
A Traditional methods for handling missing data

Methods for handling missing data has been extensively studied in the past few decades. Those
methods can be roughly classified into two categories: complete case analysis (CCA) based, and
imputation based methods. CCA based methods, such as listwise deletion [1] and pairwise deletion
[31] focuses on deleting data instances that contains missing entries, and keeping those that are
complete. Listwise/pairwise deletion methods are known to be unbiased under MCAR, and will
be biased under MAR/MNAR. On the contrary, imputation based methods tries to replace missing
values by imputed/predicted values. One popular imputation technique is called single imputation,
where only produce one single set of imputed values for each data instance. Standard techniques of
single imputation include mean/zero imputation, regression-based imputation [1], no- parametric
methods [15, 54]. As opposed to single imputation, the multiple imputation (MI) methods such as
MICE [62], was first proposed by Rubin [45, 46, 9, 39] is essentially a simulation-based methods
that returns multiple imputation values for subsequent statistical analysis. Unlike single imputation,
the standard errors of estimated parameters produced with MI is known to be unbiased [47]. Apart
from MI, there exists other methods such as full information maximum likelihood [2, 4] and inverse
probability weighting [42, 10], which can be directly applied to MAR without introducing additional
bias. However, these methods assumes a MAR missing data mechanism, and cannot be directly
applied to MNAR without introducing bias.

B Implementation details

We first introduce the general settings of GINA and other baselines. Our model (GINA) is based on
the practical algorithm in Section 4. By default, we will set the auxiliary variable U to be some fully
observed meta feature (if there’s any) or the missing mask pattern (if the dataset does not have a fully
observed meta feature). The most important baselines are as follows: 1), Partial VAE (PVAE) [28]:
a VAE model with slightly modified ELBO objective, specifically designed for MAR data; and 2),
Not-MIWAE [12], a VAE model for MNAR data trained by jointly maximizing the likelihood on
both the partially observed data and the missing pattern. As opposed to our model, the latent priors
p(Z) for both PVAE and Not-MIWAE are parameterized by a standard normal distribution, hence no
auxiliary variables are used. Also, note that the graphical model of Not-MIWAE is described by Fig 1
(d), and does not handle the scenarios where the ground truth data distribution follows other graphs
like Fig 1 (g). Finally, the inference model q(Z|X) for the underlying VAEs is set to be diagonal
Gaussian distributions whose mean and variance are parameterized by neural nets as in standard
VAEs [17] (with missing values replaced by zeros[40, 12, 32]), or a permutation invariant set function
proposed in [28]. See Appendix B for more implementation details for each tasks.

B.1 Synthetic dataset implementation details

Data generation The ground truth data generating process is given by Z1, Z2, Z3 ∼ N (0, 1), X1 =
hw(Z1, Z2, Z3)+ϵ1, X2 = fθ1(X1, Z1, Z2, Z3)+ϵ2, X3 = fθ2(X1, X2, Z1, Z2, Z3)+ϵ3 where hw

is a linear mapping with coefficients w, f is some non-linear mapping whose functional form is given
by Appendix B, θ1 & θ2 are two different sets of parameters for f , and ϵ1, ϵ2, ϵ3 are observational
noise variables with mean 0, variance 0.01. We randomly sample three different sets of parameters,
and generate the corresponding datasets (Figure 3), namely dataset A, B, and C. Each dataset consists
of 2000 samples. Then, we apply different missing mechanisms for each dataset. For all datasets, we
assume that X1 are fully observed and X2 and X3 are MNAR. , and missing mechanism will be only
applied to X2 and X3. Finally, all observable variables are standardized.

Remark Note that in Dataset A, the ground truth missing mechanism does not depend on the latent
variable model. Therefore, in this case, the not-MIWAE model does not have model-misspecification
problem, hence any less satisfying performance is due to non-identifiability.

Network structure and training We use 5 dimensional latent space with fully factorized standard
normal priors. The decoder part pθ(X|Z) uses a 5-10-D structure, where D = 3 in our case. For
inference net, we use a zero imputing [28] with structure 2D-10-10-5, that maps the concatenation of
observed data (with missing data filled with zero) and mask variable R into distributional parameters
of the latent space. For the factorized prior p(Z|U) of the i-VAE component of GINA, we used
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a linear network with one auxiliary input (which is set to be fully observed dimension, X1). The
missing model pλ(R|X) for GINA and i-NotMIWAE is a single layer neural network with 10 hidden
units. All neural networks use Tanh activations (except for output layer, where no activation function
is used). All baselines uses importance weighted VAE objective with 5 importance samples. The
observational noise for continuous variables are fixed to log σ = −2. All methods are trained with
Adam optimizer with batchsize with 100, and learning rate 0.001 for 20k epochs.

