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A Limitations and Negative Societal Impacts31

A.1 Limitations of our Work32

At this point we only consider optimizing objectives through CSST which can be written as a linear33

combination of entries of confusion matrix. Although there are important metrics like Recall,34

Coverage etc. which can be expressed as a linear form of confusion matrix. However, there do exist35

important metrics like Intersection over Union (IoU), Q-Mean etc. which we don’t consider in the36

current work. We leave this as an open direction for further work.37

Also in this work we considered datasets where unlabeled data distribution doesn’t significantly differ38

from the labeled data distribution, developing robust methods which can also take into account the39

distribution shift between unlabeled and labeled is an interesting direction for future work.40

A.2 Negative Societal Impact41

Our work has application in fairness domain [3], where it can be used to improve performance of42

minority sub-groups present in data. These fairness objectives can be practically enforced on neural43

networks through the proposed CSST framework. However these same algorithms can be tweaked44

to artifically induce bias in decision making of trained neural networks, for example by ignoring45

performance of models on certain subgroups. Hence, we suggest deployment of these models after46

through testing on all sub groups of data.47

B Connection between Minimization of Weighted Consistency Regularizer48

Loss (Eq. (6)) and Theoretical Weighted Consistency (RB,w(F ) in Sec. 3.4)49

In this section, we show that minimization of weighted consistency regularizer Eq. (6) and that of50

theoretical weighted consistency regularizer RB,w(F ) can be related to CSL.51

First, we consider RB,w(F ). Using strong augmentation A, (theoretical) weighted consistency52

regularizer RB,w(F ) is approximated as RB,w(F ) ≈
∑

i,j∈[K] wijEx∼Pi [1(F (A(x)) ̸= F (x))].53

Noting that 1(F (A(x)) ̸= F (x)) ≤ 1(F (A(x)) ̸= j) + 1(F (x) ̸= j) for any j, x, this value is54

bounded as follows:55

RB,w(F ) ≈
∑

i,j∈[K]

wijEx∼Pi
[1(F (A(x)) ̸= F (x))]

≤
∑

i,j∈[K]

wijEx∼Pi
[1(F (A(x) ̸= j))] +

∑
i,j∈[K]

wijEx∼Pi
[1(F (x) ̸= j)] .

If we focus on samples x with high confidence in model predictions, then the latter term56 ∑
i,j∈[K] wijEx [1(F (x) ̸= j)] is negligible. Therefore, minimization of (an empirical approxima-57

tion of) RB,w(F ) on these samples is approximately equivalent to CSL, i.e., the following problem:58

59

min
F

∑
i,j∈[K]

wijEx [1(F (A(x)) ̸= j))] . (8)
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The above CSL is shown to be calibrated with the loss [9] ℓwt(y, pm(x)) (also used in Prop. 7) given60

below:61

ℓwt(y, pm(x)) = −
∑
i∈[K]

Gyi log (pm(x)i) .

Next, we relate Eq. (6) to CSL. If we denote pseudo label p̂m(x) by y in Eq. (6), then we see62

that Eq. (6) is identical to ℓwt(y, pm(A(x))). By (the proof of) [8, Proposition 4], by minimizing63

ℓwt(y, pm(A(x))), we obtain a Bayes optimal classifier F (A(x)), where F is the classifier defined64

by the model pm. If w is the corresponding weight to the gain matrix G, then classifier F gives a65

solution to the CSL (8). Thus, we can relate minimization of weighted consistency regularizer Eq.66

(6) to that of theoretical weighted consistency regularizer RB,w(F ) through the CSL (8).67

C Additional Examples and Proof of Theorem 568

In this section, we provide some examples for assumptions introduced in Sec. 3 and a proof of69

Theorem 5. We provide proof of these examples in Sec. C.4.70

C.1 Examples for Theoretical Assumptions71

The following example (Example 3) shows that the c-expansion (Definition 2) property is satisfied72

for mixtures of Gaussians and mixtures of manifolds.73

EXAMPLE 3. By [14, Examples 3.4, 3.5], the c-expansion property is satisfied for mixtures of74

isotropic Gaussian distributions and mixtures of manifolds. More precisely, in the case of mixtures of75

isotropic Gaussian distributions, i.e., if Q is given as mixtures of N (τi,
1
dId×d) for i = 1, . . . , n with76

some n ∈ Z≥1 and τi ∈ Rd, and B(x) is an ℓ2-ball with radius r then by [1, (13)] and [14, Section77

B.2], Q satisfies the c-expansion property with c(p) = Rh(p)/p for p > 0 and h = 2r
√
d (c.f., [14,78

section B.2]). Here Rh(p) = Φ(Φ−1(p) + h) and Φ is the cumulative distribution function of the79

standard normal distribution on R.80

In Sec. 3.4, we required the assumption that γ > 3 (Assumption 4) and remarked that it roughly81

requires Errw(Fpl) is “small”. The following example provides explicit conditions for Errw(Fpl)82

that satisfy the assumption using a toy example.83

EXAMPLE 8. Using a toy example provided in Example 3, we provide conditions that satisfy84

the assumption γ > 3 approximately. To explain the assumption γ > 3, we assume that Pw85

is given as a mixture of isotropic Gaussians and B(x) is ℓ2-ball with radius r as in Example 3.86

Furthermore, we assume that |w|1 = 1 and Errw(F
∗) is sufficiently small compared to Errw(Fpl).87

Then, pw = Errw(Fpl) + Errw(F
∗) ≈ Errw(Fpl). Using this approximation, since Pw satisfies the88

c-expansion property with c(p) = R2r
√
d(p)/p, if r = 1

2
√
d

then, the condition γ > 3 is satisfied89

when Errw(Fpl) < 0.17. If r = 3
2
√
d

then, the condition γ > 3 is satisfied when Errw(Fpl) < 0.33.90

In Assumption 1, we assumed that both of Errw(F
∗) and RB,w(F

∗) are small. The following91

example suggests the validity of this assumption.92

EXAMPLE 9. In this example, we assume w is a diagonal matrix diag(w1, . . . , wK). For simplicity,93

we normalize w so that
∑

i∈[K] wi = 1. As in [14, Example 3.4], we assume that Pi is given as94

isotropic Gaussian distribution N (τi,
1
dId×d) with τi ∈ Rd for i = 1, . . . ,K and B(x) is an ℓ2-ball95

with radius 1
2
√
d

. Furthermore, we assume inf1≤i<j≤K ∥τi − τj∥2 ≳
√
log d√
d

and supi,j∈[K]
wi

wj
=96

o(d), where the latter assumption is valid for high dimensional datasets (e.g., image datasets). Then it97

can be proved that there exists a classifier F such that RB,w(F ) = O( 1
dc ) and Errw(F ) = O( 1

dc ),98

where c > 0 is a constant (we can take F as the Bayes-optimal classifier for Errw). Thus, this99

suggests that Assumption 1 is valid for datasets with high dimensional instances.100

