
A NOTATION

Throughout the paper we use the following notation to indicate mutual information:

I(x; z) := KL(p(x, z)||p(x)p(z))

= Ep(x,z)
[
log

p(x, z)

p(x)p(z)

]
. (10)

To improve readability we omit the subscript for the expectation. Unless otherwise specified,
expectations are computed with respect to the ground-truth distribution p(x, z).

Similarly, we leave the expectation for conditional KL-divergence implicit:

KL(p(x|z)||q(x|z)) := Ep(x,z)
[
log

p(x|z)
q(x|z)

]
. (11)

We will use ϵ to indicate a stochastic source external to the system, i.e. I(ϵ; ·) = 0 with · as a
placeholder for any variable (or combination of variables) in the system (excluding ϵ itself).

B PROOFS

We start by introducing the assumptions and properties that are used throughout the section. Then,
we list proofs for the statements in the main text.

B.1 GENERAL ASSUMPTIONS

As a preliminary step for proving the statements in Section 2, we clarify our general assumptions

(A.1) zt is a representation of xt.
With this statement, we signify that zt can be expressed as a noisy function of xt: zt =
f(xt, ϵt). This implies that zt is conditionally independent of any other variable of the
system when xt is observed: I(zt; ·|xt, ·) = 0, in which · is a placeholder for other variables
(or combinations thereof) in the system.

(A.2) yt is a representation of xt.
Analogously to the previous assumption, we assume that the target of interest can be
expressed as a noisy function of xt. Therefore we will assume the same corresponding
conditional independence.

(A.3) [xt]
T

t=s form a homogeneous Markov Chain.
This assumption can be expressed in terms of conditional independence between past events
[xt]

m−1

t=s , and future xm+1 when the current event xm is observed:

I([xt]
m−1

t=s ;xm+1|xm) = 0,

for any m ∈ [s+ 1, T − 1].

B.2 PROPERTIES

For completeness, here we list properties of mutual information that are used to prove the statements
in the following sections. Let a, b, c, d be random variables with some joint distribution p(a,b, c,d).

(P.1) Non-negativity of (conditional) mutual information.
Mutual information (and conditional mutual information) is non-negative:

I(a;b|c) ≥ 0 (12)

(P.2) Chain rule of mutual information.
Mutual information (and conditional mutual information) can be factorized as follows:

I(ab; c|d) = I(a; c|d) + I(b; c|ad)
= I(b; c|d) + I(a; c|bd) (13)

16

(P.3) Data processing inequality (DPI).
Mutual information (and conditional mutual information) between two random variables
cannot increase by applying functions to either argument (on the left side of the conditioning).
In this paper, we will use a slightly more general version of DPI in which we also consider
noisy functions (with independent noise):

I(a;b|c) ≥ I(f(a, ϵ);b|c) (14)

B.3 AUTOINFORMATION AND DATA PROCESSING INEQUALITY

Here we demonstrate that the autoinformation in the original space AI(xt; τ) is an upper bound for
the autoinformation of the representation AI(zt; τ).
Statement. The autoinformation for xt upper-bounds the autoinformation for the corresponding
representation zt

AI(xt; τ) ≥ AI(zt; τ) (15)

Proof.

AI(xt; τ) = I(xt;xt+τ)

(P.2)
= I(xtzt;xt+τ)− I(zt;xt+τ |xt)

(A.1)
= I(xtzt;xt+τ)

(P.2)
= I(zt;xt+τ) + I(xt;xt+τ |zt)

(P.2)
= I(zt;xt+τzt+τ)− I(zt; zt+τ |xt+τ) + I(xt;xt+τ |zt)

(A.1)
= I(zt;xt+τzt+τ) + I(xt;xt+τ |zt)

(P.2)
= I(zt; zt+τ) + I(zt;xt+τ |zt+τ) + I(xt;xt+τ |zt)
= AI(zt; τ) + I(zt;xt+τ |zt+τ) + I(xt;xt+τ |zt). (16)

Using property (P.1), we infer AI(xt; τ) ≥ AI(zt; τ)

Remark 4. The autoinformation gap upper bounds the amount of information that xt and xt+τ
share whenever one of the two corresponding representations is observed:

AIG(zt; τ) ≥ I(xt;xt+τ |zt), (17)

and

AIG(zt; τ) ≥ I(xt;xt+τ |zt+τ) (18)

Proof. Re-arranging the terms in equation 16 we can also characterize the autoinformation gap as:

AI(xt; τ)−AI(zt; τ) = I(zt;xt+τ |zt+τ) + I(xt;xt+τ |zt) (19)
= I(xt; zt+τ |zt) + I(xt;xt+τ |zt+τ). (20)

The expression in the second line can be derived by symmetry. Statement 4 follows from (P.1).

B.4 AUTOINFORMATION OF SEQUENCES

Statement. A sequence of representations preserves autoinformation at τ if and only if all the pairs
of its elements at temporal distance τ preserve autoinformation

AIG([zt]
T

t=s ; τ) = 0 ⇐⇒ AIG(zm; τ) = 0 ∀m ∈ [s, T − τ] (21)

Proof. We prove the two directions of the implication separately:

• =⇒
Proof by contradiction. Assume

17

(T.1) ∃m ∈ [s, T − τ] for which the autoinformation in xm is strictly larger than the
autoinformation of the corresponding representation zm

AI(xm; τ) > AI(zm; τ)

.

The autoinformation gap between the two sequences can be written as:

AIG([zt]
T

t=s ; τ) = Et [AI(xt; τ)−AI(zt; τ)]

B.3

≥ 1

T − s− τ + 1
(AI(xm; τ)−AI(zm; τ))

(T.1)
> 0. (22)

We derived that the autoinformation gap must be strictly positive, which results in a contra-
diction.

• ⇐=
If we assume that mutual information is the same for all the pairs, clearly their average is
also the same.

B.5 AUTOINFORMATION AND SUFFICIENCY

Statement. Whenever zt preserves autoinformation, zt is sufficient for any (noisy) function of xt+τ :

AIG(zt; τ) ⇐⇒ I(xt;yt+τ) = I(zt;yt+τ) ∀yt+τ := f(xt+τ , ϵ).

Proof. We address the two directions of the implication in Lemma 1 separately:

• =⇒
We start by assuming that zt preserves information at τ : AI(xt; τ)−AI(zt; τ) = 0

I(xt;yt+τ)
(P.2)
= I(xtzt;yt+τ)− I(zt;yt+τ |xt)

(P.1)

≤ I(xtzt;yt+τ)

(P.2)
= I(zt;yt+τ) + I(xt;yt+τ |zt)

(P.3)

≤ I(zt;yt+τ) + I(xt;xt+τ |zt)
4
=I(zt;yt+τ).

Since we showed I(xt;yt+τ) ≤ I(zt;yt+τ), and using DPI we have I(xt;yt+τ) ≥
I(zt;yt+τ), we must conclude that I(xt;yt+τ) = I(zt;yt+τ)

• ⇐= We prove the second direction of the double implication by contradiction.