B.2 Yahoo!R3 experiment implementation details

Before training, all user ratings are scaled to be between 0 and 1 (such scaling will be reverted
during evaluation). For all baselines, we use Gaussian likelihood with variance of 0.02. We use 20
dimensional latent space, and the decoder pθ(X|Z) uses a 20-10-D structure. We use Tanh activation
function for the decoder (except for output layer, where no activation function is used). For inference
net, we uses the point net structure proposed in [28], we use 20 dimensional feature mapping h
parameterized by a single layer neural network and 20 dimensional ID vectors for each variable.
The symmetric operator is set to be the summation operator. The missing model pλ(R = 1|X) for
GINA and i-NotMIWAE is parameterized by linear neural network. All methods are trained with 400
epochs with batchsize 100.

B.3 Eedi dataset experiment implementation details

Since Eedi dataset is a binary matrix with 1/0 indicating that the student response is correct/incorrect,
we use Bernoulli likelihood for decoder pθ(X|Z). For We use 50 dimensional latent space, and
the decoder pθ(X|Z) uses a 50-20-50-D structure. Such structure is chosen using the validation
set using grid search. We use ReLU activation function for the decoder (except for output layer,
where no activation function is used). For inference net, we uses the point net structure that were
used in Yahoo!R3 dataset. Here, the difference is that we we use 50 dimensional feature mapping h
parameterized by a single layer neural network and 10 dimensional ID vectors for each variable. All
methods are trained with 1k epochs with batchsize 100. A trick that we used for both not-MIWAE
and GINA to improve the imputation performance, is to turn down the weight of the likelihood term
for pλ(R|X), by multiplying a factor of β = 0.5. This is due to that majority of the student response
matrix is missing, the pλ(R|X) will most likely dominate the training, hence the learning algorithm
will prefer more about learning the models that explains the missing mechanism better, over the
models that explains the observable variables X better.

C Proof for Proposition 1

Proof : First, we show that pθ,λ(XO′
l
, R) is partially identifiable (i.e., identifiable on subset of

parameters) on {θd}d∈O′
l

for ∀O′
l ∈ ĀI . We prove this by contradiction. Suppose there exists two

different set of parameters (θ1, λ1) (θ2, λ2), such that there exits at least one index c ∈ O′
l for some l,

such that θ1c ̸= θ2c , and p(θ1,λ1)(XO′
l
, R) = p(θ2,λ2)(XO′

l
, R). That is, p(XO′

l
, R) is not identifiable

on {θd}d∈O′
l
.

According to Assumption A3, there exists Os ∈ AI , such that c ∈ Os ⊂ O′
l. Then, consider the

marginal

pθ(XOs
) =

∫
Z,R,X\Os

dZ
∏
d∈Os

pθd(Xd|Z)pλ(R|X,Z)p(Z) = pθd∈Os
(XOs

)

. Since p(θ1,λ1)(XO′
l
, R) = p(θ2,λ2)(XO′

l
, R), we have p(θ1

Os
)(XOs

) = p(θ2
Os

)(XOs
) (the

joint uniquely determines marginals). However, this contradicts with our Assumption A2 that
pθOs

(XOs
) is identifiable: this identifiability assumption implies that we should have p(θ1

Os
)(XOs

) ̸=
p(θ2

Os
)(XOs

). Therefore, by contradiction, we have p(XO′
l
, R) is partially identifiable on {θd}d∈O′

l

for ∀O′
l ⊂ ĀI .

Then, we proceed to prove that the ground truth parameter θ∗ can be uniquely identified via ML
learning. Based on our Assumption A1, upon optimal ML solution,

ΘML = arg max
(θ,λ)∈Ω

E(xo,r)∼pD(Xo,R) log p(θ,λ)(Xo = xo, R = r)
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, we have the following identity:
p(θML,λML)(Xo, R) = p(θ∗,λ∗)(Xo, R)

holds for all (θML, λML) ∈ ΘML, and all ∀O ⊂ I that satisfies p(Xo, Xu, Ro = 1, Ru = 0) > 0.