The statement of Example 8 follows from numerical computation of R2r
√
d(p)/p. We provide proofs101

of Examples 3 and 9 in Sec. C.4.102
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C.2 Proof of Theorem 5 Assuming a Lemma103

Theorem 5 can be deduced from the following lemma (by taking H = F ∗ and LQ,H(F̂ ) ≤104

LQ,H(F ∗)), which provides a similar result to [14, Lemma A.8].105

LEMMA 10. Let H be a classifier and Q a probability measure on X satisfying c-expansion106

property. We put γH = c(Q({x ∈ X : Fpl(x) ̸= H(x)})). For a classifier F , we define SB(F ) by107

SB(F ) = {x ∈ X : F (x) = F (x′) ∀x′ ∈ B(x)}. For a classifier F , we define LQ,H(F ) by108

γH + 1

γH − 1
Q({x ∈ X : F (x) ̸= Fpl(x)})

+
2γH

γH − 1
Q(Sc

B(F )) +
2γH

γH − 1
Q(Sc

B(H))−Q({x ∈ X : Fpl(x) ̸= H(x)}),

where Sc
B(F ) denotes the complement of SB(F ). Then, we have Q({x ∈ X : F (x) ̸= H(x)}) ≤109

LQ,H(F ) for any classifier F .110

In this subsection, we provide a proof of Theorem 5 assuming Lemma 10. We provide a proof of the111

lemma in the next subsection. For a classifier F , we define M(F ) as {x ∈ X : F (x) ̸= F ∗(x)} and112

Mpl(F ) as {x ∈ X : F (x) ̸= Fpl(x)}. We define L̃w(F ) by113

L̃w(F ) = Lw(F ) +
2γ

γ − 1
RB,w(F

∗)− Pw({x ∈ X : Fpl(x) ̸= F ∗(x)}).

We note that L̃w(F )− Lw(F ) does not depend on F .114

Proof of Theorem 5. We let Q = Pw and H = F ∗ in Lemma 10 and denote γH in the lemma by γ′.115

Since wij ≥ 0 and Ex∼Pi
[1(Fpl(x) ̸= F ∗(x))] ≤ Ex∼Pi

[1(Fpl(x) ̸= j)]+Ex∼Pi
[1(F ∗(x) ̸= j)]116

for any i, j, we have the following:117

|w|1Pw(M(Fpl)) =
∑

i,j∈[K]

wijEx∼Pi [1(Fpl(x) ̸= F ∗(x))]

≤
∑

i,j∈[K]

wij {Ex∼Pi [1(Fpl(x) ̸= j)] +Ex∼Pi [1(F
∗(x) ̸= j)]}

= Errw(Fpl) + Errw(F
∗).

Thus, we obtain Pw(M(Fpl)) ≤ pw. Because c is non-increasing, we have γ ≤ γ′. We note that118

Errw(F ) =
∑

i,j∈[K]

wijEx∼Pi
[1(F (x) ̸= j)]

≤
∑

i,j∈[K]

wijEx∼Pi
[1(F (x) ̸= F ∗(x))] +

∑
i,j∈[K]

wijEx∼Pi
[1(F ∗(x) ̸= j)]

= |w|1Pw(M(F )) + Errw(F
∗).

By this inequality and Lemma 10, the error is upper bounded as follows:119

Errw(F ) ≤ Errw(F
∗) +

γ′ + 1

γ′ − 1
|w|1Pw(Mpl(F ))

+
2γ′

γ′ − 1
|w|1Pw(Sc

B(F )) +
2γ′

γ′ − 1
|w|1Pw(Sc

B(F
∗))− |w|1Pw(M(Fpl)).

Since γ ≤ γ′, we obtain120

Errw(F ) ≤ Errw(F
∗) +

γ + 1

γ − 1
|w|1Pw(Mpl(F ))

+
2γ

γ − 1
|w|1Pw(Sc

B(F )) +
2γ

γ − 1
|w|1Pw(Sc

B(F
∗))− |w|1Pw(M(Fpl)). (9)
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By definition of Lw and letting F = F̂ , we have the following:121

Errw(F̂ ) ≤ Errw(F
∗) + Lw(F̂ ) +

2γ

γ − 1
RB,w(F

∗)− |w|1Pw({x ∈ X : Fpl(x) ̸= F ∗(x)})

≤ Errw(F
∗) + Lw(F

∗) +
2γ

γ − 1
RB,w(F

∗)− |w|1Pw({x ∈ X : Fpl(x) ̸= F ∗(x)})

= Errw(F
∗) +

2

γ − 1
|w|1Pw(M(Fpl)) +

4γ

γ − 1
RB,w(F

∗)

≤ Errw(F
∗) +

2

γ − 1
(Errw(Fpl) + Errw(F

∗)) +
4γ

γ − 1
RB,w(F

∗)

=
2

γ − 1
Errw(Fpl) +

γ + 1

γ − 1
Errw(F

∗) +
4γ

γ − 1
RB,w(F

∗).

Here, the second inequality holds since F̂ is a minimizer of Lw, the third inequality follows from122

1(F ∗(x) ̸= Fpl(x)) ≤ 1(F ∗(x) ̸= j) + 1(Fpl(x) ̸= j) for any j. Thus, we have the assertion of123

the theorem.124

C.3 Proof of Lemma 10125

We decompose M(F ) ∩ SB(F ) ∩ SB(H) into the following three sets:126

N1 = {x ∈ SB(F ) ∩ SB(H) : F (x) = Fpl(x), and Fpl(x) ̸= H(x)},
N2 = {x ∈ SB(F ) ∩ SB(H) : F (x) ̸= Fpl(x), Fpl(x) ̸= H(x), and F (x) ̸= H(x)},
N3 = {x ∈ SB(F ) ∩ SB(H) : F (x) ̸= Fpl(x) and Fpl(x) = H(x)}.

