
A Notation436

Table 5: Notations

Xt multivariate time series input at timestamps t, X ∈ RN×T

xt the multivariate values of N series at timestamp t, xt ∈ RN

Yt the next τ timestamps of multivariate time series, Yt ∈ RN×τ

Ŷt the prediction values of multivariate time series for next τ timestamps, Ŷt ∈ RN×τ

N the number of series

T the lookback window size

τ the prediction length of multivariate time series forecasting

Gt the hypervariate graph, Gt = {XG
t , A

G
t } attributed to XG

t

XG
t the nodes of the hypervariate graph, XG

t ∈ RNT×1

AG
t the adjacency matrix of Gt, AG

t ∈ RNT×NT

S the Fourier Graph Operator

d the embedding dimension

XG
t the embedding of XG

t , XG
t ∈ RNT×d

X G
t the spectrum of XG

t , X G
t ∈ CNT×d

YG
t the output of FourierGNN, YG

t ∈ CNT×d

θg the parameters of the graph network

θt the parameters of the temporal network

θG the network parameters for hypervariate graphs

Eϕ the embedding matrix, Eϕ ∈ R1×d

κ the kernel function

W the weight matrix

b the complex bias weights

F Discrete Fourier Transform

F−1 Inverse Discrete Fourier Transform

F the forecasting model

B Convolution Theorem437

The convolution theorem [26] is one of the most important properties of the Fourier transform. It438

states the Fourier transform of a convolution of two signals equals the pointwise product of their439

Fourier transforms in the frequency domain. Given a signal x[n] and a filter h[n], the convolution440

theorem can be defined as follows:441

F((x ∗ h)[n]) = F(x)F(h) (9)

where (x ∗ h)[n] =
∑N−1

m=0 h[m]x[(n − m)N] denotes the convolution of x and h, (n − m)N442

denotes (n−m) modulo N, and F(x) and F(h) denote discrete Fourier transform of x[n] and h[n],443

respectively.444

12

C Explanations and Proofs445

C.1 The Explanations of the Hypervariate Graph Structure446

Note that the time lag effect between time-series variables is a common phenomenon in real-world447

multivariate time series scenarios, for example, the time lag influence between two financial assets448

(e.g. dollar and gold) of a portfolio. It is beneficial but challenging to consider dependencies between449

different variables under different timestamps.450

The hypervariate graph connecting any two variables at any two timestamps aims to encode high-451

resolution spatiotemporal dependencies. It embodies not only the intra-series temporal dependencies452

(node connections of each individual variable), inter-series spatial dependencies (node connections453

under each single time step), and also the time-varying spatiotemporal dependencies (node con-454

nections between different variables at different time steps). By leveraging the hypervariate graph455

structure, we can effectively learn the spatial and temporal dependencies. This approach is distinct456

from previous methods that represent the spatial and temporal dependencies separately using two457

network structures.458

C.2 The Interpretation of n-invariant FGO459

Why F(κ) ∈ Cn×d×d? From Definition 2, we know that the kernel κ is defined as a matrix-460

valued projection, i.e., κ : [n] × [n] −→ Rd×d. Note that we assume κ is in the special case of the461

Green’s kernel, i.e., a translation-invariant kernel κ[i, j] = κ[i− j]. Accordingly, κ can be reduced:462

κ : [n] −→ Rd×d where we can parameterize F(κ) with a complex-valued matrix Cn×d×d.463

What is n-invariant FGO? Turning to our case of the fully-connected hypervariate graph, we can464

consider a special case of κ, i.e., a space-invariant kernel κ[i, j] = κ[ϱ] with ϱ being a constant scalar.465

Accordingly, we can parameterize FGO S with a n-invariant complex-valued matrix Cd×d.466

The interpretation of n-invariant FGO. An n-invariant FGO is similar to a shared-weight convo-467

lution kernel or filter of CNNs that slide along ([n]× [n]) input features, which effectively reduces468

parameter volumes and saves computation costs. Note that although we adopt the same transforma-469

tion (i.e., the n-invariant FGO) over NT frequency points, we embed the raw MTS inputs in the470

d-dimension distributive space beforehand and then perform FourierGNN over MTS embeddings,471

which can be analogized as d convolution kernels/filters in each convolutional layer in CNNs. This472

can ensure FourierGNN is able to learn informative features/patterns to improve its model capacity473

(See the following analysis of the effectiveness of n-invariant FGO).474

The effectiveness of n-invariant FGO. In addition, the n-invariant parameterized FGO is empirically475

proven effective to improve model generalization and achieve superior forecasting performance (See476

the ablation study in Section 5.3 for more details). Although parameterizing F(κ) ∈ Cn×d×d477

(i.e., an n-variant FGO) may be more powerful and flexible than the n-invariant FGO in terms of478

forecasting performance, it introduces much more parameters and training time costs, especially in479

case of multi-layer FourierGNN, and may obtain inferior performance due to inadequate training480

or overfitting. As indicated in Table 6, the FourierGNN with the n-invariant FGO achieves slightly481

better performance than that with the n-variant FGO on ECG and COVID-19, respectively. Notably,482

the FourierGNN with the n-variant FGO introduces a much larger parameter volume proportional483

to n and requires significantly more training time. In contrast, n-invariant FGO is n-agnostic and484

lightweight, which is a more wise and efficient alternative. These results confirm our design and485

verify the effectiveness and applicability of n-invariant FGO.486

Table 6: Comparison between FourierGNN models with n-invariant FGO and n-variant FGO on the
ECG and COVID-19 datasets.