(T.1) Let yt+τ be a noisy function of xt+τ for which zt is not sufficient:

I(xt;yt+τ) > I(zt;yt+τ)

18

then

AI(zt; τ) = I(zt; zt+τ)

(P.2)
= I(zt;yt+τzt+τ)− I(zt;yt+τ |zt+τ)

(P.1)

≤ I(zt;yt+τzt+τ)

(P.2)
= I(zt;yt+τ) + I(zt; zt+τ |yt+τ)
(T.1)
< I(xt;yt+τ) + I(zt; zt+τ |yt+τ)

(P.3)

≤ I(xt;yt+τ) + I(xt;xt+τ |yt+τ)
(P.2)
= I(xt;xt+τyt+τ)

(P.2)
= I(xt;xt+τ) + I(xt;yt+τ |xt+τ)

(A.2)
= AI(xt; τ). (23)

We derived that the AIG(zt; τ) > 0, which contradicts the premises, concluding the proof.

B.6 MARKOV PROPERTY

Statement. Sequences of representations of a homogeneous Markov Chain that preserve information
at some lag time τ also form a homogeneous Markov Chain at temporal resolution τ :

AIG([zt]
T

t=s ; τ) = 0 =⇒ [zs′+kτ]
K

k=0 is a homogeneous Markov Chain, (24)

with s′ ∈ [s, T − τ], K ≤ ⌊(T − s′)/τ⌋.

Proof. In order to prove that [zs′+kτ]
K

k=0 form a homogeneous Markov Chain, we first show that
[zs′+kτ]

K

k=0 satisfies the Markov property. This can be shown by upper-bounding the amount of
information that the past [zs′+jτ]

k−1

j=0 carries about the next representation zs′+(k+1)τ whenever the
current representation zs′+kτ is observed:

I([zs′+jτ]
k−1

j=0 ; zs′+(k+1)τ |zs′+kτ)
(P.3)

≤ I([xs′+jτ]
k−1

j=0 ;xs′+(k+1)τ |zs′+kτ)
(P.2)
= I([xs′+jτ]

k−1

j=0 zs′+kτ ;xs′+(k+1)τ)− I(zs′+kτ ;xs′+(k+1)τ)

(P.3)

≤ I([xs′+jτ]
k

j=0 ;xs′+(k+1)τ)− I(zs′+kτ ;xs′+(k+1)τ)

(P.2)
= I(xs′+kτ ;xs′+(k+1)τ)− I(zs′+kτ ;xs′+(k+1)τ)

+ I([xs′+jτ]
k−1

j=0 ;xs′+(k+1)τ |xs′+kτ)
(A.3)
= I(xs′+kτ ;xs′+(k+1)τ)− I(zs′+kτ ;xs′+(k+1)τ)

(P.3)

≤ I(xs′+kτ ;xs′+(k+1)τ)− I(zs′+kτ ; zs′+(k+1)τ)

= AI(xs′+kτ ; τ)−AI(zs′+kτ ; τ)

= AIG(zs′+kτ ; τ) = 0, (25)

for any s′ ∈ [s, T − τ], K ≤ ⌊(T − s′)/τ⌋, and k ∈ [1,K − 1].
Using the results from B.4 and the premise that the autoinformation gap is zero, we can conclude that
the conditional mutual information in the previous equation must be zero, and the Markov property
holds. Furthermore since both p(xt|xt−τ) and p(zt|xt) are time-independent, we must conclude
that p(zt|zt−τ) must satisfy the same property. Therefore, we conclude that [zs′+kτ]

K

k=0 forms a
homogeneous Markov Chain.

19

B.7 BOUNDS ON THE AUTOINFORMATION GAP

Statement. For any τ ′ > τ > 0, the autoinformation gap for zt at lag time τ ′ is upper-bounded by
the sum of the autoinformation gap for zt at lag time τ and the autoinformation gap for zt+τ−τ at
lag time τ :

AIG(zt; τ
′) ≤ AIG(zt; τ) +AIG(zt+τ ′−τ ; τ) (26)

Proof. Let τ ′ > τ > 0. The autoinformation for xt at τ ′ can be written as:

AI(xt; τ
′) = I(xt;xt+τ ′)

(P.2)
= I(xtzt;xt+τ ′)− I(zt;xt+τ ′ |xt)

(P.1)

≤ I(xtzt;xt+τ ′)

(P.2)
= I(zt;xt+τ ′) + I(xt;xt+τ ′ |zt)

(P.3)

≤ I(zt;xt+τ ′) + I(xt;xt+τ |zt)
4

≤I(zt;xt+τ ′) +AIG(zt; τ)

(P.2)
= I(zt;xt+τ ′zt+τ ′)− I(zt; zt+τ ′ |xt+τ ′) +AIG(zt; τ)

(P.1)

≤ I(zt;xt+τ ′zt+τ ′) +AIG(zt; τ)

(P.2)
= I(zt; zt+τ ′) + I(zt;xt+τ ′ |zt+τ ′) +AIG(zt; τ)

(P.3)

≤ I(zt; zt+τ ′) + I(xt;xt+τ ′ |zt+τ ′) +AIG(zt; τ)

(P.3)

≤ I(zt; zt+τ ′) + I(xt+τ ′−τ ;xt+τ ′ |zt+τ ′) +AIG(zt; τ)
4

≤AI(zt; τ ′) +AIG(zt; τ) +AIG(zt+τ ′−τ ; τ). (27)

Re-arranging the terms, we have:

AIG(zt; τ
′) ≤ AIG(zt; τ) +AIG(zt+τ ′−τ ; τ). (28)

Note that whenever zt is sampled from the equilibrium, we have AI(zt; τ ′) ≤ 2AI(zt; τ).

B.8 SLOWER INFORMATION PRESERVATION

Statement. If a sequence of representation preserves autoinformation at lag time τ , then it preserves
autoinformation for any τ ′ ≥ τ :

AIG([zt]
T

t=s ; τ) = 0 =⇒ AIG([zt]
T

t=s ; τ
′) = 0 (29)

Proof. Using the result from B.7, we can express the autoinformation gap at τ ′ as:

AIG([zt]
T

t=s ; τ
′) = Et∼U(s,T−τ ′)[AIG(zt; τ

′)]

B.7

≤ Et∼U(s,T−τ ′)[AIG(zt; τ) +AIG(zt+τ ′−τ ; τ)]

= AIG([zt]
T−τ ′+τ

t=s ; τ) +AIG([zt]
T

t=s+τ ′−τ ; τ). (30)

Since both [zt]
T−τ ′+τ

t=s and [zt]
T

t=s+τ ′−τ are sub-sequences of [zt]
T

t=s, and AIG([zt]
T

t=s ; τ) = 0, we
can infer that the right side of equation 30 must be zero. Furthermore, since AIG([zt]

T

t=s ; τ
′) ≥ 0,

we must conclude AIG([zt]
T

t=s ; τ
′) = 0.