LEMMA 11. Let S = SB(F ) ∩ SB(H) and V = M(F ) ∩M(Fpl) ∩ S. Then, we have N (V ) ∩127

Mc(F ) ∩ S = ∅ and N (V ) ∩ Mc(Fpl) ∩ S ⊆ Mpl(F ). Here Mpl(F ) is defined as {x ∈ X :128

F (x) ̸= Fpl(x)}.129

Proof. We take any element x in N (V )∩S. Since x ∈ N (V ) and definition of neighborhoods, there130

exists x′ ∈ M(Fpl) ∩M(F ) ∩ S such that B(x) ∩ B(x′) ̸= ∅. Since x, x′ ∈ SB(F ), F takes the131

same values on B(x) and B(x′). By B(x) ∩ B(x′) ̸= ∅, F takes the same value on B(x) ∪ B(x′). It132

follows that F (x) = F (x′). Since we have x, x′ ∈ SB(H), similarly, we see that H(x) = H(x′). By133

x′ ∈ M(F ), we have F (x) = F (x′) ̸= H(x′) = H(x). Thus, we see that N (V )∩Mc(F )∩S = ∅.134

We assume x ∈ N (V )∩Mc(Fpl)∩S. Then, we have F (x) ̸= H(x) and Fpl(x) = H(x). Therefore,135

we obtain F (x) ̸= Fpl(x). This completes the proof.136

LEMMA 12. Suppose that assumptions of Lemma 10 hold. We define q as follows:137

q =
Q(Mpl(F ) ∪ Sc

B(F ) ∪ Sc
B(H))

γH − 1
. (10)

Then, we have Q(SB(F ) ∩ SB(H) ∩M(Fpl) ∩M(F )) ≤ q. In particular, noting that N1 ∪N2 ⊆138

SB(F ) ∩ SB(H) ∩M(Fpl) ∩M(F ), we have Q(N1 ∪N2) ≤ q.139

Proof. We let S = SB(F ) ∩ SB(H) and V = M(F ) ∩M(Fpl) ∩ S as before. Then by Lemma 11,140

we have141

N (V ) ∩ V c ∩ S = (N (V ) ∩Mc(F ) ∩ S) ∪ (N (V ) ∩Mc(Fpl) ∩ S)

⊆ ∅ ∪Mpl(F ) = Mpl(F ).

Therefore, we have142

N (V ) ∩ V c = N (V ) ∩ V c ∩ (S ∪ Sc)

= (N (V ) ∩ V c ∩ S) ∪ (N (V ) ∩ V c ∩ Sc)

⊆ Mpl(F ) ∪ Sc.

Thus, by the c-expansion property, we have143

Q(Mpl(F ) ∪ Sc) ≥ Q(N (V ) ∩ V c)

≥ Q(N (V ))−Q(V )

≥ (c(Q(V ))− 1)Q(V ).
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Since V ⊆ M(Fpl), c is non-increasing, and γH > 1, we have Q(V ) ≤ Q(Mpl(F ) ∪ Sc)/(γH −144

1) ≤ q. This completes the proof.145

The following lemma provides an upper bound of Q(N3).146

LEMMA 13. Suppose that the assumptions of Lemma 10 hold. We have147

Q(N3) ≤ q +Q(Sc
B(F ) ∪ Sc

B(H)) +Q(Mpl(F ))−Q(M(Fpl)),

where q is defined by (10).148

Proof. We let S = SB(F ) ∩ SB(H). First, we prove149

N3 ⊔
(
Mc

pl(F ) ∩ S
)
= N1 ⊔ (Mc(Fpl) ∩ S) . (11)

Here, for sets A,B, we denote union A ∪B by A ⊔B if the union is disjoint. By definition, we have150

N1 = S ∩Mc
pl(F ) ∩M(Fpl) and N3 = S ∩Mpl(F ) ∩Mc(Fpl). Thus, we have151

N3 ∪
(
Mc

pl(F ) ∩ S
)

= (S ∩Mpl(F ) ∩Mc(Fpl)) ∪
(
Mc

pl(F ) ∩ S
)

= S ∩
{
(Mpl(F ) ∩Mc(Fpl)) ∪Mc

pl(F )
}

= S ∩
(
Mc(Fpl) ∪Mc

pl(F )
)
.

Similarly, we have the following:152

N1 ∪ (Mc(Fpl) ∩ S)

=
(
S ∩Mc

pl(F ) ∩M(Fpl)
)
∪ (Mc(Fpl) ∩ S)

= S ∩
(
Mc(Fpl) ∪Mc

pl(F )
)
.

Since disjointness is obvious by definition, we obtain (11). Next, we note that the following holds:153

Q(Mc
pl(F ) ∩ S) = Q(Mc

pl(F ))−Q(Mc
pl(F ) ∩ Sc)

≥ Q(Mc
pl(F ))−Q(Sc). (12)

By (11), we obtain the following:154

Q(N3) = Q(N1) +Q(Mc(Fpl) ∩ S)−Q(Mc
pl(F ) ∩ S)

≤ Q(N1) +Q(Mc(Fpl))−Q(Mc(Fpl) ∩ S)

≤ Q(N1) +Q(Mc(Fpl))−Q(Mc
pl(F )) +Q(Sc)

≤ q +Q(Mc(Fpl))−Q(Mc
pl(F )) +Q(Sc)

= q −Q(M(Fpl)) +Q(Mpl(F )) +Q(Sc).

Here the second inequality follows from (12) and the third inequality follows from Lemma 12. This155

completes the proof.156

Now, we can prove Lemma 10 as follows.157

Proof of Lemma 10.

Q(M(F )) = Q(M(F ) ∩ SB(F ) ∩ SB(H)) +Q (M(F ) ∩ (Sc
B(F ) ∪ Sc

B(H)))

≤ Q(N1 ∪N2) +Q(N3) +Q(Sc
B(F ) ∪ Sc

B(H))

≤ 2q + 2Q(Sc
B(F ) ∪ Sc

B(H)) +Q(Mpl(F ))−Q(M(Fpl)).