Datasets Models Parameters (M) Training (s/epoch) MAE RMSE MAPE (%)

ECG n-invariant 0.18 12.45 0.052 0.078 10.97
n-variant 82.96 104.06 0.053 0.078 11.05

COVID-19 n-invariant 1.06 0.62 0.123 0.168 71.52
n-variant 130.99 7.46 0.129 0.174 72.12

13

C.3 Proof of Proposition 1 and Interpretation of FourierGNN487

Proposition 1. Given a graph G = (X,A) with node features X ∈ Rn×d and adjacency matrix488

A ∈ Rn×n, the recursive multiplication of FGOs in Fourier space is equivalent to multi-order489

convolutions in the time domain:490

F−1(F(X)S0:k) = Ak:0XW0:k, s.t. S0:k =

k∏
i=0

Si, Ak:0 =

0∏
i=k

Ai,W0:k =

k∏
i=0

Wi

where A0,S0,W0 are the identity matrix, Ak ∈ Rn×n corresponds to the k-th diffusion step sharing491

the same sparsity pattern of A, Wk ∈ Rd×d is the k-th weight matrix, Sk ∈ Cd×d is the k-th FGO492

satisfying F(AkXWk) = F(X)Sk, and F and F−1 denote DFT and its inverse, respectively.493

Proof. The proof aims to demonstrate the equivalence between the recursive multiplication of FGOs494

in Fourier space and multi-order convolutions in the time domain. According to F(AkXWk) =495

F(X)Sk, we expand the multi-order convolutions A0:KXW0:K in the time domain using a set of496

FGOs in Fourier space:497

F(AKAK−1 · · ·A0XW0 · · ·WK−1WK) = F(AK(AK−1...A0XW0 · · ·WK−1)WK)

= F(AK−1...A0XW0 · · ·WK−1)SK

= F(AK−1(AK−2...A0XW0 · · ·WK−2)WK−1)SK

= F(AK−2...A0XW0 · · ·WK−2)SK−1SK

= · · ·
= F(X)S0 · · · SK−1SK

= F(X)S0:K

(10)
where it yields F−1(F(X)S0:K) = AK:0XW0:K with S0:K =

∏K
i=0 Si,AK:0 =

∏0
i=K Ai and498

W0:K =
∏K

i=0 Wi. Proved.499

Thus, the FourierGNN can be rewritten as (for convenience, we exclude the non-linear activation500

function σ and learnable bias parameters b):501

F−1(

K∑
k=0

F(X)S0:K) = A0XW0 +A1(A0XW0)W1 + ...+AK:0XW0:K (11)

From the right part of the above equation, we can observe that it assigns different weights to weigh502

the information of different neighbors in each diffusion order. This property enable FourierGNN to503

capture time-varying correlations, which is empirically verified in our experiments (See Appendix504

H.2 for more details).505

D Compared with Other Graph Neural Networks506

Graph Convolutional Networks. Graph convolutional networks (GCNs) depend on the Laplacian507

eigenbasis to perform the multi-order graph convolutions over a given graph structure. Compared508

with GCNs, FourierGNN as an efficient alternative to multi-order graph convolutions has three main509

differences: 1) No eigendecompositions or similar costly matrix operations are required. FourierGNN510

transforms the input into Fourier domain by discrete Fourier transform (DFT) instead of graph Fourier511

transform (GFT); 2) Explicitly assigning various importance to nodes of the same neighborhood512

with different diffusion steps. FourierGNN adopts different Fourier Graph Operators S in different513

diffusion steps corresponding to the time-varying dependencies among nodes; 3) FourierGNN is514

invariant to the discretization N , T . It parameterizes the graph convolution via Fourier bases invariant515

graph structure and graph scale.516

Graph Attention Networks. Graph attention networks (GATs) are non-spectral attention-based517

graph neural networks. GATs use node representations to calculate the attention weights (i.e., edge518

weights) varying with different graph attention layers. Accordingly, both GATs and FourierGNN do519

14

not depend on eigendecompositions and adopt varying edge weights with different diffusion steps520

(layers). However, FourierGNN can efficiently perform graph convolutions in the Fourier space. For521

a complete graph, the time complexity of the attention calculation of K layers is proportional to522

Kn2 where n is the number of nodes, while a K-layer FourierGNN infers the graph structure in523

Fourier space with the time complexity proportional to n log n. In addition, compared with GATs that524

implicitly achieve edge-varying weights with different layers, FourierGNN adopts different FGOs in525

different diffusion steps explicitly.526

E Experiment Details527

E.1 Datasets528

We use seven public multivariate benchmarks for multivariate time series forecasting and these529

benchmark datasets are summarized in Table 7.530

Table 7: Summary of datasets.

