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Abstract

We study the role of the representation of state-action value functions in regret
minimization in finite-horizon Markov Decision Processes (MDPs) with linear
structure. We first derive a necessary condition on the representation, called
universally spanning optimal features (UNISOFT), to achieve constant regret in any
MDP with linear reward function. This result encompasses the well-known settings
of low-rank MDPs and, more generally, zero inherent Bellman error (also known
as the Bellman closure assumption). We then demonstrate that this condition is
also sufficient for these classes of problems by deriving a constant regret bound for
two optimistic algorithms (LSVI-UCB and ELEANOR). Finally, we propose an
algorithm for representation selection and we prove that it achieves constant regret
when one of the given representations, or a suitable combination of them, satisfies
the UNISOFT condition.

1 Introduction

The ability of an agent to learn an informative mapping from complex observations to a succinct
representation is one of the essential factors for the success of machine learning in fields such as
computer vision, language modeling, and more broadly in deep learning [Bengio et al., 2013]. In
supervised learning, it is well understood that a “good” representation is one that allows to accurately
fit any target function of interest (e.g., correctly classify a set of objects in an image). In Reinforcement
Learning (RL), this concept is more subtle, as it can be applied to different aspects of the problem,
such as the optimal value function or the optimal policy. Furthermore, recent works have shown that
realizability (e.g., being able to represent the optimal value function) is not a sufficient condition for
solving an RL problem, as the sample complexity using realizable representations is exponential in
the worst case [e.g., Weisz et al., 2021]. As such, a desirable property of a “good” representation in
RL is to enable learning a near-optimal policy with a polynomial sample complexity (or similarly
sublinear regret bound).

Several works have focused on online learning — considering sample complexity or regret min-
imization — and identified sufficient assumptions for efficient learning. Standard examples are
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tabular Markov Decision Processes (MDPs) [e.g., Jaksch et al., 2010, Azar et al., 2012, 2017], low
or zero inherent Bellman error [e.g., Jin et al., 2020, Zanette et al., 2020b,a, Jin et al., 2021] and
linear mixture MDPs [e.g., Yang and Wang, 2019, Ayoub et al., 2020, Zhang et al., 2021]. While,
in these settings, the representation is provided as input to the algorithm, an alternative scenario
is to learn such representations. In this case, research has focused either on the problem of online
representation selection for regret minimization [e.g., Ortner et al., 2014, 2019, Lee et al., 2021]
or, more recently, on the sample complexity of online representation learning [e.g., Du et al., 2019,
Agarwal et al., 2020, Modi et al., 2021]. Refer to App. A for more details. While this literature has
focused on finding a representation enabling learning a near-optimal policy with sublinear regret or
polynomial sample complexity, there may be several of such “good” representations with significantly
different learning performance and existing approaches are not guaranteed to find the most efficient
one. Intuitively, we would like to find representations that require the minimum level of exploration
to solve the task. For example, representations that would allow the algorithm to stop exploring
after a finite time and play only optimal actions forever (i.e., achieving constant regret), if they
exist. This aspect of representation learning was recently studied by Hao et al. [2020], Papini et al.
[2021] in contextual linear bandits, where they showed that certain representations display non-trivial
properties that enable much better learning performance. While it is well-known that properties
such as dimensionality and norm of the features have an impact on the learning performance, Hao
et al. [2020], Papini et al. [2021] proved that it is possible to achieve constant regret (i.e., not scaling
with the number of learning steps) if a certain (necessary and sufficient) condition on the features
associated with the optimal actions is satisfied. To the best of our knowledge, the impact of similar
properties on RL algorithms and how to find such representations is largely unexplored.

Contributions. In this paper, we investigate the concept of “good” representations in the context
of regret minimization in finite-horizon MDPs with linear structure. In particular, we consider the
settings of zero inherent Bellman error (also referred to as Bellman closure) [Zanette et al., 2020b]
and low-rank structure [e.g., Jin et al., 2020]. Similarly to the bandit case [Hao et al., 2020, Papini
et al., 2021], we study the impact of representations on the learning process. Our contributions are
both fundamental and algorithmic. 1) We provide a necessary condition (called UNISOFT) for a
representation to enable constant regret in any problem with linear reward parametrization. Notably,
this result encompasses MDPs with zero inherent Bellman error, and linear mixture MDPs with
linearly parametrized rewards. Intuitively, the condition generalizes a similar condition for linear
contextual bandits and it requires that the features observed along trajectories generated by the optimal
actions provide information on the whole feature space (see Asm. 4). 2) We provide the first constant
regret bound for MDPs for both ELEANOR [Zanette et al., 2020b] and LSVI-UCB [Jin et al., 2020]
when the UNISOFT condition is satisfied. As a consequence, we show that good representations are
not only necessary but also sufficient for constant regret in MDPs with zero inherent Bellman error
or low-rank assumptions. 3) We develop an algorithm, called LSVI-LEADER, for representation
selection in low-rank MDPs. We prove that in low-rank MDPs, LSVI-LEADER suffers the regret
of the best representation without knowing it in advance. Furthermore, LSVI-LEADER achieves
constant regret even when only a suitable combination of the representations satisfies the UNISOFT
condition despite none of them being “good”. This is indeed possible thanks to its ability to select a
different representation for each stage, state, and action.

2 Preliminaries

We consider a time-inhomogeneous finite-horizon Markov decision process (MDP) M =(
S,A, H, {rh}Hh=1, {ph}Hh=1, µ

)
where S is the state space and A is the action space, H is the

length of the episode, {rh} and {ph} are reward functions and state-transition probability mea-
sures, and µ is the initial state distribution. We denote by rh(s, a) the expected reward of a pair
(s, a) ∈ S ×A at stage h. We assume that S is a measurable space with a possibly infinite number
of elements and A is a finite set. A policy π = (π1, . . . , πH) ∈ Π is a sequence of decision rules
πh : S → A. For every h ∈ [H] := {1, . . . ,H} and (s, a) ∈ S ×A, we define the value functions
of a policy π as

Qπh(s, a) = rh(s, a) + Eπ

[
H∑

i=h+1

ri(si, ai)

]
, V πh (s, a) = Qπh(s, πh(s)),

where the expectation is over probability measures induced by the policy and the MDP over state-
action sequences of length H − h. Under certain regularity conditions [e.g., Bertsekas and Shreve,
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2004], there always exists an optimal policy π? whose value functions are defined by V π
?

h (s) :=

V ?h (s) = supπ V
π
h (s) and Qπ

?

h (s, a) := Q?h(s, a) = supπ Q
π
h(s, a). The optimal Bellman equation

(and Bellman operator Lh) at stage h ∈ [H] is defined as:

Q?h(s, a) := LhQ
?
h+1(s, a) = rh(s, a) + Es′∼ph(s,a)

[
max
a′

Q?h+1(s′, a′)
]
.

The value iteration algorithm (a.k.a. backward induction) computes Q? or Qπ by applying the
Bellman equations starting from stage H down to 1, with V πH+1(s) = 0 by definition for any s and π.
The optimal policy is simply the greedy policy w.r.t. Q?: π?h(s) = argmaxa∈AQ

?
h(s, a).

In online learning, the agent interacts with an unknown MDP in a sequence of K episodes. At
each episode k, the agent observes an initial state sk1 , it selects a policy πk, it collects the samples
observed along a trajectory obtained by executing πk, it updates the policy, and reiterates over
the next episode. We evaluate the performance of a learning agent through the regret: R(K) :=∑K
k=1 V

?
1 (sk1)− V πk1 (sk1).

Linear Representation. When the state space is large or continuous, value functions are often
described through a parametric representation. A standard approach is to use linear representations of
the state-action function Qh(s, a) = φh(s, a)Tθh, where φh : S×A → Rd is a time-inhomogeneous
feature map and θh ∈ Rd is an unknown parameter vector.2 In this paper, we consider MDPs
satisfying Bellman closure (i.e., zero Inherent Bellman Error) [Zanette et al., 2020b] or low-rank
assumptions [e.g., Yang and Wang, 2019, Jin et al., 2020].
Assumption 1 (Bellman Closure). Define the set of bounded value function Qh = {Qh|θh ∈
Θh : Qh(s, a) = φh(s, a)Tθh,∀(s, a)} and the associated parameter space Θh = {θh ∈ Rd :
|φh(s, a)Tθh| ≤ D}. An MDP has zero Inherent Bellman Error (IBE) if

∀h ∈ [H], sup
Qh+1∈Qh+1

inf
Qh∈Qh

‖Qh − LhQh+1‖∞ = 0.

This definition implies that the optimal value function is realizable as Q?h ∈ Qh. Furthermore, the
function space Q is closed under the Bellman operator, i.e., for all Qh+1 ∈ Qh+1, LhQh+1 ∈ Qh.
Under this assumption, value-iteration-based algorithms are guaranteed to converge to the optimal
policy in the limit of samples and iterations [Munos and Szepesvári, 2008]. In the context of
regret minimization, Zanette et al. [2020b] proposed a model-free algorithm, called ELEANOR, that
achieves sublinear regret under the Bellman closure assumption, but at the cost of computational
intractability.3 The design of a tractable algorithm for regret minimization under low IBE assumption
is still an open question in the literature.
Assumption 2 (Low-Rank MDP). Let Θh = Rd, then an MDP has low-rank structure if

∀s, a, h, s′, rh(s, a) = φh(s, a)Tθh, ph(s′|s, a) = φh(s, a)Tµh(s′)

where µh : S → Rd. Then, for any policy π ∈ Π, ∃θπh ∈ Θh such that Qπh(s, a) = φh(s, a)Tθπh . We
assume ‖θh‖2 ≤

√
d, ‖

∫
s′
µh(s′)v(s′)ds′‖2 ≤

√
d‖v‖∞ and ‖φh(s, a)‖2 ≤ 1, for any s, a, h, and

function v : S → R.

This assumption is strictly stronger than Bellman closure [Zanette et al., 2020b] and it implies the
value function of any policy is linear in the features. Furthermore, under Asm. 2 sublinear regret is
achievable using, e.g., LSVI-UCB [Jin et al., 2020], a tractable algorithm for low-rank MDPs. He
et al. [2020] have recently established a problem-dependent logarithmic regret bound for LSVI-UCB
under a strictly-positive minimum gap. The minimum positive gap provides a natural measure of the
difficulty of an MDP.
Assumption 3. The suboptimality gap of taking action a in state s at stage h is defined as:

∆h(s, a) = V ?h (s)−Q?h(s, a). (1)

We assume the minimum positive gap ∆min = mins,a,h{∆h(s, a)|∆h(s, a) > 0} is well defined and
that the optimal action is unique, i.e., | argmaxa{Q?h(s, a)}| = 1, for any s ∈ S, h ∈ [H].

2It is possible to extend the setting to different feature dimensions {dh}h∈[H].
3ELEANOR works under the weaker assumption of low IBE. Jin et al. [2021] considered the more general

case of low Bellman Eluder dimension. Their algorithm reduces to ELEANOR in the case of low IBE.
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Algorithm
(setting)

Minimax Problem-Dependent
Logarithmic

Constant with UNISOFT
(this work)

ELEANOR
(Bellman Closure)

Õ(
√
d2H3T )

[Zanette et al., 2020b]
N/A

d2H4

∆minλ
3/2
+

log1/2

(
d2H5

δ∆2
minλ

3
+

)
(Thm. 8)

LSVI-UCB
(low-rank MDPs)

Õ(
√
d3H3T )

[Jin et al., 2020]
O( d

3H5

∆min
log2(T ))

[He et al., 2020]

d3H5

∆min
log

(
d4H6

δ∆2
minλ

3
+

)
(Thm. 9)

Lower Bound Ω(
√
d2H2T )

[Zhou et al., 2020, Remark 5.8]
Ω( dH

∆min
)

[He et al., 2020]
N/A

Table 1: Regret comparisons of ELEANOR and LSVI-UCB. For ELEANOR, we consider the
special case of Bellman closure.

In Tab. 1, we summarize existing bounds in the two settings. Another structural assumption that
has gained popularity in the literature is the linear-mixture structure [Jia et al., 2020, Ayoub et al.,
2020, Zhou et al., 2020], where the transition function admits a form ph(s′|s, a) = φh(s′|s, a)Tθh.
No structural requirement is made on the reward, which is typically assumed to be known. As a
consequence, the value function may not be linearly representable. However, the fact the reward is
known and that it is possible to directly learn the parameters θh of the transition function allow to
achieve sublinear regret (even logarithmic) through model-based algorithms. While in this paper we
mostly focus on Asm. 1 and 2, in Sect. 3.1 we show that our condition is necessary for constant regret
also for linear-mixture MDPs with unknown linear reward.

3 Constant Regret for Linear MDPs

In this section, we introduce UNISOFT, a necessary condition for constant regret in any MDP with
linear rewards. We show that this condition is also sufficient in MDPs with Bellman closure.
Assumption 4. A feature map is UNISOFT (Universally Spanning Optimal FeaTures) for an MDP if
it satisfies Asm. 1 or 2, and for all h ∈ [H] the following holds:

span
{
φh(s, a) | ∀(s, a), ∃π ∈ Π : ρπh(s, a) > 0

}
= span

{
φ?h(s) | ∀s, ρ?h(s) > 0

}
,

where ρπh(s) = E[1 {sh = s} |M,π] is the occupancy measure of a policy π, ρπh(s, a) =

ρh(s)1 {πh(s) = a}, ρ?h(s) := ρπ
?

h (s), and φ?h(s) := φh(s, π?h(s)).

Intuitively, features that are observed by only playing optimal actions must provide information on the
whole space of reachable features at each stage h. We notice that Asm. 4 reduces to the HLS property
for contextual bandits considered by Hao et al. [2020], Papini et al. [2021]. The key difference is
that, in RL, the reachability of a state plays a fundamental role. For example, features of states that
are not reachable by any policy are irrelevant, while features of optimal actions in states that are not
reachable by the optimal policy (i.e., φ?h(s) in a state with ρ?h(s) = 0) do not contribute to the span of
optimal features since they can only be reached by acting sub-optimally. In RL, a related structural
assumption to Asm. 4 is the “uniformly excited feature” assumption used by Abbasi-Yadkori et al.
[2019, Asm. A4] for average reward problems. Their assumption is strictly stronger than ours since it
requires that all policies generate an occupancy measure under which the features span all directions
uniformly well. Such an assumption can be related to the ergodicity assumption for tabular MDPs,
which is known to be restrictive. Another related quantity is the “explorability” coefficient introduced
by Zanette et al. [2020c]. This term represents how explorative (in the feature space) are the optimal
policies of the tasks compatible with the MDP, i.e., considering any possible parameter θh ∈ Θh.
This coefficient is important in reward-free exploration where the objective is to learn a near optimal
policy for any task, which is revealed only once learning has completed. In our setting, we focus only
on the properties of the optimal policy for the single task we aim to solve.