Here, the last inequality follows from Lemmas 12 and 13. Since q satisfies q ≤158
Q(Mpl(F ))+Q(Sc

B(F )+Q(Sc
B(H)))

γH−1 by (10), we have our assertion.159
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C.4 Miscellaneous Proofs for Examples160

Proof of Example 3. In Example 3, we stated that p 7→ Rh(p)/p is non-increasing. This follows161

from the concavity of Rh and limp→+0 Rh(p) = 0. In fact, we can prove the concavity of Rh by162

d2Rh

dp2 (p) = −h exp
(

ξ2

2 − hξ − 1
2h

2
)
≤ 0, where ξ = Φ−1(p).163

Proof of Example 9. For each i, j ∈ [K], wiPi(x) ≥ wjPj(x) is equivalent to (x − τi) · vji ≤164
∥τi−τj∥

2 +
2(logwi−logwj)

d∥τi−τj∥ , where vji =
τj−τi

∥τi−τj∥ . Thus, for each i ∈ [K], we have
⋂

j∈[K]\{i} Xij ⊆165

SB(Fopt). Here Xij is defined as {x ∈ X : (x − τi) · vji ≤ ∥τi−τj∥
2 +

2(logwi−logwj)
d∥τi−τj∥ − r

2}.166

For any w ∈ Rd with ∥w∥2 =
√
d and a > 0, we have Pi({x ∈ X : (x − τi) · w > a}) =167

1 − Φ(a) ≤ 1
2 exp(−a2/2) (c.f., [2]). Thus, Pi(X

c
ij) ≤ 1

2 exp(−da2ij/2), where aij =
∥τi−τj∥

2 +168

2(logwi−logwj)
d∥τi−τj∥ − r

2 . By assumptions, we have aij
√
d ≳

√
log d. Therefore, Pi(X

c
ij) = O( 1

poly(d) ).169

It follows that Pi(Sc
B(Fopt)) ≤

∑
j∈[K]\{i} Pi(X

c
ij) = O( 1

poly(d) ). Thus, we have RB,w(Fopt) =170

O( 1
poly(d) ). By the same way, we can prove that Errw(Fopt) = O( 1

poly(d) ).171

D All-Layer Margin Generalization Bounds172

Following [14, 13], we introduce all layer margin of neural networks and provide general-173

ization bounds of CSST. In this section, we assume that classifier F (x) is given as F (x) =174

argmax1≤i≤K Φi(x), where Φ is a neural network of the form175

Φ(x) = (fp ◦ fp−1 ◦ · · · ◦ f1)(x).
Here fi : Rdi → Rdi+1 with d1 = d and dp = K. We assume that each fi belongs to a function class176

Fi ⊂ Map(Rdi ,Rdi+1). We define a function class F to which Φ belongs by177

F = {Φ : Rd → RK : Φ(x) = (fp ◦ · · · ◦ f1)(x), fi ∈ Fi,∀i}.
For example, for b > 0, Fi is given as {h 7→ Wϕ(h) : W ∈ Rdi×di+1 , ∥W∥fro ≤ b} if i > 1178

and {h 7→ Wh : W ∈ Rd1×d2 , ∥W∥fro ≤ b} if i = 1, where ϕ is a link function (applied on Rdi179

entry-wise) with bounded operator norm (i.e., ∥ϕ∥op := supx∈Rdi\{0} ∥ϕ(x)∥2/∥x∥2 < ∞) and180

∥W∥fro denotes the Frobenius norm of the matrix. However, we do not assume the function class181

Fi does not have this specific form. We assume that each function class Fi is a normed vector182

space with norm ∥ · ∥. In the example above, we consider the operator norm, i.e., if f(h) = ϕ(Wh),183

∥f∥ is defined as ∥f∥op. Let x1, . . . , xn be a finite i.i.d. sequence of samples drawn from Pw.184

We denote the corresponding empirical distribution by P̂w, i.e., for a measurable function f on X ,185

Ex∼P̂w
[f ] =

∑n
i=1 f(xi).186

For ξ = (ξ1, . . . , ξp) ∈
∏p

i=1 Rdi , we define the perturbed output Φ(x, ξ) as Φ(x, ξ) = hp(x, ξ),187

where188

h1(x, ξ) = f1(x) + ξ1∥x∥2,
hi(x, ξ) = fi(hi−1(x, ξ)) + ξi∥hi−1(x, ξ)∥2, for 2 ≤ i ≤ p.

Let x ∈ X and y ∈ [K]. We define Ξ(Φ, x, y) by {ξ ∈
∏p

i=1 Rdi : argmaxi Φi(x, ξ) ̸= y}. Then,189

the all-layer margin m(Φ, x, y) is defined as190

m(Φ, x, y) = min
ξ∈Ξ(Φ,x,y)

∥ξ∥2,

where ∥ξ∥2 is given by
√∑p

i=1 ∥ξi∥22. Following [14], we define a variant of the all-layer margin191

that measures robustness of Φ with respect to input transformations defined by B(x) as follows:192

mB(Φ, x) := min
x′∈B(x)

m(F, x′, argmaxi Φi(x)).

ASSUMPTION 14 (c.f. [13], Condition A.1). Let G be a normed space with norm ∥ · ∥ and ϵ > 0.193

We say G satisfies the ϵ−2 covering condition with complexity C∥·∥(G) if for all ϵ > 0, we have194

logN∥·∥(ϵ,G) ≤
C∥·∥(G)

ϵ2
.
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Here N∥·∥(ϵ,G) the ϵ-covering number of G. We assume function class Fi satisfies the ϵ−2 covering195

condition with complexity C∥·∥(Fi) for each 1 ≤ i ≤ p.196

Throughout this section, we suppose that Assumption 14 holds. Essentially, the following two197

propositions follows were proved by Wei et al. [14]:198

PROPOSITION 15 (c.f., [14], Lemma D.6). With probability at least 1 − δ over the draw of the199

training data, for all t ∈ (0,∞), any Φ ∈ F satisfies the following:200

RB,w(F ) = EP̂w
[1(mB(Φ, x) ≤ t)] + Õ

(∑p
i=1 C∥·∥op

(Fi)

t
√
n

)
+ ζ,

where ζ = O

(√
log(1/δ)+logn

n

)
is a lower order term and F (x) = argmaxi∈[K] Φi(x).201

PROPOSITION 16 (c.f., [14], Theorem D.3). With probability at least 1 − δ over the draw of the202

training data, for all t ∈ (0,∞), any Φ ∈ F satisfies the following:203

Lw(F, Fpl) = EP̂w
[1(m(Φ, x, Fpl(x)) ≤ t)] + Õ

(∑p
i=1 C∥·∥op

(Fi)

t
√
n

)
+ ζ,

where ζ = O

(√
log(1/δ)+logn

n

)
is a lower order term and F (x) = argmaxi∈[K] Φi(x).204

REMARK. Although we have proved Theorem 5 following [14], we had to provide our own proof205

due to some differences in theoretical assumptions (e.g., non-existence of the ground-truth classifier,206

a difference mentioned in the remark just after Assumption 4). On the other hand, the proofs of [14,207

Lemma D.6] and [14, Theorem D.3] work for any distribution P on X and its empirical distribution208

P̂ . Since ∥w∥1Pw(Sc
B(F )) = RB,w(F ) and ∥w∥1Pw({x : F (x) ̸= Fpl(x)}) = Lw(F, Fpl),209

Proposition 15 and Proposition 16 follow from the corresponding results in [14].210