Datasets Solar Wiki Traffic ECG Electricity COVID-19 METR-LA

Samples 3650 803 10560 5000 140211 335 34272
Variables 592 2000 963 140 370 55 207

Granularity 1hour 1day 1hour - 15min 1day 5min
Start time 01/01/2006 01/07/2015 01/01/2015 - 01/01/2011 01/02/2020 01/03/2012

Solar1: This dataset is about solar power collected by National Renewable Energy Laboratory. We531

choose the power plant data points in Florida as the data set which contains 593 points. The data is532

collected from 2006/01/01 to 2016/12/31 with the sampling interval of every 1 hour.533

Wiki2: This dataset contains a number of daily views of different Wikipedia articles and is collected534

from 2015/7/1 to 2016/12/31. It consists of approximately 145k time series and we randomly choose535

2k from them as our experimental data set.536

Traffic3: This dataset contains hourly traffic data from 963 San Francisco freeway car lanes. The537

traffic data are collected since 2015/01/01 with the sampling interval of every 1 hour.538

ECG4: This dataset is about Electrocardiogram(ECG) from the UCR time-series classification archive539

[34]. It contains 140 nodes and each node has a length of 5000.540

Electricity5: This dataset contains the electricity consumption of 370 clients and is collected since541

2011/01/01. The data sampling interval is every 15 minutes.542

COVID-196: This dataset is about COVID-19 hospitalization in the U.S. states of California (CA)543

from 01/02/2020 to 31/12/2020 provided by the Johns Hopkins University with the sampling interval544

of every one day.545

METR-LA7: This dataset contains traffic information collected from loop detectors in the highway546

of Los Angeles County from 01/03/2012 to 30/06/2012. It contains 207 sensors and the data sampling547

interval is every 5 minutes.548

E.2 Baselines549

In experiments, we conduct a comprehensive comparison of the forecasting performance between our550

FourierGNN and representative and state-of-the-art (SOTA) models as follows.551

1https://www.nrel.gov/grid/solar-power-data.html
2https://www.kaggle.com/c/web-traffic-time-series-forecasting/data
3https://archive.ics.uci.edu/ml/datasets/PEMS-SF
4http://www.timeseriesclassification.com/description.php?Dataset=ECG5000
5https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
6https://github.com/CSSEGISandData/COVID-19
7https://github.com/liyaguang/DCRNN

15

https://www.nrel.gov/grid/solar-power-data.html
https://www.kaggle.com/c/web-traffic-time-series-forecasting/data
https://archive.ics.uci.edu/ml/datasets/PEMS-SF
http://www.timeseriesclassification.com/description.php?Dataset=ECG5000
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://github.com/CSSEGISandData/COVID-19
https://github.com/liyaguang/DCRNN

VAR [29]: VAR is a classic linear autoregressive model. We use the Statsmodels library (https:552

//www.statsmodels.org) which is a Python package that provides statistical computations to553

realize the VAR.554

DeepGLO [31]: DeepGLO models the relationships among variables by matrix factorization and555

employs a temporal convolution neural network to introduce non-linear relationships. We download556

the source code from: https://github.com/rajatsen91/deepglo. We follow the recommended557

configuration as our experimental settings for wiki, electricity, and traffic datasets. For covid datasets,558

the vertical and horizontal batch size is set to 64, the rank of the global model is set to 64, the number559

of channels is set to [32, 32, 32, 1], and the period is set to 7.560

LSTNet [30]: LSTNet uses a CNN to capture inter-variable relationships and an RNN to discover561

long-term patterns. We download the source code from: https://github.com/laiguokun/562

LSTNet. In our experiment, we use the recommended configuration where the number of CNN563

hidden units is 100, the kernel size of the CNN layers is 4, the dropout is 0.2, the RNN hidden units564

is 100, the number of RNN hidden layers is 1, the learning rate is 0.001 and the optimizer is Adam.565

TCN [6]: TCN is a causal convolution model for regression prediction. We download the source code566

from: https://github.com/locuslab/TCN. We utilize the same configuration as the polyphonic567

music task exampled in the open source code where the dropout is 0.25, the kernel size is 5, the568

number of hidden units is 150, the number of levels is 4 and the optimizer is Adam.569

Reformer [32]: Reformer combines the modeling capacity of a Transformer with an architecture570

that can be executed efficiently on long sequences and with small memory use. We download571

the source code from: https://github.com/thuml/Autoformer. We follow the recommended572

configuration as the experimental settings.573

Informer [7]: Informer leverages an efficient self-attention mechanism to encode the dependen-574

cies among variables. We download the source code from: https://github.com/zhouhaoyi/575