It is interesting to look into Asm. 4 from an alternative perspective. Denote by 0 ≤ λh,1 ≤ . . . ≤ λh,d
the eigenvalues of the matrix Λh := Es∼ρ?h

[
φ?h(s)φ?h(s)T

]
and by λ+

h = min{λh,i > 0, i ∈ [d]} the
minimum positive eigenvalue. We notice that when the features are non-redundant (i.e., {φh(s, a)}
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spans Rd) and the UNISOFT assumption holds, then λ+
h = λh,1 > 0. As we will see, the minimum

positive eigenvalue λ+
h plays a fundamental role in the constant regret bound, together with the

minimum gap ∆min. We provide examples of UNISOFT and Non-UNISOFT representations in
App. G, as well as their impact on the learning process.

3.1 UNISOFT is Necessary for Constant Regret

The following theorem shows that the UNISOFT condition is necessary to achieve constant regret in a
large class of MDPs.
Theorem 5. Let M be any MDP with finite states, arbitrary dynamics p, linear rewards (i.e.,
rh(s, a) = φh(s, a)Tθh) with GaussianN (0, 1) noise, unique optimal policy π?, and where condition
UNISOFT (Asm. 4) is not satisfied. LetM be the set of MDPs with same dynamics as M but different
reward parameters {θh}h∈[H]. Then, there exists no algorithm that suffers sub-linear regret in all
MDPs inM while suffering constant regret in M .

Thm. 5 states that in MDPs with linear reward, the UNISOFT condition is necessary to achieve
constant regret for any “provably efficient” algorithm. Notably, this result does not put any restriction
on the transition model, which can be arbitrary and known. This means that as soon as the reward
is linear and unknown to the learning agent, the UNISOFT condition is necessary to attain constant
regret. This result applies to low-rank MDPs, linear-mixture MDPs with unknown linear rewards,
and MDPs with Bellman closure (Bellman closure implies linear rewards, see Prop. 2 by Zanette
et al. [2020b]).

Proof sketch of Theorem 5. The key intuition behind the proof is that an algorithm achieving a
constant regret must select sub-optimal actions only a finite number of times. Nonetheless, in order to
learn the optimal policy, all features associated with suboptimal actions should be explored enough.
Since UNISOFT does not hold, this cannot happen by executing the optimal policy alone and requires
selecting suboptimal policies for long enough, thus preventing constant regret.

More formally, we call an algorithm “provably efficient” if it suffers sub-linear regret on the given
class of MDPsM. Formally, we use the following definition, which is standard to prove problem-
dependent lower bounds [e.g., Simchowitz and Jamieson, 2019, Xu et al., 2021].
Definition 6 (α-consistency). Let α ∈ (0, 1), then an algorithm A is α-consistent on a class of MDPs
M if, for each M ∈ M and K ≥ 1, there exists a constant cM (independent from K) such that
EA
M [R(K)] ≤ cMKα.4

The following lemma is the key result for proving Thm. 5 and it might be of independent interest. It
shows that any consistent algorithm must explore sufficiently all relevant directions in the feature space
to discriminate any sub-optimal policy from the optimal one. The proof (reported in App. C) leverages
techniques for deriving asymptotic lower bounds for linear contextual bandits [e.g., Lattimore and
Szepesvari, 2017, Hao et al., 2020, Tirinzoni et al., 2020].
Lemma 7. Let M,M be as in Thm. 5 and A be any α-consistent algorithm onM. For any π ∈ Π,
denote by Ψπ

h :=
∑
s,a ρ

π
h(s, a)φh(s, a) its expected features at stage h and ∆(π) := V ?1 − V π1 its

sub-optimality gap. Then, for any π ∈ Π with ∆(π) > 0 and h ∈ [H],

lim sup
K→∞

log(K)‖Ψπ
h −Ψ?

h‖2EA
M [ΛKh ]−1 ≤

∆(π)2

2(1− α)
,

where Ψ?
h := Ψπ?

h and ΛKh :=
∑K
k=1 φh(skh, a

k
h)φh(skh, a

k
h)T.

We now proceed by contradiction: suppose that A suffers constant expected regret on M even though
the MDP does not satisfy the UNISOFT condition. Then, since A plays sub-optimal actions only a finite
number of times, it is possible to show that, for each h ∈ [H], there exists a positive constant λM > 0
such that EA

M [ΛKh ] � Λ?h + λMI , where Λ?h := K
∑
s:ρ?h(s)>0 φ

?
h(s)φ?h(s)T. Furthermore, since

UNISOFT does not hold, there exists a stage h ∈ [H] and a sub-optimal policy π (i.e., with ∆(π) > 0)
4In practice, all existing “provably-efficient” algorithms we are interested in are included in this class and

cM is polynomial in all problem-dependent quantities (e.g., d, H). For instance, LSVI-UCB and ELEANOR are
1/2-consistent on the class of low-rank and Bellman-closure MDPs, where they enjoy worst-case Õ(

√
K) regret

bounds (with cM being O(
√
d3H4) and O(

√
d2H4), respectively).
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such that the vector Ψπ
h −Ψ?

h does not belong to span {φ?h(s)|ρ?h(s) > 0}. Then, since such space is
exactly the one spanned by all the eigenvectors of Λ?h associated with a non-zero eigenvalue, there
exists a positive constant ε > 0 (independent of K) such that ‖Ψπ

h − Ψ?
h‖2(Λ?h+λMI)−1 ≥ ε2/λM .

Combining these steps with Lem. 7, we obtain

∆(π)2

2(1− α)
≥ lim sup

K→∞
log(K)‖Ψπ

h −Ψ?
h‖2(Λ?h+ηI)−1 ≥

ε2

λM
lim sup
K→∞

log(K),

which is clearly a contradiction. Therefore, A cannot suffer constant regret in M while suffering
sub-linear regret in all other MDPs inM, and our claim follows.

3.2 UNISOFT is Sufficient for Constant Regret

While the UNISOFT condition is necessary for achieving constant regret in a large class of MDPs, in
the following, we prove that ELEANOR and LSVI-UCB attain constant regret when the UNISOFT
assumption holds, thus implying that it is a sufficient condition in MDPs with low-rank and Bellman
closure structure.
Theorem 8. Consider an MDP and a representation {φh}h∈[H] satisfying the Bellman closure
(Asm. 1) and UNISOFT assumptions (Asm. 4). Under Asm. 3, with probability at least 1 − 3δ,
ELEANOR5 suffers a constant regret

R(K) . H3/2d

√
τ log

τ

δ
,

where τ = Hκ and κ is the last episode ELEANOR suffers a non-zero regret. Furthermore,
κ . max

{
d2H4

λ2
+
, dH4

∆2
minλ

3
+

}
6, where λ+ := minh{λ+

h } > 0.

Alternatively, we can prove the following result for LSVI-UCB.
Theorem 9. Consider an MDP and a representation {φh}h∈[H] satisfying the low-rank (Asm. 2)
and UNISOFT assumptions (Asm. 4). Under Asm. 3, with probability 1− 3δ, LSVI-UCB suffers a
constant regret

R(K) .
d3H5

∆min
log
(
dH2κ/δ

)
,

where κ is the last episode LSVI-UCB suffers a non-zero regret and is upper-bounded as κ .

max
{
d3H4

λ2
+
, d2H4

∆2
minλ

3
+

}
, where λ+ := minh{λ+

h } > 0.

In both cases, κ is polynomial in all the problem-dependent terms and independent of the number
of episodes K (see Lem. 21 and 20). As a result, ELEANOR and LSVI-UCB achieves a constant
regret that only depends on “static” MDP and representation characteristics, thus indicating that after
a finite time the agent only executes the optimal policy. Notice also that the bounds should be read
as minimum between the constant regret and the minimax regret O(

√
K), which may be tighter for

small K.The main difference between the two previous bounds is that for ELEANOR we build on
the anytime minimax regret bound, while for LSVI-UCB, we derive a more refined constant-regret
guarantee by building on its problem-dependent bound of He et al. [2020]. Unfortunately, limiting
factor for applying the analysis in [He et al., 2020] seems to be the fact that ELEANOR is not
optimistic at each stage h but rather only at the first stage. As such, whether ELEANOR can achieve
a problem-dependent logarithmic regret based on local gaps that can be leverage to improve our
analysis is an open question in the literature.

Combined proof sketch of Thm. 8 and Thm. 9. We provide a general proof sketch that can be
instantiated to both ELEANOR and LSVI-UCB. The purpose is to illustrate what properties an
algorithm must have to exploit good representations, and how this leads to constant regret. Consider
a learnable feature map {φh}h∈[H] and an algorithm with the following properties:

(a) Greedy w.r.t. a Q-function estimate: πkh(s) = arg maxa∈A{Q
k

h(s, a)}.
5ELEANOR and LSVI-UCB are defined up to a regularization parameter λ that we set to λ = 1.
6Here . hides logarithmic terms in λ+, H , and d, but not in K.
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(b) Global optimism: V
k

1(s) ≥ V ?1 (s) where, for all h ≥ 1, we set V
k

h(s) = maxa∈A{Q
k

h(s, a)}.
(c) Almost local optimism: ∀h > 1,∃Ch ≥ 0 s.t. Q

k

h(s, a) + Chβk ‖φh(s, a)‖(Λkh)−1 ≥ Q?h(s, a).

(d) Confidence set: let Λkh =
∑k−1
i=1 φh(sih, a

i
h)φh(sih, a

i
h)T +λI and βk ∈ R+ be logarithmic in k,

then V
k

h(skh)− V πkh (skh) ≤ 2βk
∥∥φh(skh, a

k
h)
∥∥

(Λkh)−1 + Es′∼ph(skh,a
k
h)

[
V
k

h+1(s′)− V πkh+1(s′)
]
.

These properties are verified by ELEANOR [Zanette et al., 2020b, App. C] and LSVI-UCB [Jin
et al., 2020, Lem. B.4, B.5]. Note that for LSVI-UCB condition (c) is trivially verified since the
algorithm is optimistic at each stage (Ch = 0). On the other hand, ELEANOR is only guaranteed to
be optimistic at the first stage, and (c) is thus important (Ch = 2). First, we use existing techniques
to establish an any-time regret bound, either worst-case or problem-dependent. We call this g(k) and
prove that R(k) ≤ g(k) ≤ Õ(

√
k) for any k with probability 1− 2δ.

Next, we show that, under Asm. 4, the eigenvalues of the design matrix grow almost linearly, making
the confidence intervals decrease at a 1/

√
k rate. From some algebra and a martingale argument,

Λk+1
h � kΛ?h + λI −∆−1

ming(k)I − Õ(
√
k)I, (2)

where Λ?h = Es∼ρ?h [φ?h(s)φ?h(s)T]. The UNISOFT property ensures that the linear term is nonzero in
relevant directions, while the regret bound of the algorithm makes the penalty term sublinear. Then,
we show that, for any reachable (s, a),

βk ‖φh(s, a)‖(Λkh)−1 ≤ βk
k − Õ(

√
k)

(kλ+
h − Õ(

√
k))3/2

= Õ(k−1/2), (3)

where λ+
h is the minimum nonzero eigenvalue of Λ?h. From (3), we can see that λ+

h plays a fun-
damental role in the rate of decrease. Finally, we show that, under the gap assumption, these
uniformly-decreasing confidence intervals allow learning the optimal policy in a finite time. From the
Bellman equations, we have that

V ?1 (sk1)− V π
k

1 (sk1) = Eπk

[
H∑
h=1

∆h(sh, ah)|s1 = sk1

]
, (4)

while from (a)-(d), for any reachable state,

∆h(s, πkh(s)) ≤ 2Eπk

[
H∑
i=h

βk ‖φi(si, ai)‖(Λki )−1 |sh = s

]
+ 1h>1Chβk ‖φ?h(s)‖(Λkh)−1 .

The second term (with 1h>1) accounts for the almost-optimism of ELEANOR, while it is zero in
LSVI-UCB due to the stage-wise optimism. Then, for every h ∈ [H], we can use (3) to control the
feature norms. Thus, there exists an episode κh independent of K satisfying

∆h(s, πkh(s)) ≤ βκh
H∑
i=h

(2 + 1i=h>1Ch)
κh − 8

√
κh log(2dκhH/δ)− g(κh)

(κhλ
+
i − 8

√
κh log(2dκhH/δ)− g(κh))3/2

< ∆min,

(5)

By definition of minimum gap, then ∆h(s, πkh(s)) = 0 for k > κh. Then, for k > κ = maxh{κh},
V ?1 (sk1) − V πk1 (sk1) = 0. But this means the algorithm only accumulates regret up to κ, that is,
R(K) = R(κ) ≤ g(κ) = O(1) for all K > κ. This holds with probability 1− 3δ, also taking into
account the martingale argument from (2). Note that {κh} are by definition monotone for LSVI-UCB.
The final bounds are then obtained by instantiating the specific values of βk and g(k) for the two
algorithms we analyzed.

4 Representation Selection in Low-Rank MDPs

In Sec. 3, we have highlighted the benefits that a UNISOFT representation brings to optimistic
algorithms in MDPs with Bellman closure and low rank structure. In this section, we take one step
further and investigate the representation selection problem. Since ELEANOR is a computationally
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Algorithm 1: LSVI-LEADER
Input: Representations {Φj}j∈[N ], confidence values {βk}k∈[K]

1 for k = 1, . . . ,K do
2 Receive the initial state sk1
3 for h = H, . . . , 1 do
4 Λkh(j) = λI +

∑k−1
i=1 φ

(j)
h (sih, a

i
h)φ

(j)
h (sih, a

i
h)T ∀ j ∈ [N ].

5 wk
h(j) = Λkh(j)−1∑k−1

i=1 φ
(j)
h (sih, a

i
h)

(
rh(sih, a

i
h) + max

a∈A
Q
k

h+1(sih+1, a)

)
, ∀j ∈ [N ]

6 Q
k

h(s, a) = min

{
H,minj∈[N ]

(
φ

(j)
h (s, a)Twk

h(j) + βk

∥∥∥φ(j)
h (s, a)

∥∥∥
Λk
h

(j)−1

)}
7 for h = 1, . . . , H do
8 Execute action akh = πkh(skh) := argmaxa∈AQ

k

h(skh, a).

intractable algorithm, we build on LSVI-UCB and low-rank MDPs (Asm. 2) and we introduce
LSVI-LEADER (Alg. 1), an algorithm that adaptively selects representations in a given set.

Given a set of N representations {Φj}j∈[N ] satisfying Asm. 2, where Φj =
{
φ

(j)
h

}
h∈[H]

, at each
stage h ∈ [H] of episode k ∈ [K], LSVI-LEADER solves N different regression problems to
compute an optimistic value function for each representation. Then, the final estimate Q

k

h(s, a) is
taken as the minimum across these different optimistic value functions. Notably, this implies that
LSVI-LEADER implicitly combines representations, in the sense that the selected representations
(i.e., those with tightest optimism) might vary for different stages. This is exploited in the following
result, which shows that constant regret is achievable even if none of the given representations is
globally UNISOFT.
Theorem 10. Given an MDP M and a set of representations {Φj}j∈[N ] satisfying the low-rank
assumption (Asm. 2), let Z be the set of HN representations obtained by combining those in
{Φj}j∈[N ] across different stages.7 Then, with probability at least 1− 2δ, LSVI-LEADER suffers at
most a regret

R(K) ≤ min
z∈Z

R̃(K, z, {βk}),

where R̃(K, z, βk) is either the worst-case regret bound of LSVI-UCB [Jin et al., 2020] or the
problem-dependent one [He et al., 2020] when the algorithm is executed with representation z and
confidence values βk ∝ dH

√
N log(2dNHk/δ). Moreover, ifZ contains a UNISOFT representation

z?, then LSVI-LEADER achieves constant regret with problem-dependent values of z? (see Thm. 9).