THEOREM 17. Suppose Assumption 4 and Assumption 14 hold. Then, with probability at least 1− δ211

over the draw of the training data, for all t1, t2 ∈ (0,∞), and any neural network Φ in F , we have212

the following:213

Errw(F ) =
γ + 1

γ − 1
EP̂w

[1(m(Φ, x, Fpl(x)) ≤ t1)] +
2γ

γ − 1
EP̂w

[1(mB(Φ, x) ≤ t2)]

− Errw(Fpl) + 2Errw(F
∗) +

2γ

γ − 1
RB,w(F

∗)

+ Õ

(∑p
i=1 C∥·∥op

(Fi)

t1
√
n

)
+ Õ

(∑p
i=1 C∥·∥op

(Fi)

t2
√
n

)
+ ζ,

where ζ = O

(√
log(1/δ)+logn

n

)
is a lower order term and F (x) = argmaxi∈[K] Φi(x).214

Proof. By (9) with H = F ∗ and −1(Fpl(x) ̸= F ∗(x)) ≤ −1(Fpl(x) ̸= j) + 1(F ∗(x) ̸= j) for any215

x ∈ X and j ∈ [K], we obtain the following inequality:216

Errw(F ) ≤ γ + 1

γ − 1
Lw(F, Fpl) +

2γ

γ − 1
RB,w(F ) +

2γ

γ − 1
RB,w(F

∗)− Errw(Fpl) + 2Errw(F
∗).

Then, the statement of the theorem follows from Proposition 15 and Proposition 16.217

E Proof of Proposition 6218

Proof. Let the average weighted consistency loss be Lwt
u = 1

|B|
∑

x∈B ℓwt
u (p̂m(x), pm(A(x)),G)219

this will be minimized if for each of x ∈ B the ℓwt
u (p̂m(x), pm(A(x)),G) is minimized. This220
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expression can be expanded as:221

ℓwt
u (p̂m(x), pm(A(x)),G) = −

K∑
i=1

(GT p̂m(x))i log(pm(A(x))i)

= −C

K∑
i=1

(GT p̂m(x))i∑m
j=1 G

T p̂m(x))j
log(pm(A(x))i)

= C ×H(norm(GT p̂m(x)) || pm(A(x))).

Here we use H to denote the cross entropy between two distributions. As we don’t backpro-222

pogate gradients from the p̂m(x) (pseudo-label) branch of prediction network we can consider223

C =
∑m

j=1 G
T p̂m(x))j as a constant in our analysis. Also adding a constant term of entropy224

H(norm(GT p̂m(x))) to cross entropy term and dropping constant C doesn’t change the outcome of225

minimization. Hence we have the following:226

min
pm

H(norm(GT p̂m(x)) || pm(A(x))) = min
pm

H(norm(GT p̂m(x)) || pm(A(x)))

+ H(norm(GT p̂m(x)))

= min
pm

DKL(norm(GT p̂m(x))||pm(A(x))).

This final term is the DKL(G
T p̂m(x)||pm(A(x)) which is obtained by using the identity227

DKL(p, q) = H(p, q) + H(p) where p, q are the two distributions.228

F Notation229

We provide the list of notations commonly used in the paper in Table 1.230

G Code, License, Assets and Computation Requirements231

G.1 Code and Licenses of Assets232

In this work, we use the open source implementation of FixMatch [12] 1 in PyTorch, which is233

licensed under MIT License for educational purpose. Also for NLP experiments we make use of234

DistillBERT [11] pretrained model available in the HuggingFace [15] library. We promise to release235

the code and checkpoints at the time of acceptance of our submission.236

G.2 Computational Requirements237

All experiments were done on a variety of GPUs, with primarily Nvidia A5000 (24GB) with238

occasional use of Nvidia A100 (80GB) and Nvidia RTX3090 (24GB). For finetuning DistilBERT and239

all experiments with ImageNet-100 dataset we used PyTorch data parallel over 4 A5000s. Training240

was done till no significant change in metrics was observed. The detailed list of computation used per241

experiment type and dataset have been tabulated in Table 2 and Table 3.242

H Objective243

H.1 Logit Adjusted Weighted Consistency Regularizer244

As we have introduced weighted consistency regularizer in Eq. 6 for utilizing unlabeled data, we245

now provide logit adjusted variant of it for training deep networks in this section. We provide logit246

1https://github.com/LeeDoYup/FixMatch-pytorch

9



Table 1: Table of Notations used in Paper

Y : Label space
X : Instance space
K : Number of classes
πi : prior for class i
F : a classifier model
s : a scoring function, X → RK

D : data distribution
λ : Lagrange multiplier
λu : coefficient of unlabeled loss

reci[F ] : recall of ith class for a classifier F
acc[F ] : accuracy for a classifier F

preci[F ] : precision of ith class for a classifier F
covi[F ] : coverage for ith class for a classifier F

G : a K ×K matrix
D : a K ×K diagonal matrix
M : a K ×K matrix
µ : ratio of labelled to unlabelled samples
B : batch size for FixMatch
ℓwt
u : loss for unlabelled data using pseudo label

ℓhyb
s : loss for labelled data

Lhyb
u : average loss for unlabelled data using pseudo label on a batch of samples

Lhyb
s : average loss for labelled data on a batch of samples
H : cross entropy function
A : a X → X function that is stochastic in nature and applies a strong

augmentation to it
α : a X → X function that is stochastic in nature and applies a weak

augmentation to it
ρ : imbalance factor
B : batch size of samples
Bs : batch of labelled samples
Bu : batch of unlabelled samples
x : an input sample, x ∈ X

p̂m : a pseudo label generating function
pm : distribution of confidence for a model’s prediction on a given sample
w : a K ×K weight matrix that corresponds to a gain matrix G

Errw(F ) : weighted error of F that corresponds to the objective of CSL
Pw : weighted distribution on X
Pi : class conditional distribution of samples for class i

RB,w(F ) : theoretical weighted (cost sensitive) consistency regularizer
Fpl : a pseudo labeler

Lw(F, Fpl) : weighted error between F and Fpl

Lw(F ) : theoretical CSST loss
c : a non-increasing function used in the definition of the c-expansion prop-

erty (Definition 2)
γ : a value of c defined in Assumption 4
β : an upper bound of RB,w(F ) in the optimization problem (4)
Sc : the complement of a set S

10



Method CIFAR-10 CIFAR-100 ImageNet-100

ERM A5000
49m

A5000
6h 47m

RTX3090
15h 8m

LA RTX3090
39m

A5000
6h 9m

A5000
15h 7m

CSL A5000
47m

A5000
6h 40m

A5000
12h

CSST(FixMatch)
w/o KL-Threshold

4 X A5000
21h 0m

4 X A100
2d 19h 16 m

4 X A5000
2d 13h 19m

CSST(FixMatch) 4 X A5000
21h 41m

4 X A5000
2d 11h 52m

4 X A5000
2d 4m

Table 2: Computational requirements and training time (d:days,
h:hours, m:minutes) for experiments relevant to vision datasets. As
we can see some of the experiments on the larger datasets such as
ImageNet requires long compute times.

