::::::
cluster

:::
as

:::::
clean

:::
and

:::
all

::::::
others

::
as

::::
poor.

:::::::::
However,

:::
the

:::::::::
clustering

:::::::::
framework

::::::::
naturally

::::::::
produces

:::::::
multiple

:::::::
clusters

:::
and

::::::
outlier

:::::::
scores,

:::::
which

::::::
could

::
be

:::::::
mapped

::
to

:::::::::::
finer-grained

::::::::
categories

:::::
(e.g.,

:::::
clean

::
/
:::::::::
borderline

:
/
:::::
poor)

::
or

::::
even

:
a
::::::::::

continuous
::::::
quality

::::::
index

:::::
based

:::
on

::::::
cluster

:::::::
density

::
or

::::::::
silhouette

:::::::
distance.

:::::
Such

:::::::::
multi-level

:::::::
outputs

::::
may

:::::
better

:::::
match

::::::::::
downstream

::::::::::
applications

::::::
(e.g.,

:::::::::
arrhythmia

:::::::::
screening,

::::::
where

::::::::::
“borderline”

::::::::
segments

::::::
should

:::
be

:::::::
flagged

:::
but

::::
not

:::::::::
discarded).

d)
::::::::::::
Multi-modality:

:::::
Fusing

:
accelerometer and PPG em-

beddings during contrastive pre-training may boost robustness
to motion spikes that currently leak into the clean cluster.

::
In

::::::::
addition,

:
We-Be’s LED channels other than green

::::
green

were not exploited; multi-channel PH may further improve
robustness. Finally, clinical validation against simultaneous
ECG or invasive pressure would solidify the findings.

e) Why does the cosine similarity start high yet still
work: In natural-image SimCLR the two random crops of a
photo share only ∼10 % of pixels, so the initial view–view
cosine is low (∼0.1). Here, both views receive the same
band-pass and contain the same cardiac activity, differing
only by mild time-warp, crop–pad, magnitude scaling, and
related transforms. Consequently, two randomly initialised
encoder paths already observe highly correlated waveforms,
and their embeddings begin with a non-trivial alignment:
cos(z1, z2) ≈ 0.58−0.65 across five random seeds.

The critical check for representation collapse is whether
cos quickly approaches 1.0 without a simultaneous drop in
loss. In our curves, the NT-Xent loss decreases monotonically
(3.44 → 0.95) while cos rises only modestly (0.67 → 0.77),
indicating that the encoder is learning new discriminative
directions rather than mapping every input to an identical
point. Empirically, windows from different subjects remain
well separated in embedding space even at epoch 100,
confirming that the higher baseline cosine is a benign
consequence of domain-specific augmentations—not collapse.

VI. CONCLUSION

We presented the first fully unsupervised two-stage pipeline
that converts raw wrist-PPG into a binary signal-quality index

:::
SQI

:
without device-specific thresholds or expert labels, .

:::::
Rather

::::
than

:::::::::
optimizing

:::::::::
supervised

:::::
SQA

::::::::
accuracy,

:::
we

:::::::
prioritize

::::::::
scalability

:::
(no

:::::::
labels),

:::::::::
portability

:::
(no

:::::::::::::
device-specific

:::::::
re-tuning

:::::
across

::::::::::
25–128 Hz),

::::
and

::::::::::::
interpretability

::::::::::
(four-scalar

:::::::::
signature),

:::::::::
positioning

:::
the

:::::::
method

::
as

::
a
::::::::
practical

::::::
quality

::::
gate

:::
for

::::::
diverse

::::
PPG

:::::::
devices, achieving Silhouette 0.72, Davies–Bouldin 0.34,

and Calinski–Harabasz 6,173 on 276 h of heterogeneous
data. Since it requires zero

::::
zero

:
labels and no hardware

calibration, the SSL–TDA framework can serve as a drop-
in quality gate for any wrist-based photoplethysmography

::::
PPG

:
pipeline—paving the way for more reliable heart-rate,

rhythm, and biometric-security analytics across the billions of
wearables already in use.
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