This result shows that LSVI-LEADER adapts to the best representation automatically, i.e., without
any prior knowledge about the properties of the representations. In particular, it shows a problem-
dependent (or worst-case) bound when there is no UNISOFT representation, while it attains constant
regret when a representation, potentially mixed through stages, is UNISOFT. This is similar to what
was obtained by Papini et al. [2021] for linear contextual bandits. Indeed, LSVI-LEADER reduces
to their algorithm in the case H = 1. While the cost of representation selection is only logarithmic
in linear bandits, the cost becomes polynomial (i.e.,

√
N in the worst-case bound and N in the

problem-dependent one) in RL. This is due to the structure induced by the Bellman equation, which
requires a cover argument over HN functions (more details in the proof sketch). Note that for H = 1,
the analysis can be refined to obtain a log(N) dependence, due to the lack of propagation through
stages, and recover the result in [Papini et al., 2021]. We refer the read to App. G for a numerical
validation.

Proof sketch of Thm. 10. The proof relies on the following important result, which extends
Lem. B.4 of Jin et al. [2020] and shows that the deviation between the optimistic value function
computed by LSVI-LEADER and the true one scales with the minimum confidence interval across
the different representations. Formally, with probability 1− 2δ, for any π ∈ Π, s ∈ S, a ∈ A, h ∈

7Note that any combination of features in Φj is learnable, since each representation is learnable in the
low-rank MDP sense.
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[H], k ∈ [K],

Q
k

h(s, a)−Qπh(s, a) ≤ 2βk min
j∈[N ]

∥∥∥φ(j)
h (s, a)

∥∥∥
Λkh(j)−1

+ Es′∼ph(s,a)

[
V
k

h+1(s′)− V πh+1(s′)
]
.

As in [Jin et al., 2020], the derivation of this result combines the well-known self-normalized
martingale bound in [Abbasi-Yadkori et al., 2011] with a covering argument over the space of
possible optimistic value functions. In our setting, the structure of such function space requires us to
build N different covers, one for each different representation. This, in turn, requires the confidence
values βk to be inflated by an extra factor

√
N w.r.t. learning with a single representation.

The generality of this result allows us to easily derive, for any fixed representation z ∈ Z , both the
worst-case regret bound of Jin et al. [2020] and the problem-dependent one of He et al. [2020]. To
see this, note that the regret decompositions in both of these two papers rely on an upper bound to
V
k

h(skh) − V πkh (skh) as a function of the fixed representation used by LSVI-UCB (see the proof of
Theorem 3.1 of Jin et al. [2020] and Lemma 6.2 of He et al. [2020]). Then, fix any z ∈ Z and call zh
its features at stage h. Note that zh ∈ {φ(j)

h }j∈[M ]. Moreover, by definition of low-rank structure,
since each Φj induces a low-rank MDP, their combination does too. Thus, z is learnable. Then,
instantiating the concentration bound stated above for policy πk, state skh, action akh, stage h, and by
upper bounding the minimum with the representation selected in zh, we get

V
k

h(skh)− V πkh (skh) ≤ 2βk
∥∥zh(skh, a

k
h)
∥∥

Λkh(j)−1 + Es′∼ph(skh,a
k
h)

[
V
k

h+1(s′)− V πkh+1(s′)
]
.

From here, one can carry out exactly the same proofs of Jin et al. [2020] and He et al. [2020], thus
obtaining the same regret bound that LSVI-UCB enjoys when executed with the fixed representation
z ∈ Z and confidence values {βk}k∈[K]. Hence, we conclude that the regret of LSVI-LEADER is
upper bounded by the minimum of these regret bounds for all representations z ∈ Z , thus proving
the first result. To obtain the second result, simply notice that, if z? ∈ Z is UNISOFT, then we can
use the refined analysis for LSVI-UCB of Thm. 9 to show that R̃(K, z?, {βk}) is upper bounded by
a constant independent of K, hence proving constant regret for LSVI-LEADER.

4.1 Representation Selection under a Mixing Condition

We show that the LSVI-LEADER algorithm not only is able to select the best representation among a
set of viable representations, and to combine representations for the different stages, but also to stitch
representations together across states and actions. With this in mind we introduce the notion of a
mixed ensemble of representations.
Definition 11. Consider an MDP M and a set of representations {Φj}j∈[N ] satisfying the low-
rank assumption (Asm. 2). The collection of feature maps {Φj}j∈[M ] is UNISOFT-mixing if for all

s, a ∈ S ×A and h ∈ [H], there exists j such that φ(j)
h (s, a) ∈ span

{
φ

(j)
h (s, π?h(s))|ρ?h(s) > 0

}
.

We show that when presented with a UNISOFT-mixing family of representations, LSVI-LEADER
is able to successfully combine these and obtain a regret guarantee that may be better than what is
achievable by running LSVI-UCB using any of these representations in isolation.
Theorem 12. Consider an MDP M and a set of representations {Φj}j∈[N ] satisfying the low-
rank (Asm. 2) and UNISOFT-mixing assumptions. If ∆min > 0 (Asm. 3), then with probability at
least 1 − 3δ, there exist a constant κ̃ = maxh{κh} independent from K such that the regret of
LSVI-LEADER after K episodes is at most:

R(K) ≤ min
z∈Z

R̃
(
κ̃, z, {βk}

)
,

where Z , R̃ and βk are defined as in Thm. 10.

Under the UNISOFT-mixing condition, LSVI-LEADER may not converge to selecting a single
representation for each stage h but rather to mixing multiple representations. In fact, it may select a
different representation in different regions of the state-action space. This is the main difference w.r.t.
Thm. 10, where constant regret is shown when there exists a representation z? that is UNISOFT, and
the value κh depends on the minimum positive eigenvalue of z?h. In the case of UNISOFT-mixing, κh
depends on properties of a combination of representations at stage h. We provide a characterization
of κh in the full proof in App. E.
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5 Conclusions

We investigated the properties that make a representation efficient for online learning in MDPs with
Bellman closure. We introduced UNISOFT, a necessary and sufficient condition to achieve a constant
regret bound in this class of MDPs. We demonstrate that existing optimistic algorithms are able
to adapt to the structure of the problem and achieve constant regret. Furthermore, we introduce
an algorithm able to achieve constant regret by mixing representations across states, actions and
stages in the case of low-rank MDPs. An interesting direction raised by our paper is whether it is
possible to leverage the UNISOFT structure for probably-efficient representation learning, rather than
selection. Another direction can be to leverage these insights to drive the design of auxiliary losses
for representation learning, for example in deep RL.
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A Related Work

The representation selection problem has been originally studied in the context of tabular MDPs.
Given a set of representation mapping histories to (sequences of actions, observations, and rewards)
to a finite set of states, the goal of the learning agent is to solve the MDP under an appropriate
representation. The standard assumption is that at least one representation induces an MDP. Several
papers have investigated this online learning problem and provided algorithms based on the optimism
principle [e.g., Ortner et al., 2014, 2019]. The settings and the representation learning objective are
different from ours. In particular, this line of research aims at finding any representation that is good
for learning but the methods are not guaranteed to find the most efficient.

Recently, a few papers have focused on representation learning with theoretical guarantees. Du et al.
[2019] considered the representation learning problem in block MDPs with rich observations, where
the objective is to learn the compact latent representation. Representation learning in low-rank MDPs
was recently studied in [Agarwal et al., 2020, Modi et al., 2021, Lu et al., 2021]. We believe that these
papers are orthogonal to our work for several reasons. We start considering the setting in [Agarwal
et al., 2020, Modi et al., 2021]. First, they operate in the reward-free setting where the objective is to
learn a representation of the low-rank MDP that can be used to efficiently learn an optimal policy once
a reward is given. For us, a reward is given from the start and learning/selecting a good representation
in the meantime is just a way to suffer less regret. Second, our representation selection objective is
different (and arguably more challenging) than the one considered by Agarwal et al. [2020], Modi
et al. [2021]. They aim at finding a representation with low mean square error, i.e. any realizable
representation of the low-rank MDP. On the other hand, we wish to find a UNISOFT representation
among a set of realizable representations, which makes the representation learning problem harder. In
App. F, Papini et al. [2021] showed that reducing the MSE is not enough for this purpose. It is shown
that this only allows the algorithm to end up with a set of realizable representations, but after that, a
different algorithmic scheme, whose primary objective is reducing regret (like LSVI-LEADER), is
needed to find the UNISOFT one. Therefore, even if the approach in these papers could be extended
to the regret minimization setting, there would be no guarantee that running that algorithm would
recover a UNISOFT representation as in our case. Finally, it is unclear how to transform their sample
complexity into a regret bound. In particular, it is not just a matter of translating a sample complexity
bound into a regret bound: both the interaction protocol and the algorithmic schemes are different
w.r.t. our work. Even if we directly translated the sample complexity bounds of these papers into
regret bounds, we note that, while it is true that they could scale as log(|Φ|), they also contain several
dependencies which are orders of magnitude worse than in our work. For instance, the sample
complexity provided in [Modi et al., 2021, Thm. 2] scales as A13 (A is the number of actions). This
is also an unreasonable dependence in any case of practical interest we can think of. Finally, Lu et al.
[2021] studied the effect of representation learning on the sample complexity in multi-task settings,
which is quite different from the single-task regret minimization problem considered in this paper.

B Notation
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Table 2: Notation.

S state space
A action space
H episode length
rh reward function at stage h
ph transition function at stage h
µ initial-state distribution
K number of episodes
T = HK, total number of interactions
πh policy for stage h
Π policy space
Qπh state-action value function of policy π at stage h
V πh = Qπh(s, πh(s))
π?h optimal policy for stage h
Q?h = Qπ

?

h , optimal value function at stage h
V ?h (s) = maxa∈AQ?h(s, a)
Lh Bellman’s optimality operator for stage h
πkh policy played by the algorithm at stage h of episode k
φh feature map for stage h
R(K) regret suffered in the first K episodes
d feature dimension
D = H , value function upper bound
Qh set of linear bounded value functions for stage h
Θh set of parameters of linear bounded value functions for stage h
∆h(s, a) = V ?h (s)−Q?h(s, a), suboptimality gap
∆min minimum positive gap (see Asm. 3)
φ?h(s) = φh(s, π?h(s)), optimal features for state s at stage h
ρπh occupancy measure of policy π at stage h (see Asm. 4)
Λ?h = Es∼ρ?h [φ?h(s)φ?h(s)], optimal covariance matrix
λ+
h minimum nonzero eigenvalue of Λ?h
δ failure probability
κ last episode at which nonzero regret is paid (see proof of Thm. 19)
τ = Hκ
βk confidence radius, see (32) for ELEANOR and (42) for LSVI-UCB
λ = 1, regularization parameter
Λkh = λI +

∑k−1
i=1 φh(sih, a

i
h)φh(sih, a

i
h)T, design matrix

Q
k

h optimistic value function for stage h at episode k
V
k

h(s) = maxa∈AQ
k

h(s, a)
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C UNISOFT is Necessary: Proofs of Section 3.1

We illustrate all the detailed proofs needed for showing that the UNISOFT condition is necessary to
achieve constant regret (Thm. 5). For the sake of completeness, we restate here all the assumptions
on the MDP M under consideration.

Assumptions on MDP M .

• S and A finite, H ≥ 1 arbitrary;
• Linear rewards: rh(s, a) = 〈θh, φ(s, a)〉 with N (0, 1) noise;
• Arbitrary transition probabilities {ph}h∈[H] and initial-state distribution µ;

• Unique optimal policy π?: |{a : Q?h(s, a) = V ?h (s)}| = 1 and π?h(s) = argmaxaQ
?
h(s, a)

for all s, h;
• UNISOFT condition (Asm. 4 does not hold).

Moreover, recall that we defineM as any set of MDPs that contains (but it can be larger than) all
the MDPs which are equivalent to M in all components except for the reward parameters {θh}h∈[H],
which can be arbitrary vectors in Rd. Formally,

M⊇
{
M̃ =

(
S,A, H, {r̃h}Hh=1, {ph}Hh=1, µ

)
| ∀h ∈ [H],∃θ̃h ∈ Rd : r̃h(s, a) = 〈θ̃h, φ(s, a)〉

}
.

Intuitively,M contains at least all the MDPs that could be faced by an agent that knows the linear-
reward structure of the problem but that does not know the true parameters {θh}h∈[H]. Obviously, if
the agent knows all the components of M except for the reward parameters, the setM can be taken
exactly as the set on the righthand side above (which would contain all and only the realizable MDPs).
On the other hand, in the more general case where the agent does not know the dynamics as well,
setM can be enlarged by including all the realizable MDPs with different transition probabilities
(e.g., those with low-rank or low-IBE structure, or even the whole set of unstructured dynamics). Our
proof that UNISOFT is necessary for constant regret holds for an agent that only knows that the true
MDP M belongs to this general setM and thus encompasses all the relevant settings mentioned in
Sec. 3.1.

In the following proofs we shall write PA
M (EA

M ) to denote the probability (expectation) operator
under MDP M and the chosen algorithm A.

C.1 Proof of Lemma 7

Let M be our true MDP and M̃ ∈M be any other MDP which is equivalent to M in all components
except for the reward parameters, which are given by {θ̃h}h∈[H]. We start by a standard decomposition
of the expected log-likelihood ratio between the observations generated in the two MDPs. Fix
K ≥ 1 and let KL(PM ,PM̃ ) denote the KL-divergence between the distributions of the observations
collected by algorithm A over K episodes. Using, e.g., Lemma 5 of Domingues et al. [2021] together
with the closed-form of the KL divergence between Gaussian distributions,

KL(PM ,PM̃ ) =
∑
s,a

∑
h∈[H]

EA
M [NK

h (s, a)]
(〈φ(s, a), θh − θ̃h〉)2

2
=

1

2

∑
h∈[H]

‖θh − θ̃h‖2EA
M [ΛKh ],

where ΛKh :=
∑
s,aN

K
h (s, a)φ(s, a)φ(s, a)T and NK

h (s, a) :=
∑K
k=1 1

{
skh = s, akh = a

}
.

Suppose that, for sufficiently large K, the matrix EA
M [ΛKh ] is invertible.8 We now proceed as follows.