Method IMDb(ρ = 10) IMDb(ρ = 100) DBpedia-14

ERM 4 X A5000
25m

4 X A5000
29m

4 X A5000
2h 44m

UDA 4 X A5000
44m

4 X A5000
32m

4 X A5000
10h 18m

CSST(UDA) 4 X A5000
49m

4 X A5000
35m

4 X A5000
13h 12m

Table 3: Computational requirements and training time(d:days,
h:hours, m:minutes) for experiments done on NLP datasets. The
DistilBERT model which we are using is pretrained on a language
modeling task, hence it requires much less time for training in com-
parison to vision models which are trained from scratch.

adjusted term for ℓwt
u (p̂m(x), pm(A(x),G) below:247

ℓwt
u (p̂m(x), pm(A(x),G) = −

K∑
i=1

(GTp̂m(x))i log(pm(A(x))i)

= −
K∑
i=1

(GTp̂m(x))i log

(
exp(s(A(x))i)∑K
j=1 exp(s(A(x))j)

)

= −
K∑
i=1

(DTMTp̂m(x))i log

(
exp(s(A(x))i)∑K
j=1 exp(s(A(x))j)

)
The above expression comes from the decomposition G = MD. The above loss function can be248

converted into it’s logit adjusted equivalent variant by following transformation as suggested by249

Narasimhan and Menon [8] which is equivalent in terms of optimisation of deep neural networks:250

ℓwt
u (p̂m(x), pm(A(x),G) ≡ −

K∑
i=1

(MTp̂m(x))i log

(
exp(s(A(x))i − log(Dii))∑K

j=1 exp(s(A(x))j − log(Djj))

)
(13)

The above loss is the consistency loss ℓwt
u that we practically implement for CSST. Further in case251

p̂m(x) is a hard pseudo label y as in FixMatch, the above weighted consistency loss reduces to252

ℓhyb(y, s(A(x))). Further in case the gain matrix G is diagonal the above loss will converge to253

ℓLA(y, s(A(x))). Thus the weighted consistency regularizer can be converted to logit adjusted254

variants ℓLA and ℓhyb based on G matrix.255

H.2 CSST(FixMatch)256

In FixMatch, we use the prediction made by the model on a sample x after applying a weak257

augmentation α and is used to get a hard pseudo label for the models prediction on a strongly258
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augmented sample i.e. A(x). The set of weak augmentations include horizontal flip, We shall refer259

to this pseudo label as p̂m(x). The list of strong augmentations are given in Table 12 of Sohn et al.260

[12]. Weak augmentations include padding, random horizontal flip and cropping to the desired261

dimensions (32X32 for CIFAR and 224X224 for ImageNet). Given a batch of labeled and unlabeled262

samples Bs and Bu, CSST modifies the supervised and un-supervised component of the loss function263

depending upon the non-decomposable objective and its corresponding gain matrix G at a given264

time during training. We assume that in the dataset, a sample x, be it labeled or unlabeled is already265

weakly augmented. vanilla FixMatch’s supervised componenet of the loss function is a simple266

cross entropy loss whereas in our CSST(FixMatch) it is replaced by ℓhyb
s .267

Lhyb
s =

1

|Bs|
∑

x,y∈Bs

ℓhyb(y, s(x)). (14)

268

Lwt
u =

1

|Bu|
∑
x∈Bu

1(DKL(norm(GT p̂m(x)) || pm(x))≤τ)ℓ
wt
u (p̂m(x), pm(A(x)),G)). (15)

In the above expression pm(x) = softmax s(x). The component of the loss function for unlabeled269

data (i.e. consistency regularization) is where one of our contributions w.r.t the novel thresholding270

mechanism comes into light. vanilla FixMatch selects unlabeled samples for which consistency271

loss is non-zero, such that the model’s confidence on the most likely predicted class is above a272

certain threshold. We rather go for a threshold mechanism that select based on the basis of degree of273

distribution match to a target distribution based on G. The final loss function L = Lhyb
s + λuLwt

u ,274

i.e. a linear combination of Lhyb
s and Lwt

u . Since for FixMatch we are dealing with Wide-ResNets275

and ResNets which are deep networks, as mentioned in Section H.1, we shall use the alternate logit276

adjusted formulation as mentioned in Eq. 13 as substitute for ℓwt
u in Eq. 15.277

H.3 CSST(UDA)278

The loss function of UDA is a linear combination of supervised loss and consistency loss on unlabeled279

samples. The former is the cross entropy (CE) loss, while the latter for the unlabeled samples280

minimizes the KL-divergence between the model’s predicted label distribution on an input sample281

and its augmented sample. Often the predicted label distribution on the unaugmented sample is282

sharpened. The augmentation we used was a English-French-English backtranslation based on the283

MarianMT [4] fast neural machine translation model. In UDA supervised component of the loss284

is annealed using a method described as Training Signal Annealing (TSA), where the CE loss is285

considered only for those labeled samples whose maxi pm(x)i < τt, where t is a training time step.286

We observed that using TSA in a long tailed setting leads to overfitting on the head classes and hence287

chose to not include the same in our final implementation.288

CSST modifies the supervised and unsupervised component of the loss function in UDA depending289

upon a given objective and its corresponding gain matrix G at a given time during training. The290

supervised component of the loss function for a given constrained optimisation problem and a gain291

matrix G, is the hybrid loss ℓhyb
s . For the consistency regularizer part of the loss function, we minimize292

the KL-divergence between a target distribution and the model’s prediction label distribution on293

its augmented version. The target distribution is norm(GT p̂m(x)), where p̂m(x) is the sharpened294

prediction of the label distribution by the model. Given a batch of labeled and unlabeled samples295

Bs and Bu, the final loss function in CSST(UDA) is a linear combination of Lhyb
s and Lwt

u , i.e296

L = Lhyb
s + λuLwt

u .297

Lhyb
s =

1

|Bs|
∑

x,y∈Bs

ℓhyb(pm(x), y). (16)

Lwt
u =

1

|Bu|
∑
x∈Bu

1(DKL(norm(GT p̂m(x)) || pm(x))≤τ)ℓ
wt
u (p̂m(x), pm(A(x),G)). (17)