20

B.9 LATENT SIMULATION ERROR AND AUTOINFORMATION

Statement. The average latent simulation error introduced by unfolding K steps using latent
simulation starting from xt with t ∼ U(s, s+τ−1) is upper-bounded byK times the autoinformation
gap for the sequence [zt]

T

t=s, with T = s+ (K + 1)τ − 1:

Et

KL(p([yt+kτ]
K

k=1 |xt)||p
LS([yt+kτ]

K

k=1 |xt))︸ ︷︷ ︸
Latent Simulation error for K steps of τ starting from t

 ≤ K AIG([zt]
T

t=s ; τ)︸ ︷︷ ︸
Autoinformation gap for lag time τ

. (31)

Proof. We start with the following bound:

KL(p([yt+kτ]
K

k=1 |xt)||p
LS([yt+kτ]

K

k=1 |xt)) ≤ KL(p([xt+kτ]
K

k=1 |xt)||p
LS([xt+kτ]

K

k=1 |xt)), (32)

which holds because of assumption (A.2) and the data processing inequality. Secondly, we upper-
bound the right-most term as a sum of autoinformation:

KL(p([xt+kτ]
K

k=1 |xt)||p
LS([xt+kτ]

K

k=1 |xt)) ≤ KL(p(zt, [xt+kτ , zt+kτ]
K

k=1 |xt)||p
LS(zt, [xt+kτ , zt+kτ]

K

k=1 |xt))

= E

[
log

pθ(zt|xt)
∏K

k=1 p(xt+kτ |xt+(k−1)τ)pθ(zt+kτ |xt+kτ)
pθ(zt|xt)

∏K

k=1 p(zt+kτ |zt+(k−1)τ)p(xt+kτ |zt+kτ)

]

=

K∑
k=1

E
[
log

p(xt+kτ |xt+(k−1)τ)

p(zt+kτ |zt+(k−1)τ)

pθ(zt+kτ |xt+kτ)
p(xt+kτ |zt+kτ)

]

=

K∑
k=1

E
[
log

p(xt+kτ |xt+(k−1)τ)

p(zt+kτ |zt+(k−1)τ)

p(zt+kτ)

p(xt+kτ)

]

=

K∑
k=1

E
[
log

p(xt+kτ |xt+(k−1)τ)

p(xt+kτ)

]
+ E

[
log

p(zt+kτ)

p(zt+kτ |zt+(k−1)τ)

]

=

K−τ∑
k=0

AI(xt+kτ ; τ)−AI(zt+kτ ; τ)

=

K−τ∑
k=0

AIG(zt+kτ ; τ) (33)

Lastly, we consider the average error when t ∼ U(s, s+ τ − 1)

Et
[
KL(p([yt+kτ]

K

k=1 |xt)||p
LS([yt+kτ]

K

k=1 |xt))
]
=

1

τ

s+τ−1∑
t=s

KL(p([xt+kτ]
K

k=1 |xt)||p
LS([xt+kτ]

K

k=1 |xt))

=
1

τ

s+τ−1∑
t=s

K−τ∑
k=0

AIG(zt+kτ ; τ)

=
1

τ

s+Kτ−1∑
t=s

AIG(zt+kτ ; τ)

=
Kτ

τ
AIG([zt]

s+(K+1)τ−1

t=s ; τ)

= K AIG([zt]
T

t=s ; τ), (34)

with T := s+ (K + 1)τ − 1. This concludes the proof.

21

B.10 UPPER-BOUND FOR THE VARIATIONAL LATENT SIMULATION ERROR

Hereby, we outline the steps to obtain the expression reported in Equation 3:

KL(p([ys+kτ]
K

k=1 |xs)||q
LS([ys+kτ]

K

k=1 |xs))

= E

[
log

p([ys+kτ]
K

k=1 |xs)
pLS([ys+kτ]

K

k=1 |xs)
pLS([ys+kτ]

K

k=1 |xs)
qLS([ys+kτ]

K

k=1 |xs)

]

= KL(p([ys+kτ]
K

k=1 |xs)||p
LS([ys+kτ]

K

k=1 |xs)) + E

[
log

pLS([ys+kτ]
K

k=1 |xs)
qLS([ys+kτ]

K

k=1 |xs)

]
. (35)

Focusing on the second term:

E

[
log

pLS([ys+kτ]
K

k=1 |xs)
qLS([ys+kτ]

K

k=1 |xs)

]
≤ E

[
log

pLS([ys+kτ , zs+kτ]
K

k=1 |xs)
qLS([ys+kτ , zs+kτ]

K

k=1 |xs)

]

= E

[
log

∏K

k=1 p(zs+kτ |zs+(k−1)τ)p(ys+kτ |zs+kτ)∏K

k=1 qϕ(zs+kτ |zs+(k−1)τ)qψ(ys+kτ |zs+kτ)

]

=

K∑
k=1

E
[
log

p(zs+kτ |zs+(k−1)τ)

qϕ(zs+kτ |zs+(k−1)τ)

]
+ E

[
log

p(ys+kτ |zs+kτ)
qψ(ys+kτ |zs+kτ)

]

=

K∑
k=1

KL(p(zs+kτ |zs+(k−1)τ)||qϕ(zs+kτ |zs+(k−1)τ))

+ KL(p(ys+kτ |zs+kτ)||qψ(ys+kτ |zs+kτ)). (36)

B.11 SUPERFLUOS INFORMATION DECOMPOSITION

The total amount of information that a representation zt contains about the original data xt can be
de-composed using the chain rule of mutual information as follows:

I(xt; zt)
(P.2)
= I(xtzt−τ ; zt)− I(zt; zt−τ |xt)

(A.1)
= I(xtzt−τ ; zt)

(P.2)
= I(zt−τ ; zt)︸ ︷︷ ︸

Autoinformation

+ I(xt; zt|zt−τ)︸ ︷︷ ︸
Superfluous Information

. (37)

We can further factorize superfluous information by considering the immediate past xt−1 as follows:

I(xt; zt|zt−τ)︸ ︷︷ ︸
Superfluous Information

(P.2)
= I(xtxt−1; zt|zt−τ)− I(zt−1; zt|xt)

(A.1)
= I(xtxt−1; zt|zt−τ)

(P.2)
= I(xt−1; zt|zt−τ) + I(xt; zt|xt−1zt−τ)

(P.2)
= I(xt−1; zt|zt−τ) + I(xtzt−τ ; zt|xt−1)− I(zt−τ ; zt|xt−1,xt)

(A.1)
= I(xt−1; zt|zt−τ) + I(xtzt−τ ; zt|xt−1)

(P.2)
= I(xt−1; zt|zt−τ) + I(xt; zt|xt−1) + I(zt; zt−τ |xt−1)

= I(xt−1; zt|zt−τ)︸ ︷︷ ︸
Dynamic Information faster than τ

+ I(xt; zt|xt−1)︸ ︷︷ ︸
Time-independent information

, (38)

in which the last step follows from:

0
(P.1)

≤ I(zt; zt−τ |xt−1)
(A.1)

≤ I(xt;xt−τ |xt−1)
(A.3)
= 0. (39)

22

Note that I(xt−1; zt|zt−τ) refers to the information that zt conveys about the immediate past xt−1

when the past representation zt−τ is observed. This quantity is positive whenever zt contains infor-
mation regarding processes that are faster than τ , i.e. are not predictable from the past representa-
tion zt−τ but can be inferred from zt. The second term I(xt; zt|xt−1) refers to the information that
zt contains about processes that appear time-independent at the highest available time-resolution
(τ = 1). This component includes both time-independent noise and other time-dependent processes
that appear uncorrelated at the observed temporal resolution. These two last components are indistin-
guishable without having access to higher-resolution sequences.