For a fixed h ∈ [H] and sub-optimal policy π ∈ Π (i.e., with ∆(π) > 0), we seek the hardest MDP
M̃ to discriminate from M (i.e., that minimizes KL(PM ,PM̃ )) where policy π is strictly better (in
terms of expected return) than π? and where we change only the parameter θh w.r.t. M . Formally,
we minimize

minimizeθ̃h∈Rd‖θh − θ̃h‖
2
EA
M [ΛKh ]

8Lattimore and Szepesvari [2017] proved that this is indeed true for consistent algorithms. Otherwise, one
could simply make the matrix positive-definite by adding λI for some arbitrary λ > 0 and the derivation still
holds.

16



subject to the constraint Ṽ π1 ≥ Ṽ π
?

1 + ε. First note that the expected return of policy π can be
equivalently written as

V π1 =
∑
s,a

∑
h∈[H]

ρπh(s, a)rh(s, a) =
∑
h∈[H]

〈θh,
∑
s,a

ρπh(s, a)φ(s, a)〉 =
∑
h∈[H]

〈θh,Ψπ
h〉.

Moreover, since M and M̃ have same transition probabilities, Ψπ
h = Ψ̃π

h for each π, h. Thus,
Ṽ π1 =

∑
h∈[H]〈θ̃h,Ψπ

h〉 and the constraint can be rewritten in the more convenient form∑
h∈[H]

〈θ̃h,Ψπ
h〉 ≥

∑
h∈[H]

〈θ̃h,Ψ?
h〉+ ε.

Using Lemma 13, the optimization problem has a closed-form expression. Therefore, let Γεh(π) ⊆M
be the set of MDPs over which we are optimizing, that is, with (1) same transition probabilities as
M, (2) same reward parameters asM at all stages except h, and (3) Ṽ π1 ≥ Ṽ π

?

1 + ε. Using Lemma
13 together with the rewritings above, for any π ∈ Π, h ∈ [H] and ε ≥ 0,

min
M̃∈Γεh(π)

KL(PM ,PM̃ ) =
(∆(π) + ε)

2

2‖Ψπ
h −Ψ?

h‖2EA
M [ΛKh ]−1

. (6)

We now show that KL(PM ,PM̃ ) is lower bounded by a quantity that increases logarithmically in
K for any M̃ ∈ Γεh(π) with ε > 0. Let EK := {

∑
π∈Π? NK(π) < f(K)}, where NK(π) :=∑K

k=1 1
{
πk = π

}
, Π? is the set of all deterministic policies with maximal expected return in M ,

and f(K) will be specified later. Using Lemma 14,

KL(PM ,PM̃ ) ≥ log
1

PM (EK) + P
M̃

(Ec)
− log 2. (7)

Now note that, under the assumption that A is α-consistent,

cMK
α ≥ EA

M [R(K)] =
∑
π∈Π

EA
M [NK(π)] ∆(π) ≥ ∆

∑
π/∈Π?

EA
M [NK(π)] .

Here, with some abuse of notation, ∆ is the minimum policy gap. Therefore,

PM (EK) = PM

(
K −

∑
π/∈Π?

NK(π) < f(K)

)
≤
∑
π/∈Π? EA

M [NK(π)]

K − f(K)
≤ KαcM/∆

K − f(K)
,

where the first inequality is Markov’s inequality. Note that, since Ψπ
h = Ψ?

h for all optimal policies
π ∈ Π? and since the transition probablities of M and M̃ are the same, Ṽ π1 = Ṽ π

?

1 for all π ∈ Π?.
Hence, all optimal policies for M have a gap of at least ε in M̃ . This implies that

c
M̃
Kα ≥ EA

M̃
[R(K)] ≥ εEA

M̃

[∑
π∈Π?

NK(π)

]
.

Therefore,

P
M̃

(EcK) = PM̃

(∑
π∈Π?

NK(π) ≥ f(K)

)
≤

EA
M̃

[∑
π∈Π? NK(π)

]
f(K)

≤
Kαc

M̃
/ε

f(K)
.

If we set f(K) = K/2 and plug the two bounds above into (7), we obtain

KL(PM ,PM̃ ) ≥ log
K1−α

2cM/∆ + 2c
M̃
/ε
− log 2.

Finally, for any M̃ ∈ Γεh(π) with ε > 0,

lim inf
K→∞

KL(PM ,PM̃ )

log(K)
≥ 1− α.

This holds for any ε > 0. Hence, in combination with (6), we proved that, for any sub-optimal policy
π and stage h,

lim inf
K→∞

1

log(K)

∆(π)2

2‖Ψπ
h −Ψ?

h‖2EA
M [ΛKh ]−1

≥ 1− α.

Rearranging concludes the proof.
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C.2 Proof of Theorem 5

We now use Lemma 7 to prove that the UNISOFT condition is necessary for constant regret. We
proceed in different steps.

Step 1. Controlling the design matrix. Suppose that the algorithm suffers constant regret on
instance M . This means that, for some constant CM (different from the cM used in the definition of
α-consistence),

EA
M [R(K)] ≤ CM . (8)

Since EA
M [R(K)] =

∑
h

∑
s,a EA

M

[
NK
h (s, a)

]
∆h(s, a), we have that∑

h

∑
s,a6=π?h(s) EA

M

[
NK
h (s, a)

]
≤ CM/∆min, where ∆min is the minimum value-function

gap. Therefore, the expected design matrix at each h ∈ [H] satifies

EA
M [ΛKh ] =

∑
s,a

EA
M [NK

h (s, a)]φ(s, a)φ(s, a)T

=
∑
s

EA
M [NK

h (s, φ?h(s))]φ?h(s)φ?h(s)T +
∑

s,a6=π?h(s)

EA
M [NK

h (s, a)]φ(s, a)φ(s, a)T

�
∑
s

EA
M [NK

h (s)]φ?h(s)φ?h(s)T + L2 CM
∆min

I

� K
∑

s:ρ?h(s)>0

φ?h(s)φ?h(s)T +
∑

s:ρ?h(s)=0

EA
M [NK

h (s)]φ?h(s)φ?h(s)T + L2 CM
∆min

I.

We now bound the expected number of times the algorithm visit states which are not visited by
an optimal policy. Take any s such that ρ?h(s) = 0. Since any optimal policy has the same state
distribution ρ?h, the event skh = s implies that πk /∈ Π?. Therefore,

EA
M [NK

h (s)] = EA
M [

K∑
k=1

1
{
skh = s

}
] ≤ EA

M [

K∑
k=1

1
{
πk /∈ Π?

}
] = EA

M [
∑
π/∈Π?

NK(π)].

Moreover, since the algorithm suffers constant regret,

∆EA
M [
∑
π/∈Π?

NK(π)] ≤ EA
M [R(K)] ≤ CM .

Therefore, we conclude that

EA
M [ΛKh ] � K

∑
s:ρ?h(s)>0

φ?h(s)φ?h(s)T + L2

(
CM

∆min
+ Sh

CM
∆

)
I,

where Sh := S − |supp(ρ?h))|.

Step 2. Controlling the feature expectations. We now show that, since UNISOFT does not hold,
there exists a sub-optimal policy π such that Ψπ

h is not in the span of the optimal features. By directly
using the definition of UNISOFT (Asm. 4), we have that there must exist a state-action pair s, a which
is reachable at time h (i.e., ∃π ∈ Π : ρπh(s, a) > 0) such that φ(s, a) /∈ span {φ?h(s)|ρ?h(s) > 0}.
Clearly, we have only two cases:

1. ρ?h(s) > 0 and a 6= π?h(s);
2. ρ?h(s) = 0 and a is arbitrary (even an optimal action).

For Case 1, simply take a policy π that is equivalent to π? everywhere except that πh(s) = a. Clearly,
the policy is sub-optimal, in the sense that ∆(π) = V ?1 − V π1 > 0. Moreover, it is easy to check that
Ψπ
h −Ψ?

h = ρ?h(s)(φ(s, a)− φ?h(s)). Therefore, Ψπ
h /∈ span {φ?h(s)|ρ?h(s) > 0}.

For Case 2, choose π in such a way that ρπh(s) > 0 (we know that one such policy exists due to the
reachability of s). This only requires selecting the actions of π for all stages h′ < h. For all stages

18



h′ > h, set π equal to π? except for πh(s) = a. Note that, even if a is optimal at time h, π is strictly
sub-optimal (i.e., ∆(π) > 0) since no optimal policy can achieve the condition ρπh(s) > 0 by the
uniqueness of the optimal state distribution. Moreover,

Ψπ
h −Ψ?

h =
∑
s′,a′

ρπh(s′, a′)φ(s′, a′)−
∑
s′

ρ?h(s′)φ?h(s′)

= ρπh(s)φ(s, a)− ρ?h(s)︸ ︷︷ ︸
=0

φ?h(s) +
∑
s′ 6=s

(ρπh(s′, a′)− ρ?h(s′))φ?h(s′).

Thus, we still conclude Ψπ
h /∈ span {φ?h(s)|ρ?h(s) > 0}.

Step 3. Concluding the proof. Combining Lemma 7 with Step 1 and Step 2, we have that, for
some h ∈ [H] and policy π such that ∆(π) > 0 and Ψπ

h /∈ span {φ?h(s)|ρ?h(s) > 0},

lim sup
K→∞

log(K)‖Ψπ
h −Ψ?

h‖2(Λ?h+ηI)−1 ≤
∆(π)2

2(1− α)
,

where Λ?h := K
∑
s:ρ?h(s)>0 φ

?
h(s)φ?h(s)T and η := L2

(
CM

∆min
+ Sh

CM
∆

)
> 0. Using Lemma 34,

we have that there exists an ε > 0 (independent of K) such that ‖Ψπ
h − Ψ?

h‖(Λ?h+ηI)−1 ≥ ε√
η .

Therefore, we get that

lim sup
K→∞

log(K) ≤ η∆(π)2

2ε2(1− α)
,

which clearly does not hold since the left-hand side grows with K while the right-hand side is
constant. Therefore, we have a contradiction, and the algorithm A cannot achieve constant regret
on this non-UNISOFT instance while being consistent on all other instances inM. Our claim that
UNISOFT is necessary follows.

C.3 Auxiliary Results

Lemma 13. Let A ∈ Rd×d be any positive semi-definite invertible matrix. For π ∈ Π, h ∈ [H], and
ε ≥ 0, consider the following optimization problem:

min
θ∈Rd

‖θ − θh‖2A

subject to
∑

l∈[H],l 6=h
〈θl,Ψπ

l −Ψ?
l 〉+ 〈θ,Ψπ

h −Ψ?
h〉 ≥ ε

Then, for θ a minimizer we have

‖θ − θh‖2A =
(∆(π) + ε)2

‖Ψπ
h −Ψ?

h‖2A−1

.

Proof. To simplify notation, let us define b :=
∑
l∈[H],l 6=h〈θl,Ψπ

l − Ψ?
l 〉. The corresponding

Lagrange dual problem is

max
λ≥0

min
θ∈Rd

{
‖θ − θh‖2A − λ (〈θ,Ψπ

h −Ψ?
h〉+ b− ε)

}
.

Let f(θ, λ) denote the resulting objective function. Taking the gradient w.r.t. θ,

∇θf(θ, λ) = 2A(θ − θh)− λ(Ψπ
h −Ψ?

h),

and equating it to zero, we obtain

θ = θh +
λ

2
A−1(Ψπ

h −Ψ?
h).
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Plugging this back to the original objective we get

f(λ) =
λ2

4
‖A−1(Ψπ

h −Ψ?
h)‖2A − λ

(
〈θh,Ψπ

h −Ψ?
h〉+

λ

2
‖Ψπ

h −Ψ?
h‖2A−1 + b− ε

)

= −λ
2

4
‖Ψπ

h −Ψ?
h‖2A−1 − λ

〈θh,Ψπ
h −Ψ?

h〉+
∑

l∈[H],l 6=h
〈θl,Ψπ

l −Ψπ?

l 〉 − ε


= −λ

2

4
‖Ψπ

h −Ψ?
h‖2A−1 + λ (∆(π) + ε) .

Differentiating with respect to λ and equating to zero we obtain

λ =
2 (∆(π) + ε)

‖Ψπ
h −Ψ?

h‖2A−1

.

Therefore, plugging this back into the objective value

‖θ − θh‖2A =
(∆(π) + ε)

2

‖Ψπ
h −Ψ?

h‖2A−1

.

Lemma 14 (Bretagnolle–Huber inequality, see, e.g., Thm. 14.2 of Lattimore and Szepesvári [2020]).
Let P and Q be probability measures on the same measurable space (Ω,F) and let E ∈ F be an
arbitrary event. Then,

P(E) + Q(Ec) ≥ 1

2
e−KL(P,Q).

D UNISOFT is Sufficient: Proofs of Section 3.2

We first prove that UNISOFT is sufficient for a whole class of algorithms, as done in the proof sketch
of Section 3.2. We will then instantiate this result to ELEANOR and LSVI-UCB.

Consider the following assumptions.

Assumption 15. Consider a feature map {φh}h∈[H] and a Q-function estimate Q
k

h. There is an
event G(δ) that holds with probability at least 1− δ under which:

(a) Global optimism: V
k

1(s) ≥ V ?1 (s) where V
k

h(s) = maxa∈A{Q
k

h(s, a)},

(b) Confidence set: let Λkh =
∑k−1
i=1 φh(sih, a

i
h)φh(sih, a

i
h)T + λI and βk ∈ R+ be in-

creasing and logarithmic in k, then V
k

h(skh) − V π
k

h (skh) ≤ 2βk
∥∥φh(skh, a

k
h)
∥∥

(Λkh)−1 +

Es′∼ph(skh,a
k
h)

[
V
k

h+1(s′)− V πkh+1(s′)
]
,

simultaneously for all h ∈ [H], k ≥ 1 and s ∈ S, where δ ∈ (0, 1) is a parameter of the algorithm.
Assumption 16. The algorithm satisfies Assumption 15, and additionally there exist a set of constants
(Ch)h∈[H] such that, under the event G(δ):

(c) (Almost) local optimism: Q
k

h(s, a) + Chβk ‖φh(s, a)‖(Λkh)−1 ≥ Q?h(s, a),

for all h = 2, . . . ,H , k ≥ 1, s ∈ S and a ∈ A.

Assumption 16 characterizes the class of algorithms for which we are going to prove a constant bound
on the regret under UNISOFT. However, we first study the regret under the weaker Assumption 15,
following the proof pattern from [Jin et al., 2020].