Since for UDA, we are dealing with DistilBERT, as mentioned in Section H.1, we shall use the298

alternate formulation as mentioned in Eq. 13 as substitute for ℓwt
u in Eq. above.299
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I Threshold mechanism for diagonal Gain Matrix300

Consider the case when the gain matrix is a diagonal matrix. The loss function Lwt
u (Bu) as defined301

in (7) makes uses of a threshold function that selects samples based on the KL divergence based302

threshold between the target distribution as defined by the gain matrix G and the models predicted303

distribution of confidence over the classes.304

Threshold function := 1(DKL(norm(GT p̂m(x)) || pm(x))≤τ) (18)

Since G is a diagonal matrix and the pseudo-label p̂m(x) is one hot, the norm(GT p̂m(x)) is a305

one-hot vector. The threshold function’s KL divergence based criterion can be expanded as follows306

where ŷ is the pseudo-label’s maximum class’s index:307

DKL(norm(GT p̂m(x))||pm(x)) = − log pm(x)ŷ < τ (19)

The above equations represents a threshold on the negative log-confidence of the model’s prediction308

for a given unlabeled sample, for the pseudo-label class (ŷ). This can be further simplified to309

pm(x)ŷ ≥ exp (−τ) which is simply a threshold based on the model’s confidence. Since pseudo-310

label is generated from the model’s prediction, this threshold is nothing but a selection criterion to311

select only those samples whose maximum confidence for a predicted hard pseudo-label is above312

a fixed threshold. This is identical to the threshold function which is used in Fixmatch [12] i.e.313

max(pm(x)) ≥ exp(−τ). In FixMatch this exp(−τ) is set to 0.95.314

J Dataset315

CIFAR-10 and CIFAR-100 [5]. are image classification datasets of images of size 32 X 32. Both the316

datasets have a size of 50k samples and by default, they have a uniform sample distribution among its317

classes. CIFAR-10 has 10 classes while CIFAR-100 has 100 classes. The test set is a balanced set of318

10k images.319

ImageNet-100 [10]. is an image classification dataset carved out of ImageNet-1k by selecting the320

first 100 classes. The distribution of samples is uniform with 1.3k samples per class. The test set321

contains 50 images per class. All have a resolution of 224X224, the same as the original ImageNet-1k322

dataset.323

IMDb[7]. dataset is a binary text sentiment classification dataset. The data distribution is uniform by324

default and has a total 25k samples in both trainset and testset. In this work, we converted the dataset325

into a longtailed version of ρ = 10, 100 and selected 1k labeled samples while truncating the labels326

of the rest and using them as unlabeled samples.327

DBpedia-14[6]. is a topic classification dataset with a uniform distribution of labeled samples. The328

dataset has 14 classes and has a total of 560k samples in the trainset and 70k samples in the test set.329

Each sample, apart from the content, also has title of the article that could be used for the task of330

topic classification. In our experiments, we only make use of the content.331

K Algorithms332

We provide a detailed description of algorithms used for optimizing non decomposable objectives333

through CSST(FixMatch) ans CSST(UDA). Algorithm 1 is used for experiments in Section 5 for334

maximizing worst-case recall (i.e. min recall using CSST(FixMatch) and CSST(UDA)). Algorithm335

2 is used for experiments in Section 5 for maximizing recall under coverage constraints (i.e. min336

coverage experiments on CIFAR10-LT, CIFAR100-LT and ImageNet100-LT).337
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Algorithm 1 CSST-based Algorithm for Maximizing Worst-case Recall

Inputs: Training set Ss(labeled) and Su(unlabeled) , Validation set Sval, Step-size ω ∈ R+, Class
priors π
Initialize: Classifier h0, Multipliers λ0 ∈ ∆K−1

for t = 0 to T − 1 do
Update λ:

λt+1
i = λt

i exp (−ω · recalli[F t]) ,∀i,
λ = norm(λ)
G = diag(λt+1

1 /π1, . . . , λ
t+1
K /πK)

Compute ℓwt
u , ℓhyb

s using G
Cost-sensitive Learning (CSL) for FixMatch:

Bu ∼ Su, Bs ∼ Ss // Sample batches of data
F t+1 ∈ argminF

∑
Bu,Bs

λuLwt
u + Lhyb

s // Replaced by few steps of SGD
end for
return FT

Algorithm 2 CSST-based Algorithm for Maximizing Mean Recall s.t. per class coverage > 0.95/K

Inputs: Training set Ss(labeled) and Su(unlabeled) , Validation set Sval, Step-size ω ∈ R+, Class
priors π
Initialize: Classifier h0, Multipliers λ0 ∈ RK

+
for t = 0 to T − 1 do

Update λ:
λt+1
i = λt

i − ω
(
covi[F t]− 0.95

K

)
,∀i

λt+1
i = max{0, λt+1

i },∀i ∈ [K] // Projection to R+

G = diag(λt+1
1 /π1, . . . , λ

t+1
K /πK) + 1Kλ⊤

Compute ℓwt
u , ℓhyb

s using G
Cost-sensitive Learning (CSL) for FixMatch:

Bu ∼ Su, Bs ∼ Ss // Sample batches of data
F t+1 ∈ argminF

∑
Bu,Bs

λuLwt
u + Lhyb

s // Replaced by few steps of SGD
end for
return FT

L Details of Experiments and Hyper-parameters338

The experiment of maxF mini recalli[f ] and maxF recall[F ] s.t. covi[F ] > 0.95
K ,∀i ∈ [K]339

was performed on the long tailed version of CIFAR-10, IMDb(ρ = 10, 100) and DBpedia-14340

datasets. This was because the optimisation of the aforementioned 2 objectives is stable for341

cases with low number of classes. Hence the objective of maxF min(recallH[F ], recallT [F ]) and342

maxF recall[F ] s.t. minH,T covH,T [F ] > 0.95
K is a relatively easier objective for datasets with large343

number of classes, hence were the optimisation objectives for CIFAR-100 and ImageNet-100 long344

tailed datasets. For all experiments for a given dataset, we used the same values for a given common345

hyperparameter. We ablated the threshold for our novel unlabeled sample selection criterion(τ ) and346

the ratio of labeled and unlabeled samples, given fixed number of unlabeled samples(µ) and are347

available in Fig. 4b.348

M Statistical Analysis349

We establish the statistical soundness and validity of our results we ran our experiments on 3 different350

seeds. Due to the computational requirements for some of the experiments (≈2days) we chose to351

run the experiments on multiple seeds for a subset of tasks i.e. for maximising the minimum recall352

among all classes for CIFAR-10 LT. We observe that the std. deviation is significantly smaller than353

the average values for mean recall and min. recall and our performance metrics fall within our std.354

deviation hence validating the stability and soundness of training.355
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Parameter CIFAR-10 CIFAR-100 ImageNet-100 IMDb
(ρ = 10)