C COMPUTATION AND APPROXIMATIONS

C.1 A TWO-STEP MINIMIZATION PROCEDURE

Consider the terms on the right side of expression 3. We use

LLS(θ) := KL(p([ys+kτ]
K

k=1 |xs)||p
LS([ys+kτ]

K

k=1 |xs)) (40)

LT (θ, ϕ) :=
K∑
k=1

KL(p(zs+kτ |zs+(k−1)τ)||qϕ(zs+kτ |zs+(k−1)τ)) (41)

LP (θ, ψ) :=
K∑
k=1

KL(p(ys+kτ |zs+kτ)||qψ(ys+kτ |zs+kτ)) (42)

for notation brevity to underline the dependencies with the parameters θ, ϕ, ψ for the encoder,
variational transition, and variational predictive distributions respectively. The joint optimization can
then be written as:

min
θ,ϕ,ψ

LLS(θ) + LT (θ, ϕ) + LP (θ, ψ) = min
θ

[
LLS(θ) + min

ϕ
LT (θ, ϕ) + min

ψ
LP (θ, ψ)

]
≤ LLS(θ̂) + min

ϕ
LT (θ̂, ϕ) + min

ψ
LP (θ̂, ψ). (43)

With θ̂ := argminθ LLS(θ).
The upper bound in equation 43 is still tight for flexible variational transition and prediction distribu-
tion. For a fixed θ̂, the variational transition and predictive gaps depend uniquely on the variational
parameters ϕ and ψ which can be optimized by minimizing the negative log-likelihood:

argmin
ϕ

LT (θ̂, ϕ) = argmin
ϕ

K∑
k=1

E[− log qϕ(zs+kτ |zs+(k−1)τ)] (44)

argmin
ψ

LP (θ̂, ψ) = argmin
ψ

K∑
k=1

E[− log qψ(ys+kτ |zs+kτ)]. (45)

C.2 CONTRASTIVE LEARNING ON MARKOV PROCESSES

Consider the expression reported in equation 6:

LT-InfoMax
InfoNCE ([xt]

T

t=s , τ ; θ, ξ) := −E
[
log

eFξ(zt,zt−τ)

Ez′
t∼p(zt) [e

Fξ(z′
t,zt−τ)]

]
(46)

≈ − 1

B

B∑
i=1

log
eFξ(zti

,zti−τ)

1
B

∑B

j=1 e
Fξ(ztj

,zti−τ)
. (47)

Focusing on the denominator in equation 46, we note that estimating the partition function would

require sampling z′
t from p(zt). If the dataset consists of multiple trajectories

[
x

(i)
t

]Ti

t=si

N∼ p([xt]
T

t=s),

then this would require considering the representation of x(i)
t from multiple trajectories at the given

time t. Since we are considering time-independent homogeneous processes, even when the dataset

23

consists of a single trajectory [xt]
T

t=s, we can approximate samples from p(xt) by considering any xt′
in the same sequence, with t′ ∼ U(s, T). This approximation is accurate whenever p(xt) approaches
the equilibrium distribution and the trajectory [xt]

T

t=s is long enough to obtain de-correlated samples.
In case multiple trajectories are available at training time, this approach would benefit from creating
mini-batches of inputs x(i)

t (and corresponding representations z(i)
t) that are sampled from distinct

trajectories:

LT-InfoMax
InfoNCE (

{[
x

(i)
t

]Ti

t=si

}N

i=1

, τ ; θ, ξ) ≈ − 1

B

B∑
i=1

log
eFξ(z

(i)
ti
,z

(i)
ti−τ)

1
B

∑B

j=1 e
Fξ(z

(j)
tj
,z

(i)
ti−τ)

. (48)

C.3 SUPERFLUOUS INFORMATION UPPER-BOUND

Computing superfluous information would require access to the true transition distribution p(zt|zt−τ).
Using standard variational inference, we can define a variational upper-bound based on the variational
transition distribution instead:

I(xt; zt|zt−τ)︸ ︷︷ ︸
Superfluous information

= E
[
log

p(zt|xt, zt−τ)
p(zt|zt−τ)

]

= E
[
log

p(zt|xt, zt−τ)
qϕ(zt|zt−τ)

qϕ(zt|zt−τ)
p(zt|zt−τ)

]
= KL(pθ(zt|xt)||qϕ(zt|zt−τ))−KL(p(zt|zt−τ)||qϕ(zt|zt−τ))︸ ︷︷ ︸

Variational transition gap

≤ KL(pθ(zt|xt)||qϕ(zt|zt−τ)). (49)

The Expected value of KL-divergence between encoding and transition distribution can be estimated
using sampled representations:

KL(pθ(zt|xt)||qϕ(zt|zt−τ)) ≈ log
pθ(zt|xt)
qϕ(zt|zt−τ)

, (50)

with zt and zt−τ as representations sampled from pθ(zt|xt) and pθ(zt−τ |xt−τ) respectively, and
xt,xt−τ as samples from the process at temporal distance τ . Notably, this procedure is similar to the
one used to enforce a bottleneck in Fischer (2020).

D COMPARISON WITH THE LITERATURE

D.1 LINEAR CORRELATION MAXIMIZATION AND MUTUAL INFORMATION

A conventional and successful approach to mutual information maximization is the maximization of
linear autocorrelation (Andrew et al., 2013; Noé & Nüske, 2013). This can be expressed as:

argmax
θ

Tr(Cov[zt−τ , zt]) subject to Cov[zt−τ , zt−τ] = Cov[zt, zt] = I (51)

Here the maximization of the covariance trace is equivalent to the maximization of the sum of its D
eigenvalues λi, where D denotes the dimensionality of the representation.

A variety of surrogates maximize the sum of squared eigenvalues (Mardt et al., 2018; Wu & Noé, 2020)
or the squared Euclidean distance in the representation space (Lyu et al., 2022; Wiskott & Sejnowski,
2002). This objective can also be equivalently interpreted as maximizing mutual information for
jointly Normal random variables (Borga, 2001) with linear encoders.

Assume that the representations zt−τ and zt are jointly Normal distributed:

[zt−τ , zt] ∼ N (µ,S) with S =

[
St−τ,t−τ St−τ,t
St,t−τ St,t

]
(52)

24

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

d1

d2

1 + 2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

d1

d2

2
1 + 2

2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

d1

d2

1/2log(1 2
1) 1/2log(1 2

2)

Figure 6: Visualization of several objectives as a function of the eigenvalues λ1 and λ2 of St,t−τSt−τ,t.
The vertical lines for d1 and d2 correspond to the eigenvalues of Σt,t−τΣt−τ,t determined by the
original covariance Σt−τ,t. Note that whenever zt is a linear projection of xt, λ1 and λ2 are
constrained to be in the shaded region determined by d1 and d2. As a result, all objectives are optimal
for λ1 = d1 and λ2 = d2, which corresponds to a projection onto the principal components.

In this instance, autoinformation can be directly computed as follows:

AIN (zt−τ , τ) =
1

2
log

detSt−τ,t−τ detSt,t
detS

=
1

2
log

detSt,t

det
(
St,t − St,t−τS

−1
t−τ,t−τSt−τ,t

)
= −1

2
log det (I−A)

= −1

2
log det

(
U(I−Λ)UT

)
= −1

2
log det (I−Λ))

= −1

2

D∑
i=1

log (1− λi) (53)

In which A := S
−1/2
t,t St,t−τS

−1
t−τ,t−τSt−τ,tS

−1/2
t,t , and UΛUT refers to its eigendecomposition, and

λi the corresponding eigenvalues. Under the assumption that St−τ,t−τ and St,t are restricted to be
identity matrices, the expression for A simplifies to A = St,t−τSt−τ,t.

As illustrated in Figure 6, for any linear encoder in the form zt = Wxt, maximizing the sum of the
eigenvalues of A, the sum of their squared values, or the expression in equation 53 is equivalent.
This is true because under the constraint St,t = St−τ,t−τ = I, the eigenvalues of St,t−τSt−τ,t are
upper-bounded by the eigenvalues of Σt,t−τΣt−τ,t, with Σt−τ,t := Cov[xt−τ ,xt].