Informer2020. We follow the recommended configuration as our experimental settings where the576

dropout is 0.05, the number of encoder layers is 2, the number of decoder layers is 1, the learning577

rate is 0.0001, and the optimizer is Adam.578

Autoformer [8]: Autoformer proposes a decomposition architecture by embedding the series de-579

composition block as an inner operator, which can progressively aggregate the long-term trend part580

from intermediate prediction. We download the source code from: https://github.com/thuml/581

Autoformer. We follow the recommended configuration as our experimental settings with 2 encoder582

layers and 1 decoder layer.583

FEDformer [20]: FEDformer proposes an attention mechanism with low-rank approximation in584

frequency and a mixture of expert decomposition to control the distribution shifting. We download the585

source code from: https://github.com/MAZiqing/FEDformer. We use FEB-f as the Frequency586

Enhanced Block and select the random mode with 64 as the experimental mode.587

SFM [22]: On the basis of the LSTM model, SFM introduces a series of different frequency compo-588

nents in the cell states. We download the source code from: https://github.com/z331565360/589

State-Frequency-Memory-stock-prediction. We follow the recommended settings where the590

learning rate is 0.01, the frequency dimension is 10, the hidden dimension is 10 and the optimizer is591

RMSProp.592

StemGNN [4]: StemGNN leverages GFT and DFT to capture dependencies among variables in593

the frequency domain. We download the source code from: https://github.com/microsoft/594

StemGNN. We use the recommended configuration of stemGNN as our experiment setting where the595

optimizer is RMSProp, the learning rate is 0.0001, the number of stacked layers is 5, and the dropout596

rate is 0.5.597

MTGNN [11]: MTGNN proposes an effective method to exploit the inherent dependency relation-598

ships among multiple time series. We download the source code from: https://github.com/599

nnzhan/MTGNN. Because the experimental datasets have no static features, we set the parameter600

load_static_feature to false. We construct the graph by the adaptive adjacency matrix and add the601

graph convolution layer. Regarding other parameters, we adopt the recommended settings.602

GraphWaveNet [15]: GraphWaveNet introduces an adaptive dependency matrix learning to cap-603

ture the hidden spatial dependency. We download the source code from: https://github.com/604

16

https://www.statsmodels.org
https://www.statsmodels.org
https://www.statsmodels.org
https://github.com/rajatsen91/deepglo
https://github.com/laiguokun/LSTNet
https://github.com/laiguokun/LSTNet
https://github.com/laiguokun/LSTNet
https://github.com/locuslab/TCN
https://github.com/thuml/Autoformer
https://github.com/zhouhaoyi/Informer2020
https://github.com/zhouhaoyi/Informer2020
https://github.com/zhouhaoyi/Informer2020
https://github.com/thuml/Autoformer
https://github.com/thuml/Autoformer
https://github.com/thuml/Autoformer
https://github.com/MAZiqing/FEDformer
https://github.com/z331565360/State-Frequency-Memory-stock-prediction
https://github.com/z331565360/State-Frequency-Memory-stock-prediction
https://github.com/z331565360/State-Frequency-Memory-stock-prediction
https://github.com/microsoft/StemGNN
https://github.com/microsoft/StemGNN
https://github.com/microsoft/StemGNN
https://github.com/nnzhan/MTGNN
https://github.com/nnzhan/MTGNN
https://github.com/nnzhan/MTGNN
https://github.com/nnzhan/Graph-WaveNet
https://github.com/nnzhan/Graph-WaveNet
https://github.com/nnzhan/Graph-WaveNet

nnzhan/Graph-WaveNet. Since our datasets have no prior defined graph structures, we use only605

adaptive adjacent matrix. We add a graph convolution layer and randomly initialize the adjacent606

matrix. We adopt the recommended configuration as our experimental settings where the learning607

rate is 0.001, the dropout is 0.3, the number of epochs is 50, and the optimizer is Adam.608

AGCRN [2]: AGCRN proposes a data-adaptive graph generation module for discovering spatial609

correlations from data. We download the source code from: https://github.com/LeiBAI/610

AGCRN. We follow the recommended configuration as our experimental settings where the embedding611

dimension is 10, the learning rate is 0.003, and the optimizer is Adam.612

TAMP-S2GCNets [9]: TAMP-S2GCNets explores the utility of MP to enhance knowledge represen-613

tation mechanisms within the time-aware DL paradigm. We download the source code from: https:614

//www.dropbox.com/sh/n0ajd5l0tdeyb80/AABGn-ejfV1YtRwjf_L0AOsNa?dl=0. TAMP-615

S2GCNets requires predefined graph topology and we use the California State topology provided by616

the source code as input. We adopt the recommended configuration as our experimental settings on617