Lemma 17. Under Assumption 15, assuming event G(δ) holds, there exists a Õ(
√
K) function g

such that, with probability 1− δ, for all K ≥ 1:

R(K) ≤ HβK
√

2dK log(1 +K/λ) + 2H2
√
K log(2HK/δ) = Õ(

√
K). (9)
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Proof. Under event G(δ):

R(K) =

K∑
k=1

V ?1 (sk1)− V π
k

1 (sk1)

≤
K∑
k=1

V
k

1(sk1)− V π
k

1 (sk1) (a) (10)

≤ 2

H∑
h=1

βK

K∑
k=1

∥∥φh(skh, a
k
h)
∥∥

(Λkh)−1︸ ︷︷ ︸
(A)

+

K∑
k=1

H∑
h=1

ζkh︸ ︷︷ ︸
(B)

, (11)

where the last inequality is from recursive application of (b) and the fact that βk is increasing, and:

ζkh = Es′∼ph(skh,a
k
h)[V

k

h+1(s′)− V π
k

h+1(s′)]− V kh+1(skh+1) + V π
k

h+1(skh+1), (12)

where expectations are conditioned on the history up to the beginning of episode k. We bound (A)
using the Elliptical Potential Lemma [e.g., Abbasi-Yadkori et al., 2011]:

(A) = 2βK

H∑
h=1

K∑
k=1

∥∥φh(skh, a
k
h)
∥∥

(Λkh)−1 (13)

2βK

H∑
h=1

≤

√√√√K

K∑
k=1

∥∥φh(skh, a
k
h)
∥∥2

(Λkh)−1 (14)

≤ HβK
√

2dK log(1 +K/λ). (15)

Since ζkh is a martingale difference sequence with ζkh ≤ 2H , we can use Azuma’s inequality (Prop. 27)
to bound (B):

K∑
k=1

ζkh ≤ 2H
√
K log(2K/δh), (16)

with probability 1− δh for all K ≥ 1. To make it hold with probability 1− δ for all h ∈ [H], we set
δh = δ/H . Finally:

(B) =

H∑
h=1

K∑
k=1

ζkh ≤ 2H2
√
K log(2HK/δ). (17)

The stronger Assumption 16 is needed to upper-bound the gaps.

Lemma 18. Under Assumption 16, assuming event G(δ) holds, for all s ∈ S, h ∈ [H] and k ≥ 1:

∆h(s, πkh(s)) ≤ 2Eπk

[
H∑
i=h

βk ‖φi(si, ai)‖(Λki )−1

∣∣∣∣∣sh = s

]
+ 1 {h > 1}Chβk ‖φ?(s)‖(Λkh)−1 .
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Proof.

∆h(s, πkh(s)) = V ?h (s)−Q?h(skh, π
k
h(s)) (18)

≤ V ?h (s)−Qπ
k

h (skh, π
k
h(s)) (19)

= V ?h (s)− V π
k

h (s) (20)

= Q?h(s, π?h(s))− V π
k

h (s) (21)

≤ Qkh(s, π?h(s)) + 1 {h > 1}Chβk ‖φh(s, π?h(s))‖(Λkh)−1 − V π
k

h (s) (22)

≤ V kh(s) + 1 {h > 1}C√γhk ‖φh(s, π?h(s))‖Λ−1
hk
− V π

k

h (s) (23)

≤ 2Eπk

[
H∑
i=h

βk ‖φi(si, ai)‖(Λki )−1

∣∣∣∣∣sh = s

]
(24)

+ 1 {h > 1}Chβk
∥∥φh(skh, π

?
h(skh))

∥∥
(Λkh)−1 ,

where (22) uses (a) for h = 1 and (c) for h > 1, while the last inequality is from recursive application
of (b).

Now we can prove our main result on constant regret:
Theorem 19. Any algorithm satisfying Assumption 16 enjoys constant regret if the representation
has the UNISOFT property (Asm. 4) and Assumption 3 on the minimum gap holds. In general, let
g : N → R+ be any increasing Õ(

√
K) function such that, with probability 1− 2δ for all K ≥ 1,

R(K) ≤ g(K). Then, under Assumptions 3, 4, 16, with probability 1− 3δ for all K ≥ 1:

R(K) ≤ g(κ) = O(1), (25)

where κ is a constant independent of K.

Proof. First notice that a valid regret upper bound g(K) always exists due to Lemma 17. Moreover,
due to Asm. 4, for all h ∈ [H] and k ≥ 1, we have φh(s, πkh(s)) ∈ span{φ?h(s)|ρ?h(s) > 0} for all
s ∈ S such that ρπ

k

h (s) > 0. Hence, with probability 1 − 2δ, the requirements of Lemma 33 are
satisfied and we can apply it to the gap upper bound from Lemma 18. So, with probability 1− 3δ, for
all s ∈ S, h ∈ [H] and k ≥ κ̃ = maxh∈[H] κ̃h:

∆h(s, πkh(s)) ≤ 2Eπk

[
H∑
i=h

βk ‖φi(si, ai)‖(Λki )−1

∣∣∣∣∣sh = s

]
+ 1 {h > 1}Chβk ‖φ?(s)‖(Λkh)−1 (26)

≤ (2 + 1 {h > 1}Ch)βk

H∑
i=h

k + λ− g(k)− 8
√
k log(2dHk/δ)

(kλ+
i + λ− g(k)− 8

√
k log(2dHk/δ))3/2

. (27)

Assume for now that k ≥ κ̃. From the previous inequality, since g(k) = Õ(
√
k) and βk = Õ(1),

there exists a κh independent of K such that, for k > κh:

∆h(s, πkh(s)) ≤ ∆min. (28)

Under Asm. 3, this implies ∆h(s, πkh(s)) = 0. Let κ = max{κ̃,maxh{κh}}. For k > κ, all the
gaps are zero. Finally, by Prop. 29:

R(K) =

K∑
k=1

Eπk

[
H∑
h=1

∆h(sh, ah)

∣∣∣∣∣s1 = sk1

]
(29)

=

κ∑
k=1

Eπk

[
H∑
h=1

∆h(sh, ah)

∣∣∣∣∣s1 = sk1

]
+

K∑
k=κ+1

Eπk

 H∑
h=1

∆h(sh, ah)︸ ︷︷ ︸
=0

∣∣∣∣∣s1 = sk1

 (30)

= R(κ) ≤ g(κ). (31)
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Finally, we instantiate the general result of 19 to ELEANOR on MDPs with Bellman closure and
LSVI-UCB on low-rank MDPs, by showing that they satisfy Assumption 16.

Proof of Theorem 8.

Let:

βk = H

√
d

2
log(1 + k/d) + d log(1 + 4

√
dk) + log

2Hk2

δ
+ 1, (32)

and define event G(δ) as in Lemma 2 from [Zanette et al., 2020b]. We have (a) by Lemma 7
from [Zanette et al., 2020b], while (b) can be extracted from the proof of Theorem 1 from [Zanette
et al., 2020b]. To prove (c), we use the fact that the MDP satisfies Bellman closure, hence there exist
θ?1 , . . . , θ

?
H such that [Lemma 6 from Zanette et al., 2020b]:

Q?h(s, a) = φh(s, a)Tθ?h. (33)

By Lemma 7 from [Zanette et al., 2020b], θ?1 , . . . , θ
?
H is a feasible solution for θ1, . . . , θH in

ELEANOR’s program [Definition 2 from Zanette et al., 2020b]. Due to the program’s constraints:∥∥∥θ?h − θ̂kh∥∥∥
Λkh

≤ βk. (34)

Let θ
k

1 , . . . , θ
k

H be the values that are actually selected by ELEANOR’s program. Since they are
subject to the same constraints, by the triangular inequality:∥∥∥θ?h − θkh∥∥∥

Λkh

≤ 2βk. (35)

Finally, since Q
k

h(s, a) = φh(s, a)Tθ
k

h:

Q?h(sh, ah) = φh(sh, ah)Tθ?h (36)

= φh(sh, ah)Tθ
k

h + φh(sh, ah)T(θ?h − θ
k

h) (37)

≤ Qkh(sh, ah) + ‖φ(sh, ah)‖(Λkh)−1

∥∥∥θ?h − θkh∥∥∥
Λkh

(38)

≤ Qkh(sh, ah) + 2βk ‖φ(sh, ah)‖(Λkh)−1 , (39)

so (c) holds with Ch = 2. So Asm. 16 holds and we can invoke Theorem 19 with the upper bound g
from Lemma 17 and the βk given above to obtain:

R(K) ≤ H2

(√
d

2
log(1 + κ/d) + d log(1 + 4

√
dκ) + log(Hκ2) + log

2

δ
+H

)
×
√

2dκ log(1 + κ/λ) + 2H2
√
κ log(2Hκ/δ) (40)

. H3/2d

√
τ log

τ

δ
, (41)

where τ = Hκ.

Remark 1. We have slightly modified the ELEANOR algorithm to obtain any-time regret bounds. In
particular, we have replaced the fixed δ′ = δ/(2T ) term in the original βk (see the proof of Lemma
2 in [Zanette et al., 2020b]) with the adaptive δ/(2Hk2). This still makes event G(δ) hold with
probability 1− δ, but without knowledge of the horizon K. This only affects logarithmic terms. Also
notice that we have considered the case of zero inherent Bellman error (I = 0), which corresponds
to Bellman closure, and we have taken [0, H], not [0, 1], as the range of the value function (see the
comment following Theorem 1 in [Zanette et al., 2020b]).

For LSVI-UCB, we can instantiate Theorem 19 with the problem-dependent logarithmic lower bound
by He et al. [2020] in place of the worst-case upper bound from Lemma 17.
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Proof of Theorem 9.

Let:
βk = cβdH

√
log(2dHk/δ), (42)

where cβ is a constant defined in Lemma C.3 from [Jin et al., 2020], and define event G(δ) as in
Lemma B.3 from [Jin et al., 2020]. Then since the MDP is low-rank, by Lemma B.5 from [Jin et al.,
2020] we have both (a) and (c) with Ch = 0. We get (b) by Lemma B.4 from Jin et al. [2020]. So
Asm. 16 holds and, under Asm 3, we can instantiate Theorem 19 with the logarithmic regret bound
from Theorem 4.4 by He et al. [2020]:

g(k) = 9HG(k) logG(k) +
16H2

3
log

logdHke
δ

+ 2, (43)

where:

G(k) ∝ d3H4 log(4dH2k(k + 1) log(H/∆min)/δ)

∆min
. (44)

So:

R(K) ≤ g(κ) ' d3H5

∆min
log
(
dH2κ/δ

)
. (45)

Remark 2. We have slightly modified the LSVI-UCB algorithm to obtain any-time regret bounds.
In particular, we have replaced the fixed ι = log(2dT/δ) term in the original βk (see Theorem 3.1
from [Jin et al., 2020]) with the adaptive log(4dHk2/δ). This still makes event G(δ) hold with
probability 1− δ, but without knowledge of the horizon K. We have also re-written the logarithmic
regret bound by He et al. [2020] (Theorem 4.4) to hold with probability 1− 2δ. These changes only
affect logarithmic terms.
Lemma 20. The critical time κ from Theorem 9 for LSVI-UCB is upper bounded as:

κ ≤ max

{
48c21H

4d3

λ2
+

log

(
32c21H

5d4

λ2
+δ

)
,

432c22H
4d2

∆2
minλ

3
+

log

(
288d3H5c22
∆2

minλ
3
+δ

)}
(46)

where λ+ = minh∈[H]{λ+
h } and c1, c2 are universal constants.

Proof. For LSVI-UCB we have (see the proof of Theorem 9):

g(k) ≤ c1H2d3/2
√
k log(2dHk/δ), (47)

βk = c2dH
√

log(2dHk/δ), (48)

for some universal constants c1, c2. We assume λ = 1 and c1 ≥ 8.

We will use the fact that a sufficient condition for k ≥ a log(bk) is k ≥ 3a log(ab) for k > 0 and
reasonable values of the constants a, b. See App. C.6 from Papini et al. [2021] for details. This
immediately implies that a sufficient condition for k ≥ a

√
k log(bk) is:

k ≥ 3a2 log(a2b) (49)

We divide the rest of the proof in three parts:

Part 1. First, κ must satisfy the invertibility conditions from Lemma 33. To make matrix Bkh =

kΛ?h +λI− g(k) + 8
√
k log(2dHk/δ) invertible for each h, we first require the positive eigenvalues

of Λ?h to map into positive eigenvalues of Bkh. A sufficient condition for this is:

kλ+ > 1 + g(k) + 8
√
k log(2dHk/δ) (50)

k ≥ c1H
2d3/2 + 8

λ+

√
k log(2dHk/δ) (51)

k ≥ 2c1H
2d3/2

λ+

√
k log(2dHk/δ) (52)

k ≥ 12c21H
4d3

λ2
+

log

(
8c21H

5d4

λ2
+δ

)
, κ1, (53)
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where the latter is from (49). We also need the zero eigenvalues of Λ?h to map into negative eigenvalues
of Bkh. However, this just requires λ − g(k) + 8

√
k log(2dHk/δ) < 0 which is already true for

k = 1 given λ = 1.

Part 2. We require κ to satisfy the following, which will make the analysis of Part 3 easier:

g(k) + 8
√
k log(2dHk/δ) ≤ kλ+

2
. (54)

After rearranging, we can proceed precisely as in Part 1, only with different numerical constants,
obtaining:

k ≥ 48c21H
4d3

λ2
+

log

(
32c21H

5d4

λ2
+δ

)
, κ2. (55)

Part 3. Assume for now that k ≥ κ2. Since κ2 ≥ κ1, the invertibility conditions from Lemma 33
are satisfied and, by the proof of Theorem 19, regret is zero for all time k such that:

(2 + 1 {h > 1}Ch)βk

H∑
i=h

k + λ− g(k)− 8
√
k log(2dHk/δ)

(kλ+
i + λ− g(k)− 8

√
k log(2dHk/δ))3/2

≤ ∆min, (56)

for all h. Using the definition of λ+, λ = 1 and Ch = 0 for LSVI-UCB, a sufficient condition is:

2Hβk
k + 1− g(k)− 8

√
k log(2dHk/δ)

(kλ+ + 1− g(k)− 8
√
k log(2dHk/δ))3/2

≤ ∆min, (57)

2Hβk
2k

(kλ+ − g(k)− 8
√
k log(2dHk/δ))3/2

≤ ∆min. (58)

Since k ≥ κ2, by (54), we just need:

2Hβk
2k(

1
2kλ+

)3/2 ≤ ∆min. (59)

Rearranging and using the definition of βk:

√
k ≥ 12c2H

2d

∆minλ
3/2
+

√
log(2dHk/δ) (60)

k ≥ 12c2H
2d

∆minλ
3/2
+

√
k log(2dHk/δ), (61)

and again from (49):

k ≥ 432c22H
4d2

∆2
minλ

3
+

log

(
288c22d

3H5

∆2
minλ

2
+δ

)
, κ3. (62)

The proof is concluded by taking κ = max{κ2, κ3}.
Lemma 21. The critical time κ from Theorem 8 for ELEANOR is upper bounded as:

κ ≤ max

{
48c21H

4d2

λ2
+

log

(
32c21H

5d3

λ2
+δ

)
,

432c22H
4d

∆2
minλ

3
+

log

(
288d2H5c22
∆2

minλ
3
+δ

)}
(63)

where λ+ = minh∈[H]{λ+
h } and c1, c2 are universal constants.