Note that although the correlation matrix does capture linear relation between zt−τ and zt, it does
not consider higher-order interaction between the representations. This is a limiting factor especially
for low-dimensional representations because of the expressive power of linear transformations. This
phenomenon can be clearly observed by comparing the autoinformation plots in Figure 4b (2D
representations) and Figure 13 (16/32 dimensional representations). The autoinformation extracted
by representations that use linear correlation maximization (TICA and VAMPNet) strongly depends
on the number of dimensions of the representation zt. The effect on methods that rely on non-linear
contrastive mutual information maximization methods is much more moderate, making them more
flexible and suitable for 2D visualizations.

25

(a)

xs xs+τ . . . xs+Kτ

zs zs+τ . . . zs+Kτ

ys+τ . . . ys+Kτ

θ θ θ
ϕ

ψ

ϕ ϕ

ψ

(b)

xs xs+τ . . . xs+Kτ

zs zs+τ . . . zs+Kτ

ys+τ . . . ys+Kτ

θ

ϕ

ψ
ψ

ϕ ϕ

ψψ

Figure 7: Viable inference schemes for maximal future state information: AI(xt; τ)− I(zt;xt+τ) =
0. The difference with the Latent Simulation inference scheme lies in the lack of the conditional
independence I(zt;xt+τ |zt+τ) = 0. Note that modeling qϕ(xt|zt−τ) is generally more difficult than
modeling latent transitions qϕ(zt|zt−τ).

D.2 MAXIMIZING INFORMATION WITH RESPECT TO FUTURE STATES

Several models in the literature consider the reconstruction of future states as the training objective
(Wehmeyer & Noé, 2018; Wang et al., 2019b). This objective can be interpreted as the maximization
of the mutual information between the current representation zt and the future state xt+τ Poole et al.
(2019):

max
θ
I(zt;xt+τ) = max

θ
H(xt+τ)−H(xt+τ |zt)

≥ H(xt+τ)−min
θ,ϕ

Ep(xt)pθ(zt|zt) [− log qϕ(xt+τ |zt)] , (54)

in which qϕ(xt+τ |zt) refers to the decoder that predicts the future states given the current representa-
tion.

We note that autoinformation in zt is always smaller or equal to I(zt;xt+τ), which we will refer to
as future predictive information:

AI(xt; τ) = I(xt;xt+τ) ≥ I(zt;xt+τ) ≥ I(zt; zt+τ) = AI(zt; τ). (55)

Preserving autoinformation is a stronger condition than having maximal future predictive information:

AIG(zt; τ) = 0 =⇒ AI(xt; τ)− I(zt;xt+τ) = 0. (56)

This is because the additional condition I(zt;xt+τ |zt+τ) = 0 is required:

AIG(zt; τ) = AI(xt; τ)− I(zt; zt+τ)

= AI(xt; τ)− I(zt;xt+τ)︸ ︷︷ ︸
Missing future predictive information

+I(zt;xt+τ |zt+τ). (57)

This additional condition is not directly required to prove the results of Lemma 1, Lemma 2, and
Lemma 3, which can be extended to the condition AI(xt; τ)− I(zt;xt+τ) = 0. However, the lack
of the conditional independence I(zt;xt+τ |zt+τ) = 0 would result in a difference inference scheme,
in which instead of approximating transitions directly in the latent space, each step would require
modeling transitions from zt to xt+τ , as shown in Figure 7a. Alternatively, one could model latent
transitions qϕ(zt|zt−τ), but the predictive target distribution would depend on both the current and
future representation, as shown in Figure 7b. Both inference schemes and the maximization of
I(zt;xt+τ) are more computationally expensive than the proposed T-InfoMax training procedure and
Latent Simulation inference.

D.3 STATE PREDICTIVE INFORMATION BOTTLENECK AND TARGET SUFFICIENCY

Wang & Tiwary (2021) introduce a State Predictive Information Bottleneck (SPIB) objective aiming
to create a representation zt that is sufficient for the next target yt+τ while compressing information:

LSPIB(θ;β, τ) = −Et[I(zt;yt+τ)− βI(xt; zt)]. (58)

26

Although this objective seems natural for training effective representations, we can show that suffi-
ciency for a given target yt+τ is a necessary but not sufficient condition for autoinformation preser-
vation. As a result, a representation that is optimal according to the SPIB objective may introduce
inference error even when the true latent transition p(zt|zt−τ) and latent future predictive p(yt+τ |zt)
distributions are available at inference time, as shown in the following example.

Consider a dynamic system in which each state is described by a particle position, velocity, and
acceleration governed by a simple time-discrete update:

xt =

[
rt
vt
at

]
=

[
rt−τ + τvt−τ
vt−τ + τat−τ

ηt

]
= Dτ (xt−τ ,ηt), (59)

in which the acceleration at each time step is sampled from a time-independent Normal distribution
ηt ∼ N (0,1) and Dτ refers to the function used to unroll the true system dynamics at the time scale
τ . Clearly, the system is an instance of a homogenous Markov process.

We are interested in predicting the particle position yt = rt. Clearly, since the next position depends
solely on the current position and the current velocity, we have that a representation that contains
only velocity and position information is sufficient for the next target prediction:

I(yt+τ ;xt) = I(yt+τ ; z
SPIB
t) with zSPIBt =

[
rt
vt

]
(60)

On the other hand, a representation that maximizes autoinformation (and is optimal according to
Equation 8) must also contain information regarding the acceleration since current acceleration is
predictive for the future velocity:

I(xt;xt+τ) = I(zT−IB
t ; zT−IB

t+τ) > I(zSPIBt ; zSPIBt+τ) with zT−IB
t =

[
rt
vt
at

]
. (61)

Note that a representation that is optimal according to SPIB would instead explicitly discard accelera-
tion because of the compression regularization:

I(xt; z
T−IB
t) > I(xt; z

SPIB
t). (62)

Since both representations are sufficient for yt+τ , they yield the same predictive distribution for the
next target:

p(yt+τ |zSPIBt) = p(yt+τ |zT−IB
t) = p(yt+τ |xt). (63)

However, if we look at the predictive distribution at times larger than τ , we observe some discrepancies.
In particular, we can show that:

p(yt+2τ |zSPIBt) ̸= p(yt+2τ |zT−IB
t) = p(yt+2τ |xt), (64)

In which the first inequality follows from the fact that zSPIBt does not contain knowledge about the
acceleration, while the second inequality follows from Lemma 1+Lemma 3. Therefore we showed
that latent simulation performed on representations that are optimal according to the SPIB objective
(and not according to T-IB) introduces inference error for time scales larger than τ . The intuition
is that sufficiency for the next target yt+τ does not guarantee a transfer of the Markov property
from the original space xt to the representation zt. That requirement is satisfied only whenever the
representation zt preserves autoinformation, as shown in Lemma 1+ Lemma 2.

27

E EXPERIMENTAL DETAILS

We include additional details regarding the training data, architectures, and optimization procedure to
ensure the reproducibility of the reported results.

E.1 DATA

E.1.1 PRINZ 2D

-1.0 -0.5 0.0 0.5 1.0
x

0

1

2

3

4

Po
te

nt
ia

l V
(x

) yt = 0 yt = 1 yt = 2 yt = 3

0 2000 4000 6000 8000 10000
t

-1.0

-0.5

0.0

0.5

xs t

Figure 8: Left: visualization of the 1D Prinz potential, and the corresponding regions used to define
the discrete targets y. Right: Visualization of the 1D slow component xst colored by yst .