COVID-19.618

DCRNN [16]: DCRNN uses bidirectional graph random walk to model spatial dependency and619

recurrent neural network to capture the temporal dynamics. We download the source code from:620

https://github.com/liyaguang/DCRNN. We follow the recommended configuration as our621

experimental settings with the batch size is 64, the learning rate is 0.01, the input dimension is 2 and622

the optimizer is Adam. DCRNN requires a pre-defined graph structure and we use the adjacency623

matrix as the pre-defined structure provided by the METR-LA dataset.624

STGCN [1]: STGCN integrates graph convolution and gated temporal convolution through625

spatial-temporal convolutional blocks. We download the source code from:https://github.com/626

VeritasYin/STGCN_IJCAI-18. We use the recommended configuration as our experimental set-627

tings where the batch size is 50, the learning rate is 0.001 and the optimizer is Adam. STGCN requires628

a pre-defined graph structure and we leverage the adjacency matrix as the pre-defined structures629

provided by the METR-LA dataset.630

CoST [19]: CoST separates the representation learning and downstream forecasting task and proposes631

a contrastive learning framework that learns disentangled season-trend representations for time series632

forecasting tasks. We download the source code from: https://github.com/salesforce/CoST.633

We set the representation dimension to 320, the learning rate to 0.001, and the batch size to 32.634

Inputs are min-max normalization, we perform a 70/20/10 train/validation/test split for the METR-LA635

dataset and 60/20/20 for the COVID-19 dataset.636

E.3 Evaluation Metrics637

We use MAE (Mean Absolute Error), RMSE (Root Mean Square Error), and MAPE (Mean Absolute638

Percentage Error) as the evaluation metrics in the experiments.639

Specifically, given the groudtruth at timestamps t, Yt = [xt+1, ...,xt+τ] ∈ RN×τ , and the predictions640

Ŷt = [x̂t+1, ..., x̂t+τ] ∈ RN×τ for future τ steps at timestamp t, the metrics are defined as follows:641

MAE =
1

τN

N∑
i=1

τ∑
j=1

|xij − x̂ij | (12)

642

RMSE =

√√√√ 1

τN

N∑
i=1

τ∑
j=1

(xij − x̂ij)
2 (13)

643

MAPE =
1

τN

N∑
i=1

τ∑
j=1

∣∣∣∣xij − x̂ij

xij

∣∣∣∣× 100% (14)

with xij ∈ Yt and x̂ij ∈ Ŷt.644

E.4 Experimental Settings645

We summarize the implementation details of the proposed FourierGNN as follows. Note that the646

details of the baselines are introduced in their corresponding descriptions (see Section E.2).647

17

https://github.com/nnzhan/Graph-WaveNet
https://github.com/nnzhan/Graph-WaveNet
https://github.com/LeiBAI/AGCRN
https://github.com/LeiBAI/AGCRN
https://github.com/LeiBAI/AGCRN
https://www.dropbox.com/sh/n0ajd5l0tdeyb80/AABGn-ejfV1YtRwjf_L0AOsNa?dl=0
https://www.dropbox.com/sh/n0ajd5l0tdeyb80/AABGn-ejfV1YtRwjf_L0AOsNa?dl=0
https://www.dropbox.com/sh/n0ajd5l0tdeyb80/AABGn-ejfV1YtRwjf_L0AOsNa?dl=0
https://github.com/liyaguang/DCRNN
https://github.com/VeritasYin/STGCN_IJCAI-18
https://github.com/VeritasYin/STGCN_IJCAI-18
https://github.com/VeritasYin/STGCN_IJCAI-18
https://github.com/salesforce/CoST

Network details. The fully connected feed-forward network (FFN) consists of three linear transfor-648

mations with LeakyReLU activations in between. The FFN is formulated as follows:649

X1 = LeakyReLU(YG
t W1 + b1)

X2 = LeakyReLU(X1W2 + b2)

Ŷ = X2W3 + b3

(15)

where W1 ∈ R(Td)×dffn
1 , W2 ∈ Rdffn

1 ×dffn
2 and W3 ∈ Rdffn

2 ×τ are the weights of the three650

layers respectively, and b1 ∈ Rdffn
1 , b2 ∈ Rdffn

2 and b3 ∈ Rτ are the biases of the three layers651

respectively. Here, dffn1 and dffn2 are the dimensions of the three layers. In addition, we adopt a652

ReLU activation function in Equation 6.653

Training details. We carefully tune the hyperparameters, including the embedding size, batch654

size, dffn1 and dffn2 , on the validation set and choose the settings with the best performance for655

FourierGNN on different datasets. Specifically, the embedding size and batch size are tuned over656

{32, 64, 128, 256, 512} and {2, 4, 8, 16, 32, 64, 128} respectively. For the COVID-19 dataset, the657

embedding size is 256, and the batch size is set to 4. For the Traffic, Solar, and Wiki datasets, the658

embedding size is 128, and the batch size is set to 2. For the METR-LA, ECG, and Electricity659

datasets, the embedding size is 128, and the batch size is set to 32.660

To reduce the number of parameters, we adopt a linear transform to reshape the original time661

domain representation YG
t ∈ RNT×d to Yt ∈ RN×T×d, and map Yt to a low-dimensional tensor662

Yt ∈ RN×l×d with l < T . We then reshape Yt ∈ RN×(ld) and feed it to FFN. We perform a grid663

search on the dimensions of FFN, i.e., dffn1 and dffn2 , over {32, 64, 128, 256, 512} and tune the664

intermediate dimension l over {2, 4, 6, 8, 12}. The settings of the three hyperparameters over all665

datasets are shown in Table 8. By default, we set the diffusion step (layers) K = 3 for all datasets.666

Table 8: Dimension settings of FFN on different datasets. ∗ denotes that we feed the original time
domain representation to FFN without the dimension reduction.