Note also that:

p(θML,λML)(Xo, R) =

∫
Z,XI\O

dZ
∏
d

pθML
d

(Xd|Z)pλML(R|X)p(Z)

, which depends on both θo and λ. Since we have already shown that p(θ,λ)(XO′
l
, R) are partially

identifiable on {θd}d∈O′
l

for ∀O′
l ⊂ ĀI and according to Assumption A3, pD(Xo, Xu, RO′

l
=

1, RI\O′
l
= 0) > 0. Therefore, upon optimal solution

, we have that
{θd = θ∗d}d∈O′

l

holds for all ∀O′
l ⊂ ĀI . Since we have assumed that

⋃
O′

l∈ĀI
XO′

l
= I in Assumption 3 (i.e.,ĀI is

a cover of I ), this guarantees that

θML
d = θ∗d

for all d. In other words, we are able to uniquely identify θ∗ from observed data, therefore
Θ = {θ∗} ×Θλ

.

Remark (examples). To better illustrated the implication of the proposition, we provide an example
that satisfies the assumptions of Proposition 1. One example is the self-masking one-way ANOVA
[24], which contains I observable variables, X = {X1, ..., XI}, generated according to

Xi|Zi ∼ N (Xi;Zi, σ
2), i = 1, ..., I,

where σ2 is some known observational noise variance, Z = {Z1, ..., ZI} are latent variables generated
by

Zi ∼ N (Zi;µi, ς
2).

Hence, the learnable parameter θ is given by θ = {µ1, ..., µI , ς
2}. Then, assume that each observable

variable Xi is missing MNAR according to the following mechanism:
p(Ri = 1|X,Z) = Sigmoid(λ1Zi + λ0),

where λ = {λ0, λ1} is the set of learnable parameters for missing mechanism. Now, we verify that
pθ,λ(X,Z) satisfies the assumptions of proposition 1:

• Assumption A2. By taking AI = {Os}1≤s≤I , where Os = {s}, we have pθ(Xs) =
N (Xs;µs, σ

2 + ς2), which is identifiable over the subset of parameters θs = {µs, ς
2}.

Note that the partition AI = {Os}1≤s≤I is not unique; in fact, since pθ(XOs
) =∏

i∈Os
N (Xi;µi, σ

2+ς2) is identifiable on {µs|s ∈ Os}
⋃
{ς2} for all non-empty Os ⊂ I ,

any partition AI = {Os}1≤s≤I will satisfy Assumption A2.
• Assumption A3. Since pθ(X) and pλ(R|X,Z) are strictly positive for all possible settings

of X , R, θ and λ, Assumption A3 is trivially satisfied.

D Proof of Proposition 2

Proof Let (τ1, γ1) and (τ2, γ2) be two different parameters in Ξ. Then, we have
p̃τ1,γ1

(Xo, R)

=pΦ−1(τ1,γ1)(Xo, R)

̸=pΦ−1(τ2,γ2)(Xo, R)

=p̃τ2,γ2
(Xo, R)

where the third line is due to the fact that Φ−1 is injective and pθ,λ(Xo, R) is identifiable with respect
to θ and λ.
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E Relaxing Assumption A1

E.1 Proof of Lemma 1

Lemma 1. Suppose the ground truth data generating process p̃τ∗,γ∗(Xo, Xu, R) satisfies setting
D2. Then, there exists a model pθ,λ(Xo, Xu, R), such that: 1), pθ,λ(Xo, Xu, R) can be written
in the form of Equation 6 (i.e., Assumption A1; and 2), there exists a mapping Φ as described in
Proposition 2, such that p̃τ,γ(Xo, R) = pΦ−1(τ,γ)(Xo, R), for all (τ, γ) ∈ Ξ. Additionally, such Φ is
decoupled, i.e., Φ(θ, λ) = (Φθ(θ),Φλ(λ)).