IMDb
(ρ = 100) DBpedia-14

τ 0.05 0.05 0.05 0.1 0.1 0.1
λu 1.0 1.0 1.0 0.1 0.1 0.1
µ 4.0 4.0 4.0 13.8 12.6 133

|Bs| 64 64 64 32 32 32
|Bu| 256 256 256 128 128 128

lr 3e-3 3e-3 0.1 1e-5 1e-5 1e-5
ω 0.25 0.25 0.1 0.5 0.5 0.5

SGD steps
before eval 32 100 500 50 50 100

optimizer SGD SGD SGD AdamW AdamW AdamW
KL-Thresh 0.95 0.95 0.95 0.9 0.9 0.9

Weight Decay 1e-4 1e-3 1e-4 1e-2 1e-2 1e-2
ρ 100 10 10 10 100 100
λu 1.0 1.0 1.0 0.1 0.1 0.1

Arch. WRN-28-2 WRN-28-8 ResNet50 DistilBERT DistilBERT DistilBERT
Table 4: This table shows us the detailed hyper parameters used for CSST(FixMatch) for the long
tailed datasets CIFAR-10, CIFAR-100, ImageNet-100 and CSST(UDA) on IMDb, DBpedia-14. All
the datasets were converted to their respective long tailed versions based on the imbalance factor ρ,
and a fraction of the samples were used along with their labels for supervision.

Table 5: Avg. and std. deviation of Mean Recall and
Min. Recall for CIFAR-10 LT

Method Mean Recall Min Recall
ERM 0.52 ± 0.01 0.27 ± 0.02
LA 0.54 ± 0.02 0.37 ± 0.01
CSL 0.63 ± 0.01 0.43 ± 0.04
Vanilla (FixMatch) 0.78 ± 0.01 0.47 ± 0.02
CSST(FixMatch) 0.75 ± 0.01 0.72 ± 0.01

N Additional Details356

N.1 Formal Statement Omitted in Sec. 2.2357

In Sec. 2.2, we stated that learning with the hybrid loss ℓhyb gives the Bayes-optimal classifier for the358

CSL (2). However, due to space constraint, we did not provide a formal statement. In this section, we359

provide a formal statement of it for clarity.360

PROPOSITION ([8] Proposition 4). For any diagonal matrix D ∈ RK×K with Dii > 0,∀i,361

M ∈ RK×K , and G = MD, the hybrid loss ℓhyb is calibrated for G. That is, for any362

score function ŝ : X → RK that minimizes E(x,y)∼D

[
ℓhyb(y, s(x))

]
, the associated classifier363

F (x) = argmaxy∈[K] ŝi(x) is the Bayes-optimal classifier for CSL (2).364

N.2 Comparison with the (a, c̃)-expansion Property in [14]365

We compare the c-expansion property with (a, c̃)-expansion property proposed by [14], where366

a ∈ (0, 1) and c̃ > 1. Here we say a distribution Q on X satisfies the (a, c̃)-expansion property if367

Q(N (S)) ≥ c̃ for any S ⊂ X with Q(S) ≤ a. If Q satisfies (a, c̃)-expansion property [14] with368

c̃ > 1, then Q satisfies the c-expansion property, where the function c is defined as follows. c(p) = c̃369

if p ≤ a and c(p) = 1 otherwise. On the other hand, if Q-satisfies c-expansion property, then for any370

a ∈ (0, 1) and S ⊆ X with Q(S) ≤ a, we have Q(N (S)) ≥ c(Q(S))Q(S) ≥ c(a)Q(S) since c is371

non-increasing. Therefore, Q satisfies the (a, c(a))-expansion property. Thus, we could say these two372

conditions are equivalent. To simplify our analysis, we use our definition of the expansion property.373

In addition, Wei et al. [14] showed that the (a, c̃)-expansion property is realistic for vision. Although374

they assumed the (a, c)-expansion property for each Pi (1 ≤ i ≤ K) and we assume the c-expansion375

property for Pw, it follows that the c-expansion property for Pw is also realistic for vision, since Pw376

is a linear combination of Pi.377
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N.3 Comparison of the Theoretical Assumptions with that of [14]378

In the last paragraph of Sec. 3.1, we explain the difference in the theoretical assumptions between379

ours and [14]. Wei et al. [14] assumed the existence of the ground-truth classifier and the supports of380

Pi are disjoint, but we cannot assume these conditions due to our problem setting (i.e., optimizing the381

cost sensitive objectives). In this section, we provide more intuitive explanation using a toy example.382

For simplicity, we assume K = 2, X ⊂ R and w = diag(w1, w2) with w1, w2 ≥ 0.383

In Fig. 1, we consider the cost sensitive (weighted) objective in the case where supports of P1384

and P2 are disjoint. As the figure indicates the Bayes optimal classifier x 7→ argmaxi∈[K] wiPi(x)385

for the cost sensitive objective does not depend on w. The ground truth classifier (i.e., x 7→386

argmaxi∈[K] Pi(x)) is the best classifier for any w.387

On the other hand, in Fig. 2, we consider a more generalized setting where the supports are not388

necessarily disjoint. In this case, the optimal classifier for the cost sensitive objective depends on w.389

This simple example suggests that we have to generalize [14] by removing the restrictive assumptions390

on the supports and the ground truth classifier.391

w1 P_1(x), w1 = 1.0
w2 P_2(x), w2 = 10.0
optimal decision boundary

w_1 P_1(x), w_1 = 10.0
w_2 P_2(x), w_2 = 1.0
optimal decision boundary

Figure 1: In the perfect setting where two distributions have disjoint supports, the Bayes optimal
classifier for the CSL is identical to the ground truth classifier (x 7→ argmaxi Pi(x)) for any choices
of weights (w1, w2).

w_1 P_1(x), w1 = 1.0
w_2 P_2(x), w2 = 10.0
optimal decision boundary

w_1 P_1(x), w1=10.0
w_2 P_2(x), w2=1.0
optimal decision boundary

Figure 2: In more generalized settings, the Bayes optimal classifier for the CSL depends on the choice
of weights (i.e., gain matrix). In the left figure, we put more weight on the second class than the first
class. In the right figure, we put less weight on the second class than the first class. By decreasing the
weight w2, the optimal decision boundary for the CSL moves to the right.
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