Datasets Solar Wiki Traffic ECG Electricity COVID-19 META-LR

l 6 2 2 ∗ 4 8 4

dffn1 64 64 64 64 64 256 64

dffn2 256 256 256 256 256 512 256

E.5 Details for Visualization Experiments667

To verify the effectiveness of FourierGNN in learning the spatiotemporal dependencies on the668

hypervariate graph, we obtain the output of FourierGNN as the node representation, denoted as YG
t =669

IDFT(FourierGNN(XG
t)) ∈ RNT×d with Inverse Discrete Fourier Transform (IDFT). Then, we670

visualize the adjacency matrix A calculated based the flatten node representation YG
t ∈ RNT×d,671

formulated as A = YG
t (Y

G
t)

T ∈ RNT×NT , to show the variable correlations. Note that A is672

normalized via A/max(A). Since it is not feasible to directly visualize the huge adjacency matrix673

A of the hypervariate graph, we visualize its different subgraphs in Figures 3, 4, 9, and 10 to better674

verify the learned spatiotemporal information on the hypervariate graph from different perspectives.675

Figure 3. We select 8 counties and visualize the correlations between 12 consecutive time steps for676

each selected county respectively. Figure 3 reflects the temporal correlations within each variable.677

Figure 4: On the METR-LA dataset, we average its adjacency matrix A over the temporal dimension678

(i.e., marginalizing T) to A′ ∈ RN×N . Then, we randomly select 20 detectors out of all N = 207679

detectors and obtain their corresponding sub adjacency matrix (R20×20) from A′ for visualization.680

We further compare the sub-adjacency with the real road map (generated by the Google map tool) to681

verify the learned dependencies between different detectors.682

Figure 9. Since we adopt a 3-layer FourierGNN, we can calculate four adjacency matrices based on683

the spectrum input X G
t of FourierGNN and the outputs of each layer in FourierGNN. Following the684

18

way of visualization in Figure 4, we select 10 counties and two timestamps on the four adjacency685

matrices for visualization. Figure 9 shows the effects of each layer of FourierGNN in filtering or686

enhancing variable correlations.687

Figure 10. On the COVID-19 dataset, we randomly select 10 counties out of N = 55 counties and688

obtain their four sub-adjacency matrices of four consecutive days for visualization. Each of the four689

sub adjacency matrices R10×10 embodies the dependencies between counties in one day. Figure 10690

reflects the time-varying dependencies between counties (i.e., variables).691

F Additional Results692

To further evaluate the performance of our model FourierGNN in multi-step forecasting, we conduct693

more experiments on the Wiki, METR-LA, and ECG datasets, respectively. We compare our694

model FourierGNN with five models (including StemGNN [4], AGCRN [2], GraphWaveNet [15],695

MTGNN [11], and Informer [7]) on the Wiki dataset under different prediction lengths, and the results696

are shown in Table 9. From the table, we observe that FourierGNN outperforms other models on MAE,697

RMSE, and MAPE metrics for all the prediction lengths. On average, FourierGNN improves MAE,698

RMSE, and MAPE by 6.8%, 3.2%, and 22.9%, respectively. Among these models, AGCRN shows699

promising performances since it captures the spatial and temporal correlations adaptively. However,700

it fails to simultaneously capture spatiotemporal dependencies, limiting its forecasting performance.701

In contrast, our model captures comprehensive spatiotemporal dependencies simultaneously on a702

hypervariate graph for multivariate time series forecasting.703

Table 9: Accuracy comparison under different prediction lengths on the Wiki dataset.
Length 3 6 9 12
Metrics MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

GraphWaveNet [15] 0.061 0.105 138.60 0.061 0.105 135.32 0.061 0.105 132.52 0.061 0.104 136.12
StemGNN [4] 0.157 0.236 89.00 0.159 0.233 98.01 0.232 0.311 142.14 0.220 0.306 125.40
AGCRN [2] 0.043 0.077 73.49 0.044 0.078 80.44 0.045 0.079 81.89 0.044 0.079 78.52
MTGNN [11] 0.102 0.141 123.15 0.091 0.133 91.75 0.074 0.120 85.44 0.101 0.140 122.96
Informer [7] 0.053 0.089 85.31 0.054 0.090 84.46 0.059 0.095 93.80 0.059 0.095 95.09