Proof: 3

Case 1 (connections among X): Suppose the ground truth data generating process
pD(X,R) = p̃τ∗,γ∗(Xo, Xu, R) is given by Figure 1 (i). That is, pD(X,R) =
p̃γ(X|R)

∫
Z

∏
i p̃τi(Xi|Z, pa(Xi)

⋂
X)p(Z)dZ. Without loss of generality, assume that probabilis-

tic distributions p̃τi(Xi|Z, pa(Xi)
⋂
X) takes the form as p̃τi(Xi|Z, pa(Xi)

⋂
X) =

∫
ϵi
δ(Xi −

fλi
i (ϵi, pa(Xi)

⋂
X,Z))p(ϵi)dϵi. Therefore, we have

p̃τ (X)

=

∫
Z

∏
i

p̃τi(Xi|Z, pa(Xi)
⋂

X)p(Z)dZ

=

∫
z

 ∏
{i|N(Xi)

⋂
X ̸=∅}

∫
ϵi

dϵiδ(Xi − fλi
i (ϵi, pa(Xi)

⋂
X,Z))p(ϵi)


 ∏
{j|N(Xj)

⋂
X=∅}

p(Xj |Z)

 p(Z)dZ

=

∫
z,{i|N(Xi)

⋂
X ̸=∅}

 ∏
{i|N(Xi)

⋂
X ̸=∅}

δ(Xi − fλi
i (ϵi, pa(Xi)

⋂
X,Z))p(ϵi)


 ∏
{j|N(Xj)

⋂
X=∅}

p(Xj |Z)

 p(Z)dZ

Apparently, there exists a set of function {gi(·)|N(Xi)
⋂
X ̸= ∅}, such that:∫

z,{i|N(Xi)
⋂

X ̸=∅}

 ∏
{i|N(Xi)

⋂
X ̸=∅}

δ(Xi − fλi
i (ϵi, pa(Xi)

⋂
X,Z))p(ϵi)


 ∏
{j|N(Xj)

⋂
X=∅}

p(Xj |Z)

 p(Z)dZ

=

∫
z,{i|N(Xi)

⋂
X ̸=∅}

 ∏
{i|N(Xi)

⋂
X ̸=∅}

δ(Xi − gi(ϵi, ancϵ(i), Z))p(ϵi)


 ∏
{j|N(Xj)

⋂
X=∅}

p(Xj |Z)

 p(Z)dZ

3We mainly consider the case where all variables are continuous. Discrete variables will complicate the
discussion, but will not change the conclusion.
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Where ancϵ(i) is the shorthand for

{ϵk|Xk ∈ ancXi

⋂
Z, 1 ≤ k ≤ D}

Note that, the graphical model of the new parameterization,

p(X) =

∫
z,{i|N(Xi)

⋂
X ̸=∅}

 ∏
{i|N(Xi)

⋂
X ̸=∅}

δ(Xi − gi(ϵi, ancϵ(i), Z))p(ϵi)


 ∏
{j|N(Xj)

⋂
X=∅}

p(Xj |Z)

 p(Z)dZ

has a new aggregated latent space, {Z, {ϵi|1 ≤ i ≤ D}}. That is, for each Xi that has non empty
neighbour in X , a new latent variable will be created. With this new latent space, the connections
among X can be decoupled, and the new graphical structure of p(X,R) corresponds to Figure 1 (h).

The mapping Φ that connects p̃τi(X,R) and p(X,R) can now be defined as identity mapping, since
no new parameters are introduced/removed when reparameterizing p̃τi(X,R) into p(X,R). Hence,
the two requirements of Lemma 1 are fulfilled.

Case 2(subgraph): Next, consider the case that the ground truth data generating process
pD(X,R) = p̃τ∗,γ∗(Xo, Xu, R) is given by one of the Figure 1 (a)-(g). That is, it is a
subgraph of Figure 1 (h). Without loss of generality, assume that p̃γi

(Ri = 1|pa(Ri)) =
logit−1(fγi

(pa(Ri))), and pa(Ri) ⊊ {X,Z}; in other words, certain connections from {X,Z}
to Ri is missing. Consider the model distribution parameterized by p(Ri = 1|X,Z) =
logit−1(fγi

(pa(Ri)) + gθi({X,Z} \ pa(Ri))), satisfying gθi=0(·) ≡ 0. Therefore, the mapping Φ−1

is given as Φ−1(γi) := (γi, θi = 0). Apparently, Φ−1 is injective, hence satisfying the requirement
of Proposition 2.