Proof. The proof is the same as for Lemma 20, except that for ELEANOR we have (see the proof of
Theorem 8):

g(k) ≤ c1H2d
√
k log(2dHk/δ) (64)

βk ≤ c2H
√
d log(2dHk/δ), (65)
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where c1, c2 are universal constants. The three critical times are then:

κ1 =
12c21H

4d2

λ2
+

log

(
8c21H

5d3

λ2
+δ

)
(66)

κ2 =
48c21H

4d2

λ2
+

log

(
32c21H

5d3

λ2
+δ

)
≥ κ1 (67)

κ3 =
432c22H

4d

∆2
minλ

3
+

log

(
288c22d

2H5

∆2
minλ

2
+δ

)
, (68)

and we can take κ = max{κ2, κ3}.

E Representation Selection: Proofs of Section 4

The main ingredient behind the proofs of Theorems 10 and 12 In order to show a regret guarantee for
the LSVI-LEADER algorithm, we start by showing a version of Lemma B.4 in [Jin et al., 2020] that
takes into account the presence of multiple representations.

First we need the corresponding version of Lemma D.6 in [Jin et al., 2020].
Lemma 22. Given an MDP M and a set of representations {Φj}j∈[N ] satisfying the low-rank
assumption (Asm. 2). Let V denote a class of functions mapping from S to R with the following
parametric form,

V (·) = min

(
min
j∈[N ]

max
a
w>j φj(·, a) + β

√
φj(·, a)>Λ−1

j φj(·, a), H

)
where the parameters {wj ,Λj}Nj=1, β satisfy ‖w‖ ≤ L, β ∈ [0, B] and the minimum eigenvalue of
Λj satisfies λmin(Λj) ≥ λ. Assume ‖φ(s, a)‖ ≤ 1 for all (s, a) pairs and let Nε be the ε−covering
number of V with respect to the distance dist(V, V ′) = sups |V (s)− V ′(s)|. Then,

logNε ≤ N
(
d log(1 + 4L/ε) + d2 log

(
1 + 8d1/2B2/(λε2)

))
Proof. Let’s reparametrize the function class V by Aj = β2Λ−1

j , so we have,

V (·) = min

(
min
j∈[N ]

max
a
w>j φj(·, a) +

√
φj(·, a)>Ajφj(·, a), H

)
(69)

for ‖wj‖ ≤ L and ‖Aj‖ ≤ B2λ−1. For any two functions V1, V2 ∈ V , let them take the form in
Equation 69 with parameters ({w(1)

j ,A
(1)
j }Nj=1 and ({w(2)

j ,A
(2)
j }Nj=1. Then since minj , min(·, H)

and maxa are contraction maps, we have

dist(V1, V2) ≤ sup
j,s,a

∣∣∣ [(w(1)
j

)>
φj(·, a) +

√
φj(·, a)>A(1)

j φj(·, a)

]
− (70)[(

w
(2)
j

)>
φj(·, a) +

√
φj(·, a)>A(2)

j φj(·, a)

] ∣∣∣
≤ sup

j

(
sup
‖φj‖≤1

∣∣∣∣[(w(1)
j

)>
φj +

√
φ>j A

(1)
j φj

]
−
[(
w

(2)
j

)>
φj +

√
φ>j A

(2)
j φj

]∣∣∣∣
)

≤ sup
j

(
sup
‖φj‖≤1

∣∣∣∣(w(1)
j −w

(2)
j

)>
φj

∣∣∣∣+ sup
‖φj‖≤1

√∣∣∣φ>j (A(1)
j −A

(2)
j

)
φj

∣∣∣)

= sup
j
‖w(1)

j −w
(2)
j ‖+

√
‖A(1)

j −A
(2)
j ‖

≤ sup
j
‖w(1)

j −w
(2)
j ‖+

√
‖A(1)

j −A
(2)
j ‖F (71)
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For matrices ‖ · ‖ and ‖ · ‖F denote the matrix operator norm and the frobenius norm respectively.

Let Cwj be an ε/2 cover of {wj ∈ Rd|‖wj‖ ≤ L} with respect to the 2-norm and let CAj be an
ε2/4−cover of {A ∈ Rd×d|‖A‖F ≤ d1/2B2λ−1} with respect to the Frobenius norm. By Lemma
D.5. in [Jin et al., 2020] we know that,

|Cwj | ≤ (1 + 4L/ε)d, |CAj | ≤
(

1 + 8d1/2B2/(λε2)
)d2

By Equation 71, for any V1 ∈ V there exists points {w(2)
j }Nj=1 and {A(2)

j }Nj=1 such that V2

parametrized by ({w(2)
j }Nj=1,A

(2)
j }Nj=1) satisfies dist(V1, V2) ≤ ε. Hence it holds that Nε ≤(

|Cwj ||CAj |
)N

, which gives:

logNε ≤ N
(
d log(1 + 4L/ε) + d2 log

(
1 + 8d1/2B2/(λε2)

))
.

Lemma 23 (Multi-representation version of Lemma B.3 in [Jin et al., 2020]). Given an MDP
M and a set of representations {Φj}j∈[N ] satisfying the low-rank assumption (Asm. 2). For all
k ∈ N, h ∈ [H], with probability 1− 2δ:∥∥∥∥∥
k∑
i=1

φ
(j)
h (sih, a

i
h)
(
V
k

h+1(sih+1)− PhV
k

h+1(sih, a
i
h)
)∥∥∥∥∥

Λ−1
h,k(j)

≤ CdH
√
N log(2N(cβ + 1)dHk/δ),

(72)

for all j ∈ [N ] and for some constant C independent of cβ .

Proof. This result follows from a simple use of an anytime version of Lemma D.4 from [Jin et al.,
2020] with ε = dH/k and δ′ = δ

2N and λ = 1. Let j ∈ [N ] be one of the representations.∥∥∥∥∥
k∑
i=1

φ
(j)
h (sih, a

i
h)
(
V
k

h+1(sih+1)− PhV
k

h+1(sih, a
i
h)
)∥∥∥∥∥

2

Λ−1
h,k(j)

≤ 4H2

[
d

2
log

(
k + λ

λ

)
+ 2 log

πk√
6

+ log
2

δ
+ dN log

(
1 +

8k3/2

√
λd

)
+

d2N log

(
1 +

8
√
dc2βk

2 log(2dHk/δ)

λ

)]
+

8d2H2

λ

= O(d2NH2 log(2N(cβ + 1)dHk/δ))

A simple union bound over all representations in {Φj}j∈[N ] yields the desired result.

We have now the necessary ingredients to prove an equivalent version to Lemma B.4 from [Jin et al.,
2020] for the case of multiple representations.

Lemma 24 (Equivalent to Lemma B.4 in [Jin et al., 2020]). Given an MDP M and a set of represen-
tations {Φj}j∈[N ] satisfying the low-rank assumption (Asm. 2). With probability at least 1− 2δ, for
any policy π, any episode k ∈ N, stage h ∈ [H], state s ∈ S and action a ∈ A,∣∣∣〈φ(j)

h (s, a),wk
h(j)〉 −Qπh(s, a)− Ph

(
V
k

h+1 − V πh+1

)
(s, a)

∣∣∣ ≤ βk ∥∥∥φ(j)(s, a)
∥∥∥

Λh,k(j)−1

where βk = C ′dH
√
N log(2N(cβ + 1)dHk/δ). For some absolute constant C ′.
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Proof. We know that for any (s, a, h) ∈ S ×A× [H]:

Qπh(s, a) = 〈φ(j)
h (s, a),wπ

h(j)〉 =
(
rh + PhV πh+1

)
(s, a) ∀j ∈ [N ],

This gives

wk
h(j)−wπ

h(j) = Λ−1
h,k(j)

k−1∑
i=1

φ
(j)
h (sih, a

i
h)

(
rh(sih, a

i
h) + max

a∈A
Q
k−1

h+1(sih+1, a)

)
−wπ

h

= Λh,k(j)−1

{
−λwπ

h +

k−1∑
i=1

φ
(j)
h (sih, a

i
h)
(
V
k

h+1(sih+1)− PhV πh+1(sih, a
i
h)
)}

= −λΛ−1
h,k(j)wπ

h(j)︸ ︷︷ ︸
q1

+ Λ−1
h,k(j)

k−1∑
i=1

φ
(j)
h (sih, a

i
h)
(
V
k

h+1(sih+1)− PhV
k

h+1(sih, a
i
h)
)

︸ ︷︷ ︸
q2

+

Λ−1
h,k(j)

(
k−1∑
i=1

φ
(j)
h (sih, a

i
h)Ph

(
V
k

h+1 − V πh+1

)
(sih, a

i
h)

)
︸ ︷︷ ︸

q3

Now we bound the terms on the right hand side. For the first term,∣∣∣〈φ(j)
h (s, a), q1〉

∣∣∣ =
∣∣∣λ〈φ(j)

h (s, a),Λ−1
h,k(j)wπ

h〉
∣∣∣ ≤ √λ‖wπ

h‖
∥∥∥φ(j)

h (s, a)
∥∥∥

Λ−1
h,k(j)

(i)

≤ 2H
√
dλ
∥∥∥φ(j)

h (s, a)
∥∥∥

Λ−1
h,k(j)

Inequality (i) above holds because of Lemma B.1 of [Jin et al., 2020]. For the second term q2, given
the event defined in Lemma 23 (which holds with probability at least 1− 2δ) we have,∣∣∣〈φ(j)

h (s, a), q2〉
∣∣∣ ≤ CdH√N log(2N(cβ + 1)dHk/δ)

∥∥∥φ(j)
h (s, a)

∥∥∥
Λ−1
h,k(j)

For the third term,

〈φ(j)
h (s, a), q3〉

=

〈
φ

(j)
h (s, a),

(
Λ−1
h,k(j)

) k−1∑
i=1

φ
(j)
h (sih, a

i
h)Ph

(
V
k

h+1 − V πh+1

)
(sih, a

i
h)

〉

=

〈
φ

(j)
h (s, a),

(
Λ−1
h,k(j)

) k−1∑
i=1

φ
(j)
h (sih, a

i
h)φ>j (sih, a

i
h)

∫ (
V
k

h+1 − V πh+1

)
(s′h+1)dµjh(s′h+1|sih, aih)

〉

=

〈
φ

(j)
h (s, a),

∫ (
V
k

h+1 − V πh+1

)
(s′h+1)dµjh(s′h+1|sih, aih)

〉
︸ ︷︷ ︸

p1

−

λ

〈
φ

(j)
h (s, a),Λ−1

h,k(j)

∫ (
V
k

h+1 − V πh+1

)
(s′h+1)dµjh(s′h+1|sih, aih)

〉
︸ ︷︷ ︸

p2

And therefore,

p1 = Ph
(
V
k

h+1 − V πh+1

)
(s, a), |p2| ≤ 2H

√
dλ
∥∥∥φ(j)

h (s, a)
∥∥∥

Λ−1
h,k(j)
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Finally since 〈φ(j)
h (s, a),wk

h(j)〉−Qπh(s, a) = 〈φ(j)
h (s, a),wk

h−wπ
h〉 = 〈φ(j)

h (s, a), q1 +q2 +q3〉,
we have ∣∣∣〈φ(j)

h (s, a),wk
h(j)〉 −Qπh(s, a)− Ph

(
V
k

h+1 − V πh+1

)
(s, a)

∣∣∣
≤
(
CdH

√
N log(2N(cβ + 1)dHk/δ) + 4H

√
dλ

)∥∥∥φ(j)
h (s, a)

∥∥∥
Λ−1
h,k(j)

≤ C ′dH
√
N log(2N(cβ + 1)dHk/δ)

∥∥∥φ(j)
h (s, a)

∥∥∥
Λ−1
h,k(j)

For some constant C ′. The result follows.

Lemma 25. Given an MDP M and a set of representations {Φj}j∈[N ] satisfying the low-rank
assumption (Asm. 2). With probability at least 1− 2δ, for any episode k ∈ N, stage h ∈ [H], and
state s ∈ S,

V
k

h(s)− V π
k

h (s) ≤ 2βk min
j∈[N ]

‖φ(j)
h (s, πkh(s))‖Λ−1

h,k(j) + Es′∼ph(s,πkh(s))

[
V
k

h+1(s′)− V π
k

h+1(s′)
]
.

Where βk = C ′dH
√
N log(2N(cβ + 1)dHk/δ).

Proof. Note that V
k

h(s) − V πkh (s) = Q
k

h(s, πkh(s)) − Qπkh (s, πkh(s)). Using Lemma 24, for any
j ∈ [N ]

Qπ
k

h (s, πkh(s)) ≥ 〈φ(j)
h (s, πkh(s)),wk

h(j)〉−

Es′∼ph(s,πkh(s))[V
k

h+1(s′)− V π
k

h+1(s′)]− βh,k‖φ(j)
h (s, πkh(s))‖Λ−1

h,k(j)

And therefore for all j ∈ [N ],

〈φ(j)
h (s, πkh(s)),wk

h(j)〉+ βh,k‖φ(j)
h (s, πkh(s))‖Λ−1

h,k(j) − V
πk

h (s) ≤

2βh,k‖φ(j)
h (s, πkh(s))‖Λ−1

h,k(j) + Es′∼ph(s,πkh(s))[V
k

h+1(s′)− V π
k

h+1(s′)]

Taking the minimum over j ∈ [N ] (and H) on the LHS yields the result,

V
k

h(s)− V π
k

h (s) ≤ 2βh,k min
j∈[N ]

‖φ(j)
h (s, πkh(s))‖Λ−1

h,k(j) + Es′∼ph(s,πkh(s))[V
k

h+1(s′)− V π
k

h+1(s′)].

Finally we show this implies optimism holds,
Lemma 26. [Optimism. Equivalent version of Lemma B.5 in [Jin et al., 2020]] With probability
1 − δ and for all s, a ∈ S × A, k ∈ N and h ∈ [H], the {Qkh}h∈[H] functions of LSVI-LEADER
satisfy,

Q
k

h(s, a) ≥ Q∗h(s, a).

Proof. The same proof as in Lemma B.5 in [Jin et al., 2020] works just simply modifying it to have a
minimum over j ∈ [N ] in the necessary places. We reproduce the argument here for completeness.
The proof of the Lemma proceeds by induction.

First, we prove the base case, at the last step H . The statement holds because Q
k

H(s, a) ≥ Q∗H(s, a)
since the value function at H + 1 is zero and by Lemma 24 we have that with probability at least
1− 2δ for all k ∈ N, s ∈ S, a ∈ A and any j ∈ [N ],

∣∣∣〈φ(j)
h (s, a),wk

H(j)〉 −Qπ∗H (s, a)
∣∣∣ ≤ C ′dH√N log(2N(cβ + 1)dHk/δ)

∥∥∥φ(j)
h (s, a)

∥∥∥
Λ−1
H,k(j)
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Therefore for all j ∈ [N ], with probability at least 1− 2δ,

〈φ(j)
h (s, a),wk

H(j)〉+ C ′dH
√
N log(2N(cβ + 1)dHk/δ)

∥∥∥φ(j)
h (s, a)

∥∥∥
Λ−1
H,k(j)

≥ Qπ∗H (s, a)

Since H ≥ Qπ∗H (s, a) by definition, we conclude that taking the mimimum over j ∈ [N ] (and H),
and using the fact that

Q
k

h(s, a) = min

(
min
j∈[N ]

〈φ(j)
h (s, a),wk

H(j)〉+ C′dH
√
N log(2N(cβ + 1)dHk/δ)

∥∥∥φ(j)
h (s, a)

∥∥∥
Λ−1
H,k

(j)
, H

)
We conclude that,

Q
k

H(s, a) ≥ Qπ∗H (s, a).