FourierGNN 0.040 0.075 58.18 0.041 0.075 60.43 0.041 0.076 60.95 0.042 0.077 62.62

Table 10: Accuracy comparison under different prediction lengths on the METR-LA dataset.
Horizon 3 6 9 12
Metrics MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

DCRNN [16] 0.160 0.204 80.00 0.191 0.243 83.15 0.216 0.269 85.72 0.241 0.291 88.25
STGCN [1] 0.058 0.133 59.02 0.080 0.177 60.67 0.102 0.209 62.08 0.128 0.238 63.81
GraphWaveNet [15] 0.180 0.366 21.90 0.184 0.375 22.95 0.196 0.382 23.61 0.202 0.386 24.14
MTGNN [11] 0.135 0.294 17.99 0.144 0.307 18.82 0.149 0.328 19.38 0.153 0.316 19.92
StemGNN [4] 0.052 0.115 86.39 0.069 0.141 87.71 0.080 0.162 89.00 0.093 0.175 90.25
AGCRN [2] 0.062 0.131 24.96 0.086 0.165 27.62 0.099 0.188 29.72 0.109 0.204 31.73
Informer [7] 0.076 0.141 69.96 0.088 0.163 70.94 0.096 0.178 72.26 0.100 0.190 72.54
CoST [19] 0.064 0.118 88.44 0.077 0.141 89.63 0.088 0.159 90.56 0.097 0.171 91.42

FourierGNN 0.050 0.113 86.30 0.066 0.140 87.97 0.076 0.159 88.99 0.084 0.165 89.69

Furthermore, we compare our model FourierGNN with seven MTS models (including STGCN [1],704

DCRNN [16], StemGNN [4], AGCRN [2], GraphWaveNet [15], MTGNN [11], Informer [7], and705

CoST [19]) on the METR-LA dataset which has a predefined graph topology in the data, and the706

results are shown in Table 10. On average, we improve 5.7% on MAE and 2.5% on RMSE. Among707

these models, StemGNN achieves competitive performance because it combines GFT to capture the708

spatial dependencies and DFT to capture the temporal dependencies. However, it is also limited to709

simultaneously capturing spatiotemporal dependencies. CoST learns disentangled seasonal-trend710

representations for time series forecasting via contrastive learning and obtains competitive results.711

But, our model still outperforms CoST. Because, compared with CoST, our model not only can learn712

the dynamic temporal representations, but also capture the discriminative spatial representations.713

Besides, STGCN and DCRNN require pre-defined graph structures. But StemGNN and our model714

outperform them for all steps, and AGCRN outperforms them when the prediction lengths are 9 and715

12. This also shows that a novel adaptive graph learning can precisely capture the hidden spatial716

dependency. In addition, we compare FourierGNN with the baseline models under the different717

19

prediction lengths on the ECG dataset, as shown in Figure 5. It reports that FourierGNN achieves the718

best performances (MAE, RMSE, and MAPE) for all prediction lengths.719

(a) MAE (b) RMSE (c) MAPE

Figure 5: Performance comparison in multi-step prediction on the ECG dataset.

G Further Analyses720

G.1 Scalability Analysis721

We further conduct experiments on the Wiki dataset to investigate the performance of FourierGNN722

under different graph sizes (N ×T). The results are shown in Figure 6, where Figure 6(a), Figure 6(b)723

and Figure 6(c) show MAE, RMSE, and MAPE at the different number of nodes, respectively. From724

these figures, we observe that FourierGNN keeps a leading edge over the other state-of-the-art MTS725

models as the number of nodes increases. The results demonstrate the superiority and scalability of726

FourierGNN on large-scale datasets.

(a) MAE (b) RMSE (c) MAPE

Figure 6: Scalability analyses in terms of MAE, RMSE, and MAPE under different number of nodes
on the Wiki dataset.

727

G.2 Parameter Analysis728

Table 11: Performance at different diffusion steps (lay-
ers) on the COVID-19 dataset.

K=1 K=2 K=3 K=4

MAE 0.136 0.133 0.129 0.132
RMSE 0.181 0.177 0.173 0.176

MAPE(%) 72.30 71.80 71.52 72.59

We evaluate the forecasting performance of729

our model FourierGNN under different diffu-730

sion steps (layers) on the COVID-19 dataset,731

as illustrated in Table 11. The table shows732

that FourierGNN achieves increasingly bet-733

ter performance from K = 1 to K = 4734

and achieves the best results when K = 3.735

With the further increase of K, FourierGNN736

obtains inferior performance. The results in-737

dicate that high-order diffusion information738

is beneficial for improving forecasting accuracy, but the diffusion information may gradually weaken739

the effect or even bring noises to forecasting with the increase of the order.740

In addition, we conduct additional experiments on the ECG dataset to analyze the effect of the input741

lookback window length T and the embedding dimension d, as shown in Figure 7 and Figure 8,742

respectively. Figure 7 shows that the performance (including RMSE and MAPE) of FourierGNN743