E.2 Proof for Proposition 3

Proposition 3 (Sufficient conditions for identifiability under MNAR and data-model mismatch).
Let pθ,λ(Xo, Xu, R) be a model on the observable variables X and missing pattern R, and
pD(Xo, Xu, R) be the ground truth distribution. Assume that they satisfies Data setting D2, Assump-
tion A2, A3, and A4. Let Θ = argmax(θ,λ)∈Ω E(xo,r)∼pD(Xo,R) log p(θ,λ)(Xo = xo, R = r) be the
set of ML solutions of Equation 1. Then, we have Θ = {Φ−1

τ (τ∗)} ×Θλ. Namely, the ground truth
model parameter τ∗ of pD can be uniquely identified (as Φ(θ∗)) via ML learning.

Proof : First, it s not hard to show that pθ,λ(XO′
l
, R) is partially identifiable on {θd}d∈O′

l
for

∀O′
l ∈ ĀI . This has been shown in the proof of Proposition 1, and we will not repeat this proof

again.

Next, given data setting D2 and Assumption A4, define

ΘML = arg max
(θ,λ)∈Ω

E(xo,r)∼pD(Xo,R) log p(θ,λ)(Xo = xo, R = r)

, then we have:
p(θML,λML)(Xo, R) = pΦ−1(τ∗,γ∗)(Xo, R)

holds for all (θML, λML) ∈ ΘML, and all ∀O ⊂ I that satisfies p(Xo, Xu, Ro = 1, Ru = 0) > 0.

Since p(θ,λ)(XO′
l
, R) are partially identifiable on {θd}d∈O′

l
for ∀O′

l ⊂ ĀI and according to Assump-
tion A3, pD(Xo, Xu, RO′

l
= 1, RI\O′

l
= 0) > 0. Therefore,

{θd = Φ−1
θ (τ∗, γ∗)d}d∈O′

l

must be true for all ∀O′
l ⊂ ĀI , where Φ−1

θ (τ∗, γ∗) denotes the components of Φ−1(τ∗, γ∗) that
corresponds to the entries of θ. Since we have assumed that

⋃
O′

l∈ĀI
XO′

l
= I in Assumption 3

(i.e.,ĀI is a cover of I ), this guarantees that
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θML
d = Φ−1

θ (τ∗, γ∗)d
for all d. In other words, we are able to uniquely identify θ∗ from observed data, therefore

Θ = {Φ−1
θ (τ∗, γ∗)} ×Θλ

.

Finally, according to Assumption 4 and the proof of Lemma 1, Φ is decoupled as (Φθ(θ),Φλ(λ)).
Therefore, we can write Θ = {Φ−1(τ∗)} ×Θλ. That is, the ground truth model parameter τ∗ of pD
can be uniquely identified (as Φ(θ∗)).

F Identifiability based on equivalence classes

In this section, we introduce the notion of identifiability based on equivalence classes. Let ∼ be a
equivalence relation on a parameter space Ω. That is, it satisfies reflexivity (θ1 ∼ θ1), symmetry
(θ1 ∼ θ2 if and only if θ2 ∼ θ1), and transitivity (if θ1 ∼ θ2 and θ2 ∼ θ3, then θ1 ∼ θ3). Then, a
equivalence class of θ1 ∈ Ω is defined as {θ|θ ∈ Ω, θ ∼ θ}. We denote this by [θ1]. Then, we are
able to give the definition of model identifiability based on equivalence classes:
Definition F.1 (Model identifiability based on equivalence relation). Assume pθ(X) is a distribution
of some random variable X , θ is its parameter that takes values in some parameter space Ωθ, and
sim some equivalence relation on Ω Then, if pθ(X) satisfies pθ1(X) = pθ2(X) ⇐⇒ θ1 ∼ θ2 ⇐⇒
[θ1] = [θ2],∀θ1, θ2 ∈ Ωθ, we say that pθ is ∼ identifiable w.r.t. θ on Ωθ.

Apparently, definition 2.1 is a special case of definition F.1, where ∼ is given by the equality operator,
=. When the discussion is based on the identifiability under equivalence relation, then it is obvious
that all the arguments of Proposition 1, 2, and 3 still holds. Also, the statement of the results needs to
adjusted accordingly. For example, in Proposition 1, instead of “the ground truth model parameter
θ∗ can be uniquely identified", we now have “the ground truth model parameter θ∗ can be uniquely
identified up to a equivalence relation, ∼".

G Subset identifiability (A2) for identifiable VAEs

The GINA model needs satisfy the requirement on model of Proposition 1 or 3, if we wish to use it to
fit to the partially observed data and then perform (unbiased) missing data imputation. In order to
show that the identifiability result of Proposition 1/3 can be applied to GINA, the key assumption that
we need to verify is the local identifiability (Assumption A2).