The Prinz 2D trajectories consist of sequences of 100K data points generated by diffusing a point
particle into a potential V (x) := 4

(
x8 + 0.8e−80x2

+ 0.2e−80(x−0.5)2 + 0.5e−40(x+0.5)2
)

with an
Euler-Maruyama integrator following the update:

xt+1 = xt − h∇V (xt) +
√
h ηt, (65)

in which h = 10−4 refers to the integrator step and ηt is standard Normal uncorrelated noise. We

generate
[
xft

]T
t=s

by performing 160 integration steps in-between consecutive timesteps, while [xst]
T

t=s

is generated by considering 5 integration steps. The Deep Time package (Hoffmann et al., 2021) is
used to produce the slow and fast trajectories, and the corresponding potential V (x) is visualized in
Figure 8. The fast and slow independent components are then mixed as follows:

xt =

[
tanh(xst + xft)

tanh(xst − xft)

]
, (66)

to produce the trajectories visualized in Figure 3a.

E.1.2 MOLECULAR DATA

Trajectories We analyze trajectories obtained by simulating Alanine Dipeptide, Chignolin, and
Villin (Lindorff-Larsen et al., 2011). For Alanine Dipeptide, the three splits correspond to separate
simulations of 250K/100K/100K frames respectively. In contrast, for Chignolin and Villin simulation,
a single trajectory is split into 3 temporally disjoint parts: 334.743/100K/100K frames for Chignolin,
and 427.907/100K/100K frames for Villin. Each observation xt consists of the set of the Euclidean
coordinates of all the atoms and a one-hot corresponding to the atomic number for the Alanine
Dipeptide trajectories. The input data for the mini-proteins, on the other hand, consists of a coarse-
grained representation indicating the 3D location of the amino acids in the protein chain (10 for
Chignolin and 35 for Villin), along with a one-hot encoding for the amino acid type.

Targets Targets for the Alanine Dipeptide molecules are generated by clustering torsion angles ϕ
and ψ into 6 regions, corresponding to the known meta-stable states. For the Chignolin and Villin
molecules, we generate targets yt by clustering the 32D invariant TICA projections obtained by

28

https://deeptime-ml.github.io/latest/api/generated/deeptime.data.prinz_potential.html

Figure 9: Visualization of the 1D free energy induced by the distribution of the distances between
first and last C-alpha atoms in the chain (CC) and Root Mean Squared Distance (RMSD) for the
molecules of Chignoling and Villin. Vertical dashed lines are used to denote the margin between the
different discretized regions. The thresholds are set to [7, 15], [1.3, 5] Angstroms for Chignolin CC
and RMDS respectively, while the values of [6.5, 15] and [2.5, 4.2] are used for Villin.

following the same procedure described in Köhler et al. (2023) using KMeans with 5 centroids, as
depicted in Figure 4a. We produce additional sets of targets by considering the distance between the
first and last C-alpha carbon atoms in the amino acid sequence (CC, 3 clusters), and the Root Mean
Squared Distance (RMSD, 3 clusters) from the stable folded configuration. The thresholds used to
create the clusters are visualized together with the corresponding free energy in Figure 9.

Lag time We decide on a training lag time τ for each molecule that is long enough to capture
relevant meta-stable state transitions, see Figure 4b and Figure 13. We focus on a time scale on
which most of the dynamic information is still present while modeling transitions that are orders of
magnitudes larger compared to the original simulations. We used a train lag time of 16 ps on Alanine
Dipeptide simulations, while 3200 ps was used for the Chignolin and Villin simulations. The same
value of τ is used both to train the encoder (step 1) and the transition model (step 2).

E.2 ARCHITECTURES AND OPTIMIZATION

The models used for the experiments reported in this paper are described in detail in the following
sections. The experiments reported in this paper required a total of 25 days of computation on A100
GPUs. This estimation includes model development, hyper-parameter tuning, and evaluation.

E.2.1 ENCODER TRAINING

We train each encoder for a maximum of 50 epochs with mini-batches of size 512 using the AdamW
(Loshchilov & Hutter, 2019) optimizer. To prevent overfitting, we use early stopping based on the
validation loss. Following previous work (Chen et al., 2020), the models are trained with an initial
learning rate of 10−6, which is gradually increased up to 5× 10−4 over the course of 5 epochs with a

29

linear schedule. The learning rate is then decreased to the initial value using a cosine schedule over
the following 45 epochs.

For the Prinz 2D experiments, encoders consist of MLPs with two hidden units of size 64 and a
2D output. In the molecular settings, each encoder architecture consists of a TorchMD Equivariant
Transformer (Thölke & Fabritiis, 2022) followed by global mean pooling and a linear layer to produce
a rotation, translation, reflection, and permutation invariant representation for each molecule. We use
a total of 3 layers of 32 hidden units with 8 heads each for the Alanine Dipeptide experiment. The
more challenging Chignolin and Villin molecules use encoders consisting of 5 layers with 64 hidden
units and 8 projection heads instead. For the evaluation of the quality of unfolded trajectories, we
use a 16-dimensional representation for Alanine Dipeptide. A total of 32 dimensions are used for
Chignolin and Villin.

TICA Temporal Independent Component Analysis consists of a linear projection of the input data
onto the principal temporal components. As a result, pθ(zt|xt) consists of a simple linear projection
instead of a neural network that has been optimized using the Deeptime python library (Hoffmann
et al., 2021). For the Prinz2D experiments, we apply TICA directly to the original sequence [xt]

T

t=s
to project each data point xt onto the principal temporal component zt. For the Alanine Dipeptide
Experiments, the TICA representations correspond directly to the torsion angles determined by the
carbon skeleton (2 angles), which are commonly used in literature to describe the configuration of this
small molecule (Vymětal & Vondrášek, 2010; Mardt et al., 2018). The representations for Chignolin
and Villin are produced following the same procedure described in detail in Köhler et al. (2023), in
which torsion angles and inter-atomic distances are projected onto the principal temporal components.

VAMPNet We train the encoder pθ(zt|xt) using VAMP-2 score (Mardt et al., 2018; Wu & Noé,
2020) using the implementation from the Deeptime python library (Hoffmann et al., 2021). The
VAMPNet model was originally designed for estimating dominant spectral components of molecular
simulations. However, Sidky et al. (2020) has shown the effectiveness of VAMPNet for Latent
Simulation inference.

T-InfoMax As a representative of non-linear mutual information maximization methods, we
consider the popular InfoNCE method (van den Oord et al., 2018; Chen et al., 2020). Following the
literature (van den Oord et al., 2018; Poole et al., 2019), we model the log-ratio between joint and
product distribution with a separable architecture:

Fξ(zt−τ ; zt) = gξ1(zt−τ)
T gξ2(zt), (67)

in which gξ1 and gξ2 are neural networks mapping the latent representations into a 128-dimensional
normalized vector. The two architectures have distinct weights with one hidden layer of 256 units
and group normalization (Wu & He, 2018) before the ReLU non-linearity.

T-IB Analogously to the T-InfoMax counterpart, the Time-lagged Information Bottleneck objective
makes use of InfoNCE for time-lagged information maximization, with an additional regularization
term modulated by the hyper-parameter β as shown in equation 9. Following (Federici et al.,
2020) we first train the encoder with an initial value of β = 10−6 for 5 epochs. This is to prevent
the representation from collapsing into a constant at the beginning of training. Secondly, the
regularization strength is gradually increased up to the final desired value over the course of 30
epochs. We empirically observed that the T-IB models benefit from the use of a stochastic encoder
pθ(zt|xt) = N (zt|µθ(xt), σθ(xt)I). The parameter vectors µθ(xt) and σθ(xt) are obtained using
two linear projection heads on top of the encoder features, as a result, the size of the stochastic
encoders is comparable to the corresponding deterministic counterpart.