Now, suppose the statement holds true at step h+ 1 and consider step h. Again by Lemma 24 we
have, for all k ∈ [K] and all j ∈ [N ]∣∣∣〈φ(j)

h (s, a),wk
h(j)〉 −Qπ∗h (s, a)− Ph

(
V
k

h+1 − V
π∗
h+1

)
(s, a)

∣∣∣
≤ C ′dH

√
N log(2N(cβ + 1)dHk/δ) ‖φj(s, a)‖Λ−1

h,k(j)

By the induction assumption that Ph
(
V
k

h+1 − V
π∗
h+1

)
(s, a) ≥ 0, we have for all j ∈ [N ]:

Qπ∗h (s, a) ≤ min

(
〈φ(j)
h (s, a),wk

h(j)〉+ C′dH
√
N log(2N(cβ + 1)dHk/δ)

∥∥∥φ(j)
h (s, a)

∥∥∥
Λ−1
h,k

(j)
, H

)
The result follows by taking a minimum over j ∈ [N ].

Finishing the proof of Theorem 10. Having proven Lemma 25 and that optimism holds for LSVI-
LEADER (Lemma 26), we conclude that an equivalent version of Assumption 16 holds. The same
logic of the proofs of Lemmas 17, 18 and Theorem 19 apply in this case. Hence, we conclude
that the regret of LSVI-LEADER is upper bounded by the minimum of these regret bounds for all
representations z ∈ Z , thus proving the first result. To obtain the second result, simply notice that,
if z? ∈ Z is UNISOFT, then we can use the refined analysis for LSVI-UCB of Thm. 9 to show that
R̃(K, z?, {βk}) is upper bounded by a constant independent of K, hence proving constant regret for
LSVI-LEADER.

Proof of Theorem 12. The proof follows the template of Thm 9, but as shown in Lemma 25, the
confidence sets of LSVI-LEADER scale with the minimum w.r.t. j of the feature norms. In place of
Equation 3, and with the aid of Lemma 33 we see that since the collection of feature maps {Φj}j∈[M ]

is UNISOFT-mixing for all reachable s, a:

βk min
j∈[N ]

∥∥∥φ(j)
h (s, a)

∥∥∥
Λ−1
h,k(j)

≤βk
k + λ− g(k)− 8

√
k log(2NdHk/δ)

(kλ+(h, s, a) + λ− g(k)− 8
√
k log(2NdHk/δ))3/2

(73)

= Õ(k−1/2),

where g(k) = Õ(
√
k) is the regret upper bound from Thm. 10,

λ+(h, s, a) = max
j∈J (h,s,a)

λ+
h,j , (74)

and J (h, s, a) ⊆ [N ] is such that j ∈ J (h, s, a) if φ(j)
h (s, a) ∈ span

{
φ

(j)
h (s, π∗h(s))|ρ?h(s) > 0

}
.

To see this, notice that we can instantiate Lemma 33 with any representation j ∈ [N ] such that
φ

(j)
h (s, a) belongs to the span of optimal features. So we use the representation with the largest

eigenvalue λ+
h,j . The UNISOFT-mixing property (Def. 11) guarantees J (h, s, a) is always nonempty.

By (73) and Lemma 18 (where Ch = 0 thanks to local optimism), for each h ∈ [H] there exists an
episode κh independent of K such that, for all reachable s and k > κh:

∆h(s, πkh(s)) ≤ 2βk Eπk

[
H∑
i=h

k + λ− g(k)− 8
√
k log(2NdHk/δ)

(kλ+(i, si, ai) + λ− g(k)− 8
√
k log(2NdHk/δ))3/2

∣∣∣∣sh = s

]
< ∆min. (75)
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So after κ̃ = maxh{κh} episodes, LSVI-UCB suffers zero regret. Finally, the regret up to κ̃ cannot
be worse than that obtained in Thm. 10 without the UNISOFT-mixing property.

F Auxiliary Results

Proposition 27 (Azuma’s inequality). Let {(Zt,Ft)}t∈N be a martingale difference sequence such
that |Zt| ≤ a almost surely for all t ∈ N. Then, for all δ ∈ (0, 1),

P

(
∀t ≥ 1 :

∣∣∣∣∣
t∑

k=1

Zk

∣∣∣∣∣ ≤ a√t log(2t/δ)

)
≥ 1− δ. (76)

Proposition 28 (Matrix Azuma, Tropp, 2012). Let {Xk}tk=1 be a finite adapted sequence of sym-
metric matrices of dimension d, and {Ck}tk=1 a sequence of symmetric matrices such that for all k,
Ek[Xk] = 0 and X2

k � C2
k almost surely. Then, with probability at least 1− δ:

λmax

(
t∑

k=1

Xk

)
≤
√

8σ2 log(d/δ), (77)

where σ2 =
∥∥∥∑t

k=1 C
2
k

∥∥∥.

Proposition 29 (He et al. [2020]). For any h ∈ [H], s ∈ S, and π ∈ Π:

V ?h (s)− V πh (s) = Eπ

[
H∑
i=h

∆i(si, ai)

∣∣∣∣∣sh = s

]
,

Hence the regret after K episodes can be expressed as:

R(K) =

K∑
k=1

V ?1 (sk1)− V π
k

1 (sk1) =

K∑
k=1

Eπk

[
H∑
h=1

∆h(sh, ah)

∣∣∣∣∣s1 = sk1

]
.

Proof. By definition of ∆h:

V ?h (s)− V πh (s) = Q?h(s, πh(s)) + ∆h(s, πh(s))− V πh (s) (78)

= rh(s, πh(s)) + Es′∼ph(s,πh(s))[V
?
h+1(s′)] + ∆h(s, πh(s))− rh(s, πh(s))

− Es′∼Ph(sh,πh(sh))[V
π
h+1(s′)] (79)

= ∆h(sh, πh(sh)) + Es′∼Ph(sh,πh(sh))[V
?
h+1(s′)− V πh+1(s′)]. (80)

Unrolling the recursion up to H concludes the proof.

Lemma 30. Assume R(k) ≤ g(k) for all k ≥ 1 and Asm. 3 holds. Then, probability 1− δ, for all
h, k:

Λk+1
h � kΛ?h + λI −∆−1

ming(k)I − 8L2I
√
k log(2dkH/δ). (81)

Proof. Define a trajectory as a sequence of states and actions τh =
(s1, a1, . . . , sh, ah). Let Γh denote the set of all trajectories of length h. The
distribution over trajectories induced by a (deterministic) policy π is pπh(τh) =
µ(s1)1 {a1 = π1(s1)} p1(s2|s1, a1) . . . ph−1(sh|sh−1, ah−1)1 {ah = πh(sh)}. We abbrevi-
ate as p?h the distribution induced by the optimal policy π? and as pkh the one induced by πk, the
algorithm’s policy at episode k. Let us define the following event:

Ekh = {τ ∈ Γh s.t. ai = πkh(si) = π?h(si) for i = 1, . . . , h}. (82)
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Then:

Λk+1
h − λI =

k∑
i=1

φ(sih, a
i
h)φ(sih, a

i
h)T

�
k∑
i=1

1
{
τ ih ∈ Eih

}
φ(sih, a

i
h)φ(sih, a

i
h)T

=

k∑
i=1

1
{
τ ih ∈ Eih

}
φ?h(sih)φ?h(sih)T (83)

=

k∑
i=1

Eτh∼pih
[
1
{
τh ∈ Eih

}
φ?h(sh)φ?h(sh)T

]
︸ ︷︷ ︸

(A)

+

k∑
i=1

(
1
{
τ ih ∈ Eih

}
φ?h(sih)φ?h(sih)T − Eτh∼pih

[
1
{
τh ∈ Eih

}
φ?h(sh)φ?h(sh)T

])
︸ ︷︷ ︸

(B)

,

where (83) is by definition of Eih and expectations are conditioned on history up to the beginning of
the i-th episode. We first bound (B) with a matrix version of Azuma’s inequality. Let:

Xi
h = 1

{
τ ih ∈ Eih

}
φ?h(sih)φ?h(sih)T − Eτh∼pih

[
1
{
τh ∈ Eih

}
φ?h(sh)φ?h(sh)T

]
.

Clearly E[Xi
h] = 0. Moreover, since Xi

h is symmetric:

(Xi
h)2 � λmax((Xi

h)2)I �
∥∥Xi

h

∥∥2
I � 4I. (84)

Then by Proposition 28, with probability 1− δkh:

λmax

(
k∑
i=1

Xi
h

)
≤ 4
√

2k log(d/δkh). (85)

Setting δkh = δ/(2Hk2) we can perform a union bound over episodes and stages to obtain, with
probability 1− δ, for all h, k:

(B) =

k∑
i=1

Xi
h � λmax

(
k∑
i=1

Xi
h

)
I � 8I

√
k log(2dHk/δ). (86)

Now we focus on the (A) term. First, observe that the probability measures pkh and p?h agree on Ekh .
Indeed, if τh ∈ Ekh:

pkh(τh) = µ(s1)1
{
a1 = πk1 (s1)

}
p1(s2|s1, a1) . . . ph−1(sh|sh−1, ah−1)1

{
ah = πkh(sh)

}
= µ(s1)1 {a1 = π?1(s1)} p1(s2|s1, a1) . . . ph−1(sh|sh−1, ah−1)1 {ah = π?h(sh)} (87)
= µ(s1)p1(s2|s1, a1) . . . ph−1(sh|sh−1, ah−1). (88)
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So:

(A) =

k∑
i=1

Eτh∼pih [1
{
τh ∈ Eih

}
φ?h(sh)φ?h(sh)T]

=

k∑
i=1

Eτh∼p?h [1
{
τh ∈ Eih

}
φ?h(sh)φ?h(sh)T] (89)

= kEτh∼p?h [φ?h(sh)φ?h(sh)T]−
k∑
i=1

∫
Γh\Eih

φ?h(sh)φ?h(sh)Tp?h(dτh) (90)

= kEs∼ρ?h [φ?h(sh)φ?h(sh)T]−
k∑
i=1

∫
Γh\Eih

φ?h(sh)φ?h(sh)Tp?h(dτh) (91)

� kEs∼ρ?h [φ?h(sh)φ?h(sh)T]− I
k∑
i=1

(
1−

∫
Eih

p?h(dτh)

)
(92)

= kEs∼ρ?h [φ?h(sh)φ?h(sh)T]− I
k∑
i=1

(
1−

∫
Eih

p?h(dτh)

)
(93)

= kEs∼ρ?h [φ?h(sh)φ?h(sh)T]− I
k∑
i=1

Eτh∼pih(τh)[1
{
τh /∈ Eih

}
]︸ ︷︷ ︸

(C)

. (94)

Finally, under Asm. 3 and the regret upper bound:

(C) =

k∑
i=1

Eτh∼pih(τh)[1
{
τh /∈ Eih

}
]

≤
k∑
i=1

h∑
j=1

Eπi [1
{
aj 6= π?j (sj)

}
] (95)

≤
k∑
i=1

h∑
j=1

Eπi [1 {∆j(sj , aj) ≥ ∆}] (96)

≤
k∑
i=1

h∑
j=1

Eπi
[

∆j(sj , aj)

∆min

]
(97)

=
1

∆min

k∑
i=1

Eπi

 h∑
j=1

∆j(sj , aj)

 (98)

≤ 1

∆min

k∑
i=1

Eπi

[
H∑
h=1

∆h(sh, ah)

]
(99)

=
R(k)

∆min
≤ g(k)

∆min
, (100)

where (95) is by definition of Eih, (96) is from the uniqueness of the optimal policy and Asm. 3,
and (100) is from Proposition 29.

Proposition 31 (Lemma 29 from [Papini et al., 2021]). Let v ∈ Rd with ‖v‖ = 1 and A ∈ Rd×d
symmetric invertible with non-zero eigenvalues λ1 ≤ · · · ≤ λd and corresponding orthonormal
eigenvectors u1, . . . , ud. Let I ⊆ [d] be any index set. If v ∈ span{ui}i∈I and λi > 0 for all i ∈ I:

vTA−1v ≤ (maxi∈I λi + mini∈I λi)2

4 maxi∈I λi mini∈I λi

1

vTAv
.
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Proposition 32 (e.g., Lemma 30 from [Papini et al., 2021]). The smallest nonzero eigenvalue of a
symmetric p.s.d. matrix A ∈ Rd×d is:

λ+
min(A) = min

v∈Im(A)
‖v‖=1

vTAv,

where Im(A) denotes the column space of A.
Lemma 33. Consider a d-dimensional representation (φh)h∈[H]. Assume there exists an increasing
Õ(
√
k) function g such that R(k) ≤ g(k) for all k ≥ 1, Asm. 3 holds, and βk = Õ(1). Then with

probability 1− δ, for all h, there exists a constant κ̃h such that, for every k ≥ κ̃h and all s, a having
φh(s, a) ∈ span {φ?h(s)|ρ?h(s) > 0},

βk ‖φh(s, a)‖(Λkh)−1 ≤ βk
k + λ− g(k)− 8

√
k log(2dHk/δ)

(kλ+
h + λ− g(k)− 8

√
k log(2dHk/δ))3/2

= Õ(k−1/2),

where λ+
h is the minimum nonzero eigenvalue of Λ?h.

Proof. We follow the proof scheme of Lemma 19 from [Papini et al., 2021]. Let f(k) = g(k) +

8
√
k log(2dHk/δ) = Õ(

√
k). Notice that f(k) is positive.

Fix h and let Bkh = kΛ?h + λI − f(k)I . First, notice that Bkh is an affine transformation of Λ?h.
As such, Bkh has the same orthonormal eigenvectors as Λ?h, and we can define a mapping between
the eigenvalues of the two matrices. Next, notice that Bkh is always invertible for sufficiently large
k. Indeed, zero eigenvalues of Λ?h are mapped to negative eigenvalues of Bkh for sufficiently large
k — and since f(k) is increasing and sublinear, positive eigenvalues of Λ?h are mapped to positive
eigenvalues of Bkh for sufficiently large k. We call κ̃h the smallest k such as both conditions hold.
For the rest of the proof assume k ≥ κh. We have shown that Bkh is invertible and all and only the
nonzero eigenvalues of Λ?h are mapped into positive eigenvalues of Bkh, with the same orthonormal
eigenvectors.

Now fix (s, a) such that φh(s, a) ∈ span {φ?h(s)|ρ?h(s) > 0} and let x = φh(s, a)/ ‖φh(s, a)‖.
From Lemma 30, with probability 1− δ, Λkh � Bkh. So:

xT(Λkh)−1x ≤ xT(Bkh)−1x. (101)

By hypothesis x belongs to the column space Im(Λ?h), so it belongs to the span of d̃ ≤ d orthonormal
eigenvectors of Λ?h. From the properties of Bkh stated above, x belongs to the span of d̃ orthonormal
eigenvectors of Bkh corresponding to positive eigenvalues. The smallest such eigenvalue is:

kλ+
h + λ− f(k), (102)

where λ+
h is the smallest nonzero eigenvalue of M?

h . Moreover, all the eigenvalues are upper bounded
by:

k + λ− f(k). (103)
From Proposition 31:

‖φh(s, a)‖(Λkh)−1 ≤
√
xT(Λkh)−1x (104)

≤
√
xT(Bkh)−1x (105)

≤ k + λ− f(k)

kλ+
h + λ− f(k)

1√
xTBkhx

. (106)

Again from the properties of Bkh, x is orthogonal to all the orthonormal eigenvector of Bkh that
correspond to zero eigenvalues of Λ?h. Hence by Proposition 32:

xTBkhx = kxTΛ?hx+ λ− f(k) (107)

≥ k min
y∈Im(Λ?h),‖y‖=1

yTΛ?hy + λ− f(k) (108)

= kλ+
h + λ− f(k). (109)
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Since βk = Õ(1) and f(k) = Õ(
√
k), from (106) and (109):

βk ‖φh(s, a)‖(Λkh)−1 ≤ βk
k + λ− f(k)

(kλ+
h + λ− f(k))3/2

= Õ(k−1/2). (110)

Lemma 34. Let {φj}j∈[n] be a set of n vectors in Rd and v ∈ Rd be such that v /∈ span{φj : j ∈
[n]}. Then, there exists a scalar ε > 0 such that, for any t ≥ 0, η > 0,

‖v‖(t∑j∈[n] φjφ
T
j +ηI)−1 ≥

ε
√
η
.

Proof. Let {λi, ui}i∈[d] denote the eigenvalues/eigenvectors of the matrix
∑
j∈[n] φjφ

T
j . Note that

span{ui : i ∈ [d]} = span{φj : j ∈ [n]} ⊂ Rd. Then, Lemma 28 of Papini et al. [2021] ensures
that there exists a scalar ε > 0 such that |vTui| ≥ ε for at least one eigenvector ui associated with a
zero eigenvalue. Noting that the eigenvectors of (t

∑
j∈[n] φjφ

T
j + ηI)−1 are the same as the those

of
∑
j∈[n] φjφ

T
j , we have that

‖v‖2(t∑j∈[n] φjφ
T
j +ηI)−1 =

∑
j∈[d]

(vTuj)
2

η + λj
≥ (vTui)

2

η
≥ ε2

η
,

which concludes the proof.

G Examples and Numerical Validations

Consider the following two-stage MDP (H = 2) with states S = {s1, s2} and actions A = {a1, a2}:

r1(s, a) = 1 for all s ∈ S and a ∈ A, (111)

p1(s1|s1, a1) = 1, p1(s1|s1, a2) =
1

2
, p1(s1|s2, a1) =

1

2
, p1(s1|s2, a2) =

3

4
, (112)

r2(s1, a1) = 1, r2(s1, a2) =
7

8
, r2(s2, a1) =

1

2
, r2(s2, a2) =

5

8
, (113)

µ(s1) = µ(s2) = 1/2, and of course p(s2|s, a) = 1− p(s1|s, a) for all s ∈ S and a ∈ A. Backward
induction shows that the (unique) optimal policy is:

π?1(s1) = a1, π?1(s2) = a2, π?2(s1) = a1, π?2(s2) = a2, (114)

with the following values:

V ?1 (s1) = 2, V ?1 (s2) =
61

32
, V ?2 (s1) = 1, V ?2 (s2) =

5

8
. (115)

Notice also that all states and actions are reachable, i.e. ρh(s, a) > 0 for all s ∈ S, a ∈ A, and
h ∈ [H].

UNISOFT representation. Consider the following 2-dimensional representation Φ(1):

φ
(1)
1 (s1, a1) =

[
1
0

]
φ

(1)
1 (s1, a2) =

[
1/2
1/2

]
φ

(1)
1 (s2, a1) =

[
1/2
1/2

]
φ

(1)
1 (s2, a2) =

[
3/4
1/4

]
(116)

φ
(1)
2 (s1, a1) =

[
0
1

]
φ

(1)
2 (s1, a2) =

[
1/4
3/4

]
φ

(1)
2 (s2, a1) =

[
1
0

]
φ

(1)
2 (s2, a2) =

[
3/4
1/4

]
.

(117)

It is easy to check that the MDP is low-rank (Asm 2) and Φ(1) is a realizable representation with
θ1 = [1, 1]T, µ1(s1) = [1, 0]T, µ1(s2) = [0, 1]T, and θ2 = [1/2, 1]T. This is an example of low-rank
MDP with simplex feature space (see Example 2.2 in [Jin et al., 2020]). We have underlined optimal
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features. It is easy to see that optimal features span R2 at both stages9, so Φ(1) is UNISOFT. The
optimal covariance matrices are:

Λ
(1)
1,? =

1

32

[
25 3
3 1

]
, Λ

(1)
2,? =

1

128

[
9 3
3 113

]
. (118)

Both are full rank, and their minimum eigenvalues are:

λ
(1)
1,+ =

13− 3
√

17

32
' 0.02, λ

(1)
2,+ =

61−
√

2713

128
' 0.07. (119)

As shown in Theorems 8 and 9, both LSVI-UCB and ELEANOR will only suffer constant regret on
this problem.

Non-UNISOFT representation. We apply the procedure described in the proof of Lemma 7
from [Papini et al., 2021] to the second stage of Φ(1) to obtain an equivalent representation Φ(2):

φ
(2)
2 (s1, a1) =

[
30/89
74/89

]
φ

(2)
2 (s1, a2) =

[
1/4
3/4

]
φ

(2)
2 (s2, a1) =

[
1
0

]
φ

(2)
2 (s2, a2) =

[
75/356
185/356

]
,

(120)

while the feature map for h = 1 is the same. It is easy to check that this is still a realizable
representation for our MDP with the same parameters.10 Although the UNISOFT property holds
for h = 1, it no longer does for h = 2. Indeed, we have the following linear dependence between
optimal features:

φ
(2)
2,?(s2) =

5

8
φ

(2)
2,?(s1), (121)

so optimal features only span R1. However, suboptimal features still span R2, e.g., by taking action
a2 in s1 and a1 in s2 (recall that all state-action pairs are reachable). Due to Theorem 5, neither
LSVI-UCB nor ELEANOR will achieve constant regret on this problem.

Alternative Non-UNISOFT representation. It is also easy to build a representation that is non-
UNISOFT by changing the representation at the first stage. For example, let h be any stage (e.g.,
h = 1 in our example) for which we want to transform a UNISOFT representation (in our case φ(1))
into a non-UNISOFT one. We can define a new representation φ(3) as follows

s ∈ S, φ(3)
h (s, a?) =

[
0d

φ
(1)
h (s, a?s)

]
∀a 6= a?s, φ

(3)
h (s, a) =

[
φ

(1)
h (s, a)

0d

]
(122)

s′ ∈ S, µ(3)
h (s′) =

[
µ

(1)
h (s′)

µ
(1)
h (s′)

]
θ

(3)
h =

[
θ

(1)
h

θ
(1)
h

]
(123)

Since all states are reachable, it is easy to verify that λmin

(
Es∼ρ?h

[
φ

(3)
h (s, a?s)

ᵀφ
(3)
h (s, a?s)

])
= 0

and that

span
{
φh(s, a) | ∀(s, a), ∃π ∈ Π : ρπh(s, a) > 0

}
6= span

{
φ?h(s) | ∀s, ρ?h(s) > 0

}
.

Then, the representation is not UNISOFT at stage h.

G.1 Numerical Validations

We provide a numerical validation of the behavior of the algorithms with and without a UNISOFT
representation. We consider the following representations: φ(1), φ(2), φ(3) which is obtained by
applying the transformation in Eq. 122-123 to φ(2) at stage h = 1, and φ(4) which is obtained by

9It may appear counterintuitive that simplex features, which live on a one-dimensional manifold, can span R2.
However, notice that the simplex is not a linear subspace of the Euclidean space (it does not include the origin).
Indeed, we could describe the example MDP with less parameters, but we would loose the linear structure.

10However, notice that some of the new features do not belong to the simplex.
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Figure 1: Cumulative regret of LSVI-UCB and LSVI-LEADER with different representations. The
performance of LSVI-LEADER with {φ(1), φ(2), φ(4)} is the same of the one with {φ(1), φ(2), φ(3)}
and {φ(2), φ(3), φ(4)}.

applying the transformation in Eq. 122-123 to φ(1) at stage h = 1. Note that we have d1 = 4

and d2 = 2 for φ(3) and φ(4). Furthermore, λ(3)
1,1 = λ

(4)
1,1 = 0, while λ(3)

2,1 = 0 and λ
(4)
2,1 >

0, which means that φ(4) is “locally” UNISOFT at stage h = 2. The reward is stochastic and
drawn from a Bernoulli distribution: rh,t ∼ Ber(rh(st, at)). We tested both LSVI-UCB on each
individual representation and LSVI-LEADER with different combinations of the representations.
We consider βh,k = cβdhH

√
log(dhK) and βh,k = cβdhH

√
N log(NdhK) for LSVI-UCB and

LSVI-LEADER, respectively. We set cβ = 0.2 and K = 30000. The regret is shown in Fig. 1,
averaged over the same 100 seeds.

As expected from the theoretical analysis, LSVI-UCB with UNISOFT representation suffers constant
regret since, after the initial exploration phase, it only selects optimal actions. On the other hand,
when the representation is Non-UNISOFT, LSVI-UCB suffers a non-constant regret that grows over
episodes. LSVI-LEADER is able to exploit the structure of the UNISOFT representation and it
achieves constant regret as well in all the configurations containing a UNISOFT representation. The
higher regret is due to a longer exploration phase that is a consequence of the enlarged confidence
intervals; this is also in line with the theoretical analysis. It is interesting to notice that LSVI-
LEADER performs equally good with all the combinations of representations of dimension three (i.e.,
{φ(1), φ(2), φ(4)}, {φ(1), φ(2), φ(3)} and {φ(2), φ(3), φ(4)}). LSVI-LEADER is indeed able to mix
representations and achieve constant regret even when none of the individual representation would.
In the case of {φ(2), φ(3), φ(4)}, LSVI-LEADER is able to mix φ(2) and φ(4), that are UNISOFT in
stage h = 1 and h = 2, respectively.

UNISOFT in DeepRL. We wanted also to verify the existence of UNISOFT representations in
DeepRL. We trained A2C [Mnih et al., 2016] on different domains and evaluated whether the
recovered representation (i.e., last layer of the neural network used to approximate V ?) satisfies the
UNISOFT assumptions. Standard benchmark problems are not finite-horizon, we thus considered the
following “strong” UNISOFT condition λmin

(
Es∼ρ? [φ?(s)φ?(s)T]

)
> 0, which was evaluated by

simulating multiple trajectories:

Λπm =
1

m

m∑
i=1

Ti∑
t=1

φ(st, at)φ(st, at)
T (124)

where at = π(st). We use a deterministic version of the policy recovered by A2C for evaluation. We
trained A2C using the implementation provided by stable-baselines3 [Raffin et al., 2019]. We use
the default parameters (provided by rl-baselines3-zoo [Raffin, 2020]) and tested different network
architectures. Since we did not optimize the parameter, we reported only the domains where we
obtained good results with at least one network architecture (highlighted in the table). Since A2C
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Domain mean
reward

std
reward

eval
timesteps

eval
episodes (m) rank(Λπm) λmin(Λπm) UNISOFT

Acrobot-v1 -84.5 20.7 149923 1753 16 0.02 ¢
AntBulletEnv-v0 2303.9 68.3 150000 150 15 0
BipedalWalker-v3 2.2 1.6 148800 93 10 0
CartPole-v1 500.0 0.0 150000 300 1 0
HopperBulletEnv-v0 836.3 536.2 149982 372 16 0
MountainCar-v0 -124.9 31.4 149979 1201 16 0.01 ¢
MountainCarContinuous-v0 91.6 0.2 149966 1736 5 0
Pendulum-v0 -173.5 107.0 150000 750 16 0

Table 3: Results for A2C policy network of dimension [64, 16] and value network of dimension
[64, 16]. These dimensions represent the size of the hidden layers (with tanh activation function). We
highlighted the environments where A2C achieved good performance.

Domain mean
reward

std
reward

eval
timesteps

eval
episodes (m) rank(Λπm) λmin(Λπm) UNISOFT

Acrobot-v1 -84.9 29.4 149987 1747 32 0.0018 ¢
AntBulletEnv-v0 2109.9 46.1 150000 150 32 0.0010 ¢
BipedalWalker-v3 267.3 53.3 149278 201 24 0
CartPole-v1 500.0 0.0 150000 300 1 0
HopperBulletEnv-v0 1461.6 707.1 149123 205 32 0.0001 ¢
MountainCar-v0 -116.5 28.0 149999 1288 32 0.0001 ¢
MountainCarContinuous-v0 91.5 0.2 149975 1742 10 0
Pendulum-v0 -236.5 187.7 150000 750 26 0

Table 4: Results for A2C policy network of dimension [64, 32] and value network of dimension
[64, 32]. These dimensions represent the size of the hidden layers (with tanh activation function). We
highlighted the environments where A2C achieved good performance.

estimates directly V ?, we used the features of the last layer as features of the optimal policy (i.e.,
φ?(s)) to test for the “strong” UNISOFT condition.

Tables 3–5 show that in several domains the learnt representation is UNISOFT, although the minimum
eigenvalue is small. As expected, the number of “strong” UNISOFT representations decreases as the
size of the last layer increases. This initial experiment shows that UNISOFT representations are not
uncommon in practice but also leave open the possibility of designing algorithms that explicitly try to
force the UNISOFT while learning. We believe this is an interesting direction for future work.

Domain mean
reward

std
reward

eval
timesteps

eval
episodes (m) rank(Λπm) λmin(Λπm) UNISOFT

Acrobot-v1 -83.3 17.1 149970 1778 64 0.0003 ¢
AntBulletEnv-v0 1912.7 106.0 150000 150 64 0.0008 ¢
BipedalWalker-v3 276.1 25.8 149707 198 28 0
CartPole-v1 500.0 0.0 150000 300 2 0
HopperBulletEnv-v0 14.0 0.8 149997 26620 59 0
MountainCar-v0 -107.3 20.1 149944 1397 44 0
MountainCarContinuous-v0 92.4 0.1 149984 1948 10 0
Pendulum-v0 -153.3 92.9 150000 750 32 0

Table 5: Results for A2C policy network of dimension [64, 64] and value network of dimension
[64, 64]. These dimensions represent the size of the hidden layers (with tanh activation function). We
highlighted the environments where A2C achieved good performance.
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