To begin with, in [16], the following theorem on VAE identifiability has been proved:
Theorem 1. Assume we sample data from the model given by p(X,Z|U) = pϵ(X−f(Z))pT,ζ(Z|U),
where f is a multivariate function f : RH 7→ RD. pT,ζ(Z|U) is parameterized by exponential family
of the form pT,ζ(Z|U) ∝

∏
i=1M Q(Zi) exp[

∑
j=1K Ti,j(Zi)ζi,j(U)], where Q(Zi) is some base

measure, M is the dimensionality of the latent variable Z, Ti(U) = (Ti,1, ..., Ti,K) are the sufficient
statistics, and ζi(U) = (ζi,1, ..., ζi,K) are the corresponding parameters, depending on U . Assume
the following holds:

1. The set {X ∈ X |ϕϵ(x) = 0} has zero measure, where ϕ is the characteristic function of pϵ;

2. The multivariate function f is injective;

3. Ti,j are differentiable a.e., and (Ti,j)1≤j≤k are linearly independent on any subset of X of
measure greater than zero;

4. There exists nk + 1 distinct points U0, ..., Unk, such that the matrix L = (ζ(U1 −
U0), ..., ζ(Unk − U0)) of size nk by nk is invertible.

Then, the parameters (f, T, ζ) are ∼A-identifiable, where ∼A is the equivalence class defined as (see
also Appendix F):

(f, T, ζ) ∼ (f̃ , T̃ , ζ̃) ⇐⇒ ∃A, c|T(f−1(X)) = AT(f̃−1(X)) + c
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. Here, A is a nk by nk matrix, and c is a vector.

Note that under additional mild assumptions, the A in the ∼A equivalence relation can be further
reduced to a permutation matrix. That is, the model parameters can be identified, such that the latent
variables differs up to a permutation. This is inconsequential in many applications. We refer to [16]
for more discussions on permutation equivalence.

So far, Theorem 1 only discussed the identifiability of p(X) on the full variables, X = Xo

⋃
Xu.

However, in Assumption A2, we need the reference model to be (partially) identifiable on a partition
Os ∈ AI , pθ(Xos). Naturally, we need additional assumptions on the the injective function f , as
stated below:

Assumption A5 There exists an integer Do, such that fO : RH 7→ R|O| is injective for all O that
|O| ≥ D0. Here, fO is the entries from the output of f , that corresponds to the index set O.

Remark Note that, under assumption A5, the Assumption A3 in Section 3 becomes more intuitive:
it means that in order to uniquely recover the ground truth parameters, our training data must contain
training examples that have more than D0 observed features. This is different from some previous
works ([38] for example), where complete case data must be available.

Finally, given these new assumptions, it is easy to show that:
Corollary 1 (Local identifiability). Assume that p(X,Z|U) = pϵ(X−f(Z))pT,ζ(Z|U) is the model
parameterized according to Theorem 1. Assume that the assumptions in Theorem 1 holds for p(X|U).
Additionally, assume that f satisfies assumption A5.

Then, consider the subset of variables, Xo. Then, p(Xo|U) is ∼A-identifiable on (fO, T, ζ) for all O
that satisfies |O| ≥ D0, where fO is the entries from the output of f , that corresponds to the index
set O.

Proof : it is trivial to see that the assumptions 1, 3, and 4 in Theorem 1 automatically holds
regarding p(Xo|U). fO is injective according to Assumption A5. Hence, p(Xo|U) satisfies all the
assumptions in Theorem 1, and p(Xo|U) is ∼A-identifiable on (fO, T, ζ) for all O that satisfies
|O| ≥ D0.

Remark In practice, Assumption A5 is often satisfied. For example, consider the f that is
parameterized by the following MLP composite function:

f(Z) = h(W ◦ g(Z)) (7)

, where g is a D0 dimensional, injective multivariate function g : RH 7→ RD0 , h is some activation
function h : R 7→ R, and W is a injective linear mapping W : RD0 7→ RD represented by the
matrix WD0×D, whose submatrices that consists of |O| ≥ D0 arbitrary selected columns are also
injective. Note that this assumption for W is not hard to fulfill: a randomly generated matrix (e.g.,
with element-wise i.i.d. Gaussian prior) satisfies this condition with probability 1. To verify fO is
injective for all |O| ≥ D0, notice that fO(Z) = h(WO ◦ g(Z)), where WO is the output dimensions
of W that corresponds to the index set O. Since W is injective and |O| ≥ D0, we have that WO is
also injective, hence fO is also injective.