20

Figure 7: Influence of input window. Figure 8: Influence of embedding size.

gets better as the input lookback window length increases, indicating that FourierGNN can learn744

a comprehensive hypervariate graph from long MTS inputs to capture the spatial and temporal745

dependencies. Moreover, Figure 8 shows that the performance (RMSE and MAPE) first increases and746

then decreases with the increase of the embedding size, which is attributed that a large embedding747

size improves the fitting ability of FourierGNN but it may easily lead to the overfitting issue especially748

when the embedding size is too large.749

G.3 Ablation Study750

We provide more details about each variant used in this section and Section 5.3.751

• w/o Embedding. A variant of FourierGNN feeds the raw MTS input instead of its embed-752

dings into the graph convolution in the Fourier space.753

• w/o Dynamic FGO. A variant of FourierGNN uses the same FGO for all diffusion steps754

instead of applying different FGOs in different diffusion steps. It corresponds to a vanilla755

graph filter.756

• w/o Residual. A variant of FourierGNN does not have the K = 0 layer output, i.e., X G
t , in757

the summation.758

• w/o Summation. A variant of FourierGNN adopts the last order (layer) output as the final759

frequency output of the FourierGNN.760

We conduct another ablation study on the COVID-19 dataset to further investigate the effects of the761

different components of our FourierGNN. The results are shown in Table 12, which confirms the762

results in Table 4 and further verifies the effectiveness of each component in FourierGNN. Both Table763

12 and Table 4 report that the embedding and dynamic FGOs in FourierGNN contribute more than764

the design of residual and summation to the state-of-the-art performance of FourierGNN.

Table 12: Ablation studies on the COVID-19 dataset.

Metric w/o Embedding w/o Dynamic FGO w/o Residual w/o Summation FourierGNN

MAE 0.157 0.138 0.131 0.134 0.129
RMSE 0.203 0.180 0.174 0.177 0.173

MAPE(%) 76.91 74.01 72.25 72.57 71.52

765

H Visualizations766

H.1 Visualization of the Diffusion Process in FourierGNN767

To gain insight into the operation of the FGO, we visualize the frequency output of each layer in768

our FourierGNN. We select 10 counties from the COVID-19 dataset and visualize their adjacency769

matrices at two different timestamps, as shown in Figure 9. From left to right, the results correspond770

to the original spectrum of the input, as well as the outputs of the first, second, and third layers of771

the FourierGNN. From the top, we can find that as the number of layers increases, some correlation772

21

values are reduced, indicating that some correlations are filtered out. In contrast, the bottom case773

illustrates some correlations are enhanced as the number of layers increases. These results show that774

FGO can adaptively and effectively capture important patterns while removing noises, enabling the775

learning of a discriminative model.776

Figure 9: The diffusion process of FourierGNN at two timestamps (top and bottom) on COVID-19.

H.2 Visualization of Time-Varying Dependencies Learned by FourierGNN777

Furthermore, we explore the capability of FourierGNN in capturing time-varying dependencies778

among variables. To investigate this, we perform additional experiments to visualize the adjacency779

matrix of 10 randomly-selected counties over four consecutive days on the COVID-19 dataset. The780

visualization results, displayed as a heatmap in Figure 10, reveal clear spatial patterns that exhibit781

continuous evolution in the temporal dimension. This is because FourierGNN can attend to the782

time-varying variability of the spatiotemporal dependencies. These results verify that our model783

enjoys the feasibility of exploiting the time-varying dependencies among variables.784

Based on the insights gained from these visualization results, we can conclude that the hypervariate785

graph structure exhibits strong capabilities to encode spatiotemporal dependencies. By incorporating786

FGOs, FourierGNN can effectively attend to and exploit the time-varying dependencies among787

variates. The synergy between the hypervariate graph structure and FGOs empowers FourierGNN to788

capture and model intricate spatiotemporal relationships with remarkable effectiveness.789

Figure 10: The adjacency matrix for four consecutive days on the COVID-19 dataset.

22

	Introduction
	Related Work
	Problem Definition
	Methodology
	The Pure Graph Formulation
	FourierGNN
	Multivariate Time Series Forecasting with FourierGNN

	Experiments
	Experimental Setup
	Main Results
	Model Analysis
	Visualization

	Conclusion Remarks
	Notation
	Convolution Theorem
	Explanations and Proofs
	The Explanations of the Hypervariate Graph Structure
	The Interpretation of n-invariant FGO
	Proof of Proposition 1 and Interpretation of FourierGNN

	Compared with Other Graph Neural Networks
	Experiment Details
	Datasets
	Baselines
	Evaluation Metrics
	Experimental Settings
	Details for Visualization Experiments

	Additional Results
	Further Analyses
	Scalability Analysis
	Parameter Analysis
	Ablation Study

	Visualizations
	Visualization of the Diffusion Process in FourierGNN
	Visualization of Time-Varying Dependencies Learned by FourierGNN