We initialize the architectures with a value of σθ(xt) ≈ 10−4 to reduce the amount of Gaussian addi-
tive noise in the initial part of the training. Empirical results showed that the additional stochasticity
produces smooth transitions between different levels of regularization strength. This is in contrast
with the sharp regime changes observed with deterministic encoders (Figure 11, Top). We believe
that this is due to the fact that the addition of Gaussian noise allows the encoder to destroy superflu-
ous information locally when necessary.

30

https://deeptime-ml.github.io/latest/notebooks/vampnets.html
https://deeptime-ml.github.io/latest/notebooks/vampnets.html

E.2.2 TRANSITION AND PREDICTION TRAINING

The variational transition and prediction models (qϕ(zt|zt−τ) and qψ(zt|yt), respectively) are jointly
trained on the embedding produced by the encoder trained in the previous step. The training procedure
uses mini-batches of size 512 with AdamW and a fixed learning rate of 5 × 10−4 over a total of
50 epochs. Contrary to the previous step, we did not observe any overfitting with only marginal
improvements in the training and validation scores by the end of the training procedure.

Transition The transition model consists of conditional Flow++ layers (Ho et al., 2019) due to
their flexibility, sampling speed, and ability to model correlated distributions. The transitions for
Prinz2D and Alanine Dipeptide representations consist of 3 flow layers. Each layer is composed of a
conditional mixture of logistics CDF coupling transformation consisting of a neural network with
two hidden layers of 64 hidden units, which maps the representations zt−τ into the parameters of a
mixture of 16 logistics distributions. An architecture of 5 layers is used to learn the more challenging
transition distributions for Chignolin and Villin. To prevent numerical overflows while unfolding
long simulations, we clip samples to be in the interval [−106, 106].

Prediction Each feature predictor used in this work consists of a simple 1-hidden layer MLP
with 128 hidden units mapping the representation zt into the logits for the variational predictive
distribution qψ(yt|zt).

E.3 EVALUATION

We focus our evaluation on two main aspects. First, we analyze the amount of autoinformation that
several models extract from the molecular data to better understand which temporal characteristics of
the molecular process are successfully captured. The second aspect involves the evaluation of the
fidelity of trajectories unfolded using the Variational Latent Simulation process.

E.3.1 MUTUAL INFORMATION

Autoinformation We estimate autoinformation for evaluation purposes using SMILE (Song &
Ermon, 2020) on the trained representations zt with a clipping interval of [−5, 5]. The ratio estimation
architecture consists of an initial projection head g : Z → R128 with one hidden layer of 256 units
and output ht := g(zt) with a dimension of 128. Pairs of the 128-dimensional feature vectors ht at
different temporal resolutions are then concatenated and fed into a second MLP rτ : R128×R128 → R
with 64 hidden units and 1 output, which corresponds to the estimated log-ratio value. Each
pair of ht,ht+τ is fed into a distinct architecture rτ for each τ . This setup allows us to estimate
autoinformation at several time-lags at once to produce the plots visualized in Figure 4b, Figure 13
and Figure 14a. Each dot in the figure corresponds to the expected output of one ratio estimation
model rτ (g(zt), g(zt+τ)) on the entirety of the training set. The ratio estimation models are fit for
at most 20 epochs using early stopping based on the validation loss. Note that samples from the
marginal distribution used to estimate the value of the partition function are sampled by sampling xt′
with uniform probability using the same strategy described in Appendix C.2. Estimation is performed
using the Torch-Mist package(Federici et al., 2023).

Target Information Following Poole et al. (2019); McAllester & Stratos (2020); Song & Ermon
(2020), we estimate the amount of target information in the representations as a difference of cross-
entropies:

I(zt;yt) = H(yt)−H(yt|zt) ≤ H(yt)− E[− log qψ(yt|zt)], (68)
in which the marginal entropyH(yt) for the discrete targets yt is estimated by counting the frequency
of each class, while the expected cross entropy E[− log qψ(yt|zt)] is evaluated using the trained
predictor qψ(yt|zt) on the entirety of the test trajectory and computing the corresponding expected log-
likelihood. Note that with I(zt;yt) we implicitly refer to the expected amount of target information
over an entire trajectory rather than the amount of information estimated specifically at the time-step t.

E.3.2 UNFOLDING TRAJECTORIES

Accurately estimating a measure of divergence between joint distributions when only samples are
accessible is generally a challenging task due to the number of samples required for a reliable

31

https://github.com/mfederici/torch-mist

estimation. For this reason, instead of considering continuous multi-dimensional targets yt, we focus
our attention on discrete targets. The targets in our experiments are designed to capture properties of
interest of the trajectories

Our evaluation procedure can be described in 3 steps:

1. First we encode the initial (unobserved) test state xs into the latent configuration zs using

pθ(zt|xt). Starting from zs, we sample a total of 256 trajectories
[
z̃
(i)
s+kτ

]K
k=1

by sampling

from the variational transition model qϕ(zt|zt−τ) sequentially for a total temporal duration
which is comparable to the time-span covered by the test trajectories T − s ≈ Kτ . Using
the prediction model qψ(yt|zt) we then sample a target ỹ(i)t for each sampled z̃

(i)
t , obtaining

256 sequences of targets
[
ỹ
(i)
+kτ

]K
k=1

.

2. We count the number of transitions from each discrete state ỹ(i)t to the following ỹ(i)t+kτ for
various numbers of steps k, effectively creating a series of transition count matrix C̃

(i)
kτ

and Ckτ respectively for
[
ỹ
(i)
+kτ

]K
k=1

and [yt]
T

t=s. The 256 count matrices for the unfolded

trajectories are then averaged to produce C̃kτ = 1/256
∑256

i=1 C̃
(i)
kτ . We normalize each row

of C̃kτ and Ckτ to estimate the transition probability matrices T̃kτ and Tkτ . Analogously,
we count the number of times that each state is visited to determine the normalized counts
m and m̃ using the ground truth and unfolded trajectories respectively.

3. We compute the Jensen-Shannon divergence between each row of Tkτ and T̃kτ , then we
average the values obtained for each row into a single number, representing the average
Jensen-Shannon divergence. With this last step, we obtain one value of transition Jensen-
Shannon divergence (TJS) for each chosen number of unfolding steps k (see Figure 15).
The values for each row are averaged using the same weighting instead of the relative
state probability to accentuate errors when transitioning from rare states. Analogously
we compute the value of marginal JS (MJS) by computing the divergence between the
probability distribution induced by m and m̃.

F ADDITIONAL RESULTS

In this section, we report additional ablation studies and the performance of the models considered in
this analysis for different sets of targets.