H Consistency of estimation for GINA

In [16], a result regarding the consistency of estimation for identifiable VAE. Similarly, it is trivial to
show that similar result holds for GINA:
Theorem 2 (Consistency of estimation). Assuming that

1. qϕ(Z = zk|Xo) is expressive enough to contain the true posterior pθ,λ(Z|Xo), for all Xo,
θ and λ.

2. The model in Section 4 is correctly specified, and its parameters are estimated by maximizing
LK(θ, λ, ϕ,Xo, R) w.r.t. θ, λ, and ϕ.

Then, under perfect information (infinite samples from data), θ∗ and λ∗ is recovered up to ∼A.

21



Proof Since qϕ(Z = zk|Xo) is expressive enough to contain the true posterior, LK(θ, λ, ϕ,Xo, R)
recovers the true likelihood function log pθ,λ(Xo, R) by simply maximizing ϕ. Therefore, the
problem of maximizing LK(θ, λ, ϕ,Xo, R) is equivalent to maximum likelihood estimation problem.
Therefore, since we assumed that the model is correctly specified, the consistency of MLE trivially
implies the consistency of GINA model trained via maximizing LK(θ, λ, ϕ,Xo, R).

I Active question selection

Suppose Xo be the set of observed variables, that represents the correctness of student’s response
to questions that are presented to them. Then, in the problem of active question selection, we start
with O = ∅, and we would like to decide which variable Xi from XU to observe/query next, so
that it will most likely provide the most valuable information for some target variable of interest,
Xϕ; Meanwhile, we should while make as few queries as possible. Once we have decided which
Xi to observed next, we will make query and add i to O. This process is done by maximizing the
information reward proposed by [28]:

i∗ = argmax
i∈U

R(i | XO) := EXi∼p(Xi|XO)KL [p(Xϕ|Xi, XO) ∥ p(Xϕ|XO)] .

In the Eedi dataset, as we do not have a specific target variable of interest, it is defined
as Xϕ = XU . In this case, Xϕ could be ver high-dimensional, and direct estimation of
KL [p(Xϕ|Xi, XO) ∥ p(Xϕ|XO)] . could be inefficient. In [28], a fast approximation has been
proposed:

R(i | Xo) =EXi∼p(Xi|Xo)DKL [p(Z|Xi, Xo)||p(Z|Xo)]−
EXϕ,Xi∼p(Xϕ,Xi|Xo)DKL [p(Z|Xϕ, Xi, Xo)||p(Z|Xϕ, Xo)] .

≈EXi∼p̂(Xi|Xo)DKL [q(Z|Xi, Xo)||q(Z|Xo)]−
EXϕ,Xi∼p̂(Xϕ,Xi|Xo)DKL [q(Z|Xϕ, Xi, Xo)||q(Z|Xϕ, Xo)] .

In this approximation, all calculation happens in the latent space of the model, hence we can make
use of the learned inference net to efficeintly estimate R(i | Xo).

J Additional results

J.1 Imputation results for synthetic datasets

In addition to the data generation samples visualized in Figure 3, we present the imputation results for
synthetic datasets in Figure 4. The procedure of generating the imputed samples are as follows. First,
each model are trained on the randomly generated, partially observed synthetic dataset described in
Section 6.1. Once the models are trained, they are used to impute the missing data in the training set.
For each training data, we draw exactly one sample from the (approximate) conditional distribution
ptheta(Xu|Xo). Thus, we have “complete” version of the training set, one for each different model.
Finally, we draw the scatter plot for each imputed training set, per dataset and per model. If the model
is doing a good job recovering the ground truth distribution pD(X) from training set, then its scatter
plot should be close to the KDE estimate of the ground truth density of complete data. According to
Figure 4, the imputed distribution is similar to the generated distribution in Figure 3.
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PVAE Not-MIWAE Ours

Dataset A

Dataset B

Dataset C

Figure 4: Visualization of imputed X2 and X3 from synthetic experiment. Row-wise (A-C) plots
for dataset A, B, and C, respectively; Column-wise: PVAE imputed samples, Not-MIWAE imputed
samples, and GINA imputed samples, respectively. Contour plot: kernel density estimate of ground
truth density of complete data;
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