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APPENDIX

A SEQUENCE OF KRONECKER PRODUCTS

The Kronecker product between a sequence of factor tensors is given by(
A(1) ⊗ · · · ⊗A(S)

)
i1···iN

≜ A(1)

j
(1)
1 ···j(1)N

· · ·A(S)

j
(S)
1 ···j(S)

N

, (15)

where

j(k)n =

in −
∑k−2

t=1 j
(t)
n
∏S

l=t+1 a
(l)
n mod a(S)

n k = S,⌊
in−

∑k−1
t=1 j(t)n

∏S
l=t+1 a(l)

n∏S
l=k+1 a

(l)
n

⌋
otherwise,

(16)

and A(k) ∈ IRa
(k)
1 ×···×a

(k)
N .

B ALTERNATIVE EXPANSION DIRECTIONS OF SEKRON

The proposed SeKron structure represents a given tensor W ∈ IRw1×···×wn using a sequence of
Kronecker products as follows:

W =

R1∑
r1=1

A(1)
r1 ⊗

R2∑
r2=1

A(2)
r1r2 ⊗ · · · ⊗

RS−1∑
rS−1=1

A(S−1)
r1···rS−1 ⊗A(S)

r1···rS−1 . (4 revisited)

While this decomposition structure is obtained by recursively finding the Kronecker decomposition of
the right-most tensor, many alternative sequential Kronecker structures can be obtained as illustrated
in Figure 4. However, such alternative structures do not fall within our SeKron framework as they
cannot make use of our convolution algorithm (Algorithm 2)

C THEOREM PROOFS

Theorem 1 (Tensor Decomposition using a Sequence of Kronecker Products). Any tensor W ∈
IRw1×···×wN can be represented by a sequence of Kronecker products between S ∈ IN factors:

W =

R1∑
r1=1

A(1)
r1 ⊗

R2∑
r2=1

A(2)
r1r2 ⊗ · · · ⊗

RS−1∑
rS−1=1

A(S−1)
r1···rS−1 ⊗A(S)

r1···rS−1 , (4)

where Ri ∈ IN and A(k) ∈ IRR1×···×Rk×a
(k)
1 ×···×a

(k)
N .

Proof. First, we define intermediate tensors

B(k)
r1···rk ≜

Rk+1∑
rk+1

A(k+1)
r1···rk+1 ⊗

Rk+2∑
rk+2

A(k+2)
r1···rk+2 ⊗· · ·⊗

RS−1∑
rS−1

A(S−1)
r1···rS−1 ⊗A(S)

r1···rS−1 (5 revisited)

Then the reconstruction error can be written as∥∥∥∥∥W (k)
r1···rk−1 −

R̂k∑
rk=1

A(k)
r1···rk ⊗B(k)

r1···rk

∥∥∥∥∥
2

F

(17)

where W (1) is the initial tensor being decomposed. As described in Section 3.2, using reshaping
operations

W
(k)
r1···rk−1 = MAT(UNFOLD(W (k)

r1···rk−1 ,dB(k)
r1···rk

)), (8 revisited)

a
(k)
r1···rk = VEC(UNFOLD(A(k)

r1···rk ,dI
A(k)

r1···rk

)), b
(k)
r1···rk = VEC(B(k)

r1···rk), (9 revisited)
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Figure 4: Illustration of alternative expansion directions using sequences of Kronecker products.
SeKron structures are those which are leftmost on each level of the tree. Each node is obtained
through the decomposition of a single tensor present in its parent node.

that preserve the sum of squares allows us to equivalently write the reconstruction error as∥∥∥∥∥W(k)
r1···rk−1 −

R̂k∑
rk=1

a
(k)
r1···rkb

(k)⊤
r1···rk

∥∥∥∥∥
2

F

. (18)

Now consider the singular value decomposition of matrix W
(k)
r1···rk−1 and let u(k)

r1···rk ,v
(k)
r1···rk denote

its left and right singular vectors, respectively (with the right singular vector scaled according to its
corresponding singlar value). Set a(k)r1···rk = u

(k)
rk and define and define error terms

δ
(k)
r1···rk = v

(k)
r1···rk − b

(k)
r1···rk , ϵ

(k)
r1···rk = ∥δ(k)r1···rk∥. (19)

Expanding out equation 18 reveals its recursive form∥∥∥∥∥W(k)
r1···rk−1 −

R̂k∑
rk=1

a
(k)
r1···rkb

(k)⊤
r1···rk

∥∥∥∥∥
2

F

=

∥∥∥∥∥W(k)
r1···rk−1 −

R̂k∑
rk=1

a
(k)
r1···rk(v

(k)
rk
− δ

(k)
r1···rk)

⊤

∥∥∥∥∥
2

F

(20)

=

∥∥∥∥∥W(k)
r1···rk−1 −

R̂k∑
rk=1

a
(k)
r1···rkv

(k)⊤
r1···rk +

R̂k∑
rk=1

a
(k)
r1···rkδ

(k)⊤
r1···rk

∥∥∥∥∥
2

F

(21)

≤

∥∥∥∥∥W(k)
r1···rk−1 −

R̂k∑
rk=1

a
(k)
r1···rkv

(k)⊤
r1···rk

∥∥∥∥∥
2

F

+

R̂k∑
rk=1

∥∥∥∥∥a(k)r1···rkδ
(k)⊤
r1···rk

∥∥∥∥∥
2

F

(22)

≤

∥∥∥∥∥W(k)
r1···rk−1 −

R̂k∑
rk=1

a
(k)
r1···rkv

(k)⊤
r1···rk

∥∥∥∥∥
2

F

+

R̂k∑
rk=1

d(k)ϵ
(k)
r1···rk (23)

=

(
Rk∑

rk=R̂k+1

σ2
rk
(W

(k)
r1···rk−1)

)
+

(
R̂k∑

rk=1

d(k)ϵ
(k)
r1···rk

)
(24)

=

Rk∑
rk=R̂k+1

σ2
rk
(W

(k)
r1···rk−1) +

R̂k∑
rk=1

d(k)

∥∥∥∥∥v(k)
r1···rk − b

(k)
r1···rk

∥∥∥∥∥
2

F

(25)

where d(k) ∈ N is the number of dimensions of vector a
(k)
r1···rk and Rk is the rank of matrix

W
(k)
r1···rk−1 , σrk(W

(k)
r1···rk−1) denotes the rth

k singular value of tensor W (k)
r1···rk−1 . By reshaping
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vectors v(k)
r1···rk ,b

(k)
r1···rk to matrices according to

V
(k)
r1···rk = MAT

(
UNFOLD

(
VEC−1

(
v
(k)
r1···rk ,

S∏
s=k+1

d(s)

)
,

S∏
s=k+2

d(s)

))
, (26)

B
(k)
r1···rk = MAT

(
UNFOLD

(
VEC−1

(
b
(k)
r1···rk ,

S∏
s=k+1

d(s)

)
,

S∏
s=k+2

d(s)

))
, (27)

where d(s) = (a
(s)
1 , . . . , a

(s)
N ) describes the dimensions of the sth factor, we can re-write equation 25

as

Rk∑
rk=R̂k+1

σ2
rk
(W

(k)
r1···rk−1) +

R̂k∑
rk=1

d(k)

∥∥∥∥∥v(k)
r1···rk − b

(k)
r1···rk

∥∥∥∥∥
2

F

(28)

=

Rk∑
rk=R̂k+1

σ2
rk
(W

(k)
r1···rk−1) +

R̂k∑
rk=1

d(k)

∥∥∥∥∥V(k)
r1···rk −B

(k)
r1···rk

∥∥∥∥∥
2

F

(29)

=

Rk∑
rk=R̂k+1

σ2
rk
(W

(k)
r1···rk−1) +

R̂k∑
rk=1

d(k)

∥∥∥∥∥V(k)
r1···rk −

R̂k+1∑
rk+1=1

a
(k+1)
r1···rk+1b

(k+1)⊤
r1···rk+1

∥∥∥∥∥
2

F

. (30)

The last line reveals the recursive nature of the formula (compare with equation 20). Unrolling
the recursive formula for k = 1, . . . , S − 1, by setting W

(k+1)
r1···rk ← V

(k)
r1···rk , leads to the following

formula for the reconstruction error:

εSeKron(W, r,D) =

R1∑
r1=R̂1+1

σ2
r1(W

(1)) + d(1)
R̂1∑

r1=1

R2∑
r2=R̂2+1

σ2
r2(W

(2)
r1 ) + · · ·

+ d(1)d(2) · · · d(S−2)

R̂1,··· ,R̂S−2∑
r1,r2,...,rS−2=1

RS−1∑
rS−1=R̂S−1+1

σ2
rS−1

(W
(S−1)
r1···rS−2) (31)

where r = (R̂1, . . . , R̂S−1) contains the rank values, Ds = d(s) contains the Kronecker factor shapes
and is referred to as the Dr-SeKron approximation error (note that the dependency of intermediate
matrices W(k)

r1···rk−1 on Kronecker factor shapes D is implied). Selecting R̂i = Ri ∀i in equation 31
results in zero reconstruction error.

Theorem 2. The factorization structure imposed by CP, Tucker, TT and TR when decomposing a
given tensor W ∈ IRw1×···×wN can be achieved using SeKron.

Proof. The SeKron decomposition of tensor W is given by

W i1···iN =

R1,··· ,RS∑
r1,...,rS=1

A(1)

r1j
(1)
1 ···j(1)N

· · ·A(S)

r1···rS−1j
(S)
1 ···j(S)

N

(32)

where A(k) ∈ IRR1×···×Rk×a
(k)
1 ×···a(k)

N and

j(k)n =

in −
∑k−2

t=1 j
(t)
n
∏S

l=t+1 a
(l)
n mod a(S)

n k = S,⌊
in−

∑k−1
t=1 j(t)n

∏S
l=t+1 a(l)

n∏S
l=k+1 a

(l)
n

⌋
otherwise,

(16 revisited)

The CP decomposition of tensor W in scalar form is

W i1···iN =

R(CP)∑
r=1

A(CP1)
ri1

· · ·A(CPN )
riN

(33)

17



Under review as a conference paper at ICLR 2023

where A(CPk) ∈ IRR(CP)×wk . Configuring the SeKron decomposition in equation 32 such that
S = N ; R1 = R(CP); R2, . . . , RN = 1 and a

(n)
n = wn for n = 1, . . . , N leads to the equivalent

form

W i1···iN =

R(CP)∑
r1=1

A(1)
r1i11···1 · · ·A

(N)
r,1···1iN . (34)

The Tucker decomposition of tensor W is given by

W i1···iN =

R
(T)
1 ,...R

(T)
N∑

r1=1,...,rN

Gr1···rNA(T1)
i1r1
· · ·A(TN )

iNrN
(35)

where G ∈ IRR
(T)
1 ×···×R

(T)
N and A(Tk) ∈ IRwk×R

(T)
k . The SeKron decomposition of tensor W , with

S = N + 1, Rn = R
(T )
n and a

(n)
n = wn for n = 1, . . . , N yields

W i1···iN =

R
(T)
1 ,··· ,R(T)

N∑
r1,...,rN=1

A(1)
r1i11···1 · · ·A

(N)
r1···rN1···1iNA(N+1)

r1···rN1···1, (36)

which is equivalent to equation 35 in the special case where there are nullity constraints on some
elements in the Kronecker factors, such that for k = 2, . . . , N

A(k)
r1···rk1···1ik1···1 = 0 when rj ∈ {x ∈ N | x ≤ R

(T)
j , x ̸= R

(T∗)
j } j = 1, . . . , k − 1 (37)

for any choice of R(T∗)
j ∈ {x ∈ N | x ≤ R

(T)
j }. The Tensor Ring (TR) decomposition of W is given

by

W i1···iN =

R
(TR)
1 ,...R

(TR)
N∑

r1=1,...,rN

A(TR1)
i1r1r2

· · ·A(TRN )
iNrNrN+1

(38)

where A(TRk) ∈ IRwk×R
(TR)
k ×R

(TR)
k+1 , and R

(TR)
1 = R

(TR)
N+1. As the Tensor Train decomposition can be

viewed as a special case of the Tensor Ring decomposition (with R
(TR)
1 = R

(TR)
N+1 = 1), it suffices to

show that SeKron generalizes Tensor Ring. The SeKron decomposition of tensor W , with S = N+1;
Rk = R

(TR)
k for k = 1, . . . , N − 1 and a

(n+1)
n = wn for n = 1, . . . , N leads to

W i1···iN =

R
(TR)
1 ,...,R

(TR)
N∑

r1,...,rN=1

A(1)
r11···1A

(2)
r1r2i11···1 · · ·A

(N+1)
r1···rN+11···1iN , (39)

which is equivalent to equation 38 in the special case where some elements in the Kronecker factors
are constrained, such that all elements in tensor A(1) are constrained to one and

A(k)
r1···rk1···1ik1···1 = 0 ∀rj ∈ {x ∈ N | x ≤ R

(TR)
j , x ̸= R

(TR∗)
j } (40)

for

j =

{
1, . . . , k − 2 k = 2, . . . , N

2, . . . , k − 1 k = N + 1
(41)

for any choice of R(TR∗)
j ∈ {x ∈ N | x ≤ R

(TR)
j }.

Theorem 3 (Linear Mappings with Sequences of Kronecker Products). Any linear mapping
using a given tensor W can be written directly in terms of its Kronecker factors A(k) ∈
IRR1×···RN×a

(k)
1 ×···×a

(k)
N . That is:

W i1···iNX i1+z1,··· ,iN+zN =

R1,...Rk∑
r1,...rN

A(1)

r1j
(1)
1 ···j(1)N

· · ·A(S)

r1···rS−1j
(S)
1 ···j(S)

N

X f(j1)+z1,··· ,f(jN )+zN

where j(k)n ∈ IN is a function of input indices (see Appendix A) and f(jn) =
∑S

k=1 j
(k)
n
∏S

l=k+1 a
(l)
n
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Proof. First we bring out the summations in the SeKron representaion of W

W =

R1∑
r1

A(1)
r1 ⊗

R2∑
r2

A(2)
r1r2 ⊗ · · · ⊗

RS−1∑
rS−1

A(S−1)
r1···rS−1 ⊗A(S)

r1···rS−1 , (4 revisted)

such that

W =

R1,··· ,RS−1∑
r1,...,rS=1

A(1)
r1 ⊗ · · · ⊗A(S)

r1r2···rS−1 . (42)

Then, using the scalar form definition of sequences of kronecker products in equation 16

j(k)n =

in −
∑k−2

t=1 j
(t)
n
∏S

l=t+1 a
(l)
n mod a(S)

n k = S,⌊
in−

∑k−1
t=1 j(t)n

∏S
l=t+1 a(l)

n∏S
l=k+1 a

(l)
n

⌋
otherwise,

(16 revisited)

allows us to re-write equation 42 in scalar form as

W i1···iN =

R1∑
r1···rS=1

A(1)

r1j
(1)
1 ···j(1)N

· · ·A(S)

r1···rS−1j
(S)
1 ···j(S)

N

(43)

As the j
(k)
n terms decompose in into an integer weighted sum, we can recover in using

in = f(jn) ≜
S∑

k=1

j(k)n

S∏
l=k+1

a(l)n , (44)

where jn = (j
(1)
n , . . . , j

(S)
n ). Thus, we can write

X i1+z1,···iN+zN = X f(j1)+z1,···f(jN )+zN . (45)
Finally, combining equations equation 43 and equation 45 leads to

W i1···iNX i1+z1,··· ,iN+zN =

R1,...Rk∑
r1,...rN

A(1)

r1j
(1)
1 ···j(1)N

· · ·A(S)

r1···rS−1j
(S)
1 ···j(S)

N

X f(j1)+z1,··· ,f(jN )+zN

Theorem 4. (Universal approximation via shallow SeKron networks) Any shallow SeKron factorized
neural network f̂ (s) with an L-Lipschitz activation function a, is dense in the class of continuous
functions C(X) for any compact subset X of IRd

Proof. Let f̂ denote a shallow neural network, and f ∈ C(X). Then,∥∥∥f − f̂ (s)
∥∥∥2
2
≜
∫
X

(
f(x)− f̂ (s)(x)

)2

dµ (46)

=

∫
X

(
f(x)− f̂(x)

)2

dµ (47)

+

∫
X

(
f̂(x)− f̂ (s)(x)

)2

dµ (48)

+ 2

∫
X

(
f(x)− f̂(x)

)(
f̂(x)− f̂ (s)(x)

)
dµ (49)

According to Hornik (1991), equation 47 is dense in C(X); therefore, it suffices to show that
equation 48 is bounded as well.∫

X

(
f̂(x)− f̂ (s)(x)

)2

dµ =

∫
X

(
w⊤a(Wx)−w⊤a(W(s)x)

)2

dµ (50)

≤ L
∥∥w∥∥2

2

∥∥X∥∥2
2
εSeKron(W, r,D) (51)

19



Under review as a conference paper at ICLR 2023

where ε denotes the Dr-SeKron approximation error as in equation 31, with matrix D and vector r
describing the shapes of the Kronecker factors the ranks used in the SeKron decomposition of W,
respectively.

D IMPLEMENTATION DETAILS

In all of our experiments we use 4 NVIDIA Tesla V100 SXM2 32 GB GPUs during training and
evaluate run time on a single core of Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz.

D.1 IMAGENET EXPERIMENTS

We train all models using stochastic gradient descent for 100 epochs using a batch size of 256. The
learning rate is initially set to 0.1 and reduced by a factor of 10× at epochs number 30, 60 and 90.
We also use a 0.0001 weight decay.

D.2 CIFAR-10 EXPERIMENTS

We train all models using using stochastic gradient descent for 200 epochs using a batch size of 128.
The learning rate is initially set to 0.1 and is reduced by a factor of 5× at epochs number 60, 120 and
160. We use nestrov momentum set to 0.9 and weight decay set to 0.0005.

D.3 DIV2K

We train all models using using the ADAM optimizer for 300 epochs using a batch size of 16. The
optimizer’s learning rate is set to 0.0001 and β1, β2 are set to 0.9, 0.999 respectively.
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