F.1 T-IB REGULARIZATION STRENGTH AND TRAIN LAG TIME

10
4

10
3

10
2

10
1

10
0

Regularization

0.0

0.5

1.0

1.5

2.0

AI
([z

t];
) [

na
ts

]

Lag time
1
64
256

10
4

10
3

10
2

10
1

10
0

Regularization

0.00

0.25

0.50

0.75

1.00

1.25

I(z
t;

yta
rg

et
t

) [
na

ts
]

target
slow
fast

10
4

10
3

10
2

10
1

10
0

Regularization

10
3

10
2

TS
D

@
′ [

na
ts

]

Lag time ′

64
512
2048

10
4

10
3

10
2

10
1

10
0

Regularization

0

1

2

3

4

5

KL
(p

(z
t|x

t)|
|q

(z
t|z

t
))

[n
at

s]

Figure 10: Visualization of the effect of the regularization strength β on Autoinformation, information
regarding slow and fast modes, transition JS, and amount of superfluous information on the Prinz
2D dataset. All representations are trained using τ = 64. Representations trained with β < 0.01 tend
to contain information regarding the fast mode and higher autoinformation at small temporal scales,
while strong regularization β > 0.1 results in representations that contain too little information. Note
that the best performance in terms of transition JS divergence is achieved by the representation
that contains the least information regarding yft and most about yst , which corresponds to the most
compressed sufficient representation.

32

10
4

10
2

10
0

Regularization

0.0

0.1

0.2

0.3
AI

([z
t];

) [
na

ts
]

 Alanine Dipeptide

10
4

10
2

10
0

Regularization

0.0

0.1

0.2

0.3

0.4

 Chignolin

10
4

10
2

10
0

Regularization

0.0

0.2

0.4

0.6

0.8
 Villin

stochastic
True
False

(a)

10
4

10
2

10
0

Regularization

0

2

4

6

8

10

KL
(p

(z
t|x

t)|
|q

(z
t|z

t
))

[n
at

s]

 Alanine Dipeptide

10
4

10
2

10
0

Regularization

0

10

20

30

 Chignolin

10
4

10
2

10
0

Regularization

0

10

20

30

40

50

60

 Villin

(b)

Figure 11: Visualization of the effect of the regularization strength on the representations produced
with T-IB on molecular simulations with fixed train lag time τ . 11a: estimated autoinformation (y-
axis) for the three molecules as a function of the training regularization strength β (x-axis). Stochastic
encoders (in blue) show a much smoother interpolation. 11b: the amount of superfluous information
(y-axis, Equation 49) as a function of the regularization strength.

τ = 0.4 ns τ = 3.2 ns τ = 25.6 ns τ = 204.8 ns

(a)

Autoinformation

10
3

10
4

10
5

10
6

Lag time [ps]

0

1

2

3

AI
([z

t];
) [

na
ts

]

Train lag time
0.4 ns
3.2 ns
25.6 ns
204.8 ns

(b)

Figure 12: Visualization of the effect of the train lag time τ on 2D T-IB representations of Villin
trained with β = 0.01. 12a: representation of the test trajectories for models trained with several
lag times, colored by the clustered TICA embedding, as reported in Figure 4a. 12b: corresponding
autoinformation plot in which the dashed vertical lines correspond to the respective training lag times.
Note that, as motivated in Section 2.2, representation trained with a higher temporal resolution also
captures slower processes at the cost of introducing more information into the representation. This can
be clearly seen by observing the number of distinct clusters emerging in the visualized representations.

Figure 10 reports the effect of the regularization strength for T-IB representations of the Prinz 2D
data. Consistently with the hypothesis, the best-performing model is the one that produces minimal
sufficient representations at the training time scale τ = 64. This corresponds to a regularization
strength of β = 0.01.

Figure 11 compares the effects of several regularization strengths, demonstrating the differences
between deterministic and stochastic encoders. Deterministic encoders (in yellow) tend to sharply
transition from a fully informative representation (on the left) to a constant uninformative representa-
tion (on the right). A secondary advantage of using a stochastic encoder is the possibility to compute
an upper bound of superfluous information thanks to the expression for the density pθ(zt|xt). This
is generally not possible for a deterministic encoder for which KL(pθ(zt|xt)||qϕ(zt|zt−τ)) can be
evaluated only up to a constant. Regularization strength β for T-IB is selected based on validation
performance: β = 0.01 for Alanine Dipeptide and Villin; β = 0.001 for Chignolin.

33

In our experiments on molecular data, we observed that even small values of β can have a substantial
impact on reducing the amount of superfluous information contained in the representations, with only
a moderate impact on autoinformation. We believe the possible reduction of autoinformation for larger
β is due to the fact that processes faster than τ cannot always be fully disentangled. This includes
processes that contain lots of information at smaller time scales, but are only marginally informative
for events that are τ time-steps apart. Reducing information regarding faster processes can drop the
amount of superfluous information in the representation but still decrease autoinformation whenever
the faster process can not be temporally disentangled. Nevertheless, regularization strength in the
order of 10−3 reduces the amount of superfluous information by a substantial factor (10×) with little
to no effect on the amount of extracted autoinformation at τ .

Figure 12b shows the effect of the train lag time selection on T-IB models trained with β = 0.01 and
a 2-dimensional representation space for the Villin trajectory. Smaller train lag time corresponds
to higher information content and more complex representations, while larger train time scales
are associated with simpler representations that are not suitable for unfolding simulation at higher
temporal resolution. Note that the larger the training lag-time the longer the training trajectories need
to be.

F.2 AUTOINFORMATION FOR LARGER REPRESENTATIONS

Plots in Figure 4b, Figure 14a, and Figure 13 confirm that with an appropriate regularization strength,
T-IB model preserves the maximum amount of autoinformation at the training timescale while
decreasing autoinformation for smaller lag times (left of the dashed lines).

Note that the autoinformation plot all the models considered in this analysis matches for large time
scales. This suggests that all the corresponding representations preserve autoinformation at large
lag times while still differing in the amount of superfluous information at faster scales and the
representation structure. The perfect overlap is also justified by Lemma 3 which guarantees that
representations that preserve autoinformation at some lag time τ must also preserve information at
larger lag times.

Encoders trained with the VAMPNet objective on complex systems tend to preserve autoinformation
only for slower processes. We further observe that VAMPNet models tend to become less numeri-
cally stable for increasing representation size, while methods based on non-linear autoinformation
maximization are less affected by this hyperparameter choice.

F.3 EVALUATING STATISTICS FOR MULTIPLE TARGETS AND TIME-STEPS

Figure 15, Figure 14b, and Table 1 report the values of average Jensen-Shannon divergence for transi-
tion distribution for different targets yt. We observe that the T-IB model consistently outperforms the
other models for transition matrices computed based on different objectives and several lag times.

One of the main challenges for the evaluation of statistics of slow processes (large transition times in
Figure 15) lies in the limited amount of test time frames. We observed that, for large time intervals,
the estimation of the ground-truth transition distribution from rare states may be too noisy to produce
accurate measures of Jensen-Shannon divergence. As a result, the values reported for large transition
times (x-axis) become dependent on the specific test trajectory used for evaluation. Nevertheless, we
believe that the relative comparison between the performance of different models may still represent
their ability to match the original statistics. More accurate quantitative analysis in this regime would
require access to much longer molecular simulations.

34

10
1

10
3

Lag time [ps]

0.0

0.2

0.4

0.6

0.8

1.0

AI
([z

t];
) [

na
ts

]

 Alanine Dipeptide

10
4

10
6

Lag time [ps]

0.0

0.5

1.0

1.5

 Chignolin

10
4

10
6

Lag time [ps]

0

2

4

6
 Villin

Model
TICA
VAMPNet
T-InfoMax
T-IB (=0.001)

Figure 13: Autoinformation plot for high dimensional representations (16 for Alanine Dipeptide, 32
for Chignolin and Villin). Shaded regions indicate the standard deviation measured across 3 seeds and
the dashed vertical line indicates the lag time at which the representations are trained. Representations
trained with the VAMPNet objective are generally less consistent (higher variance) across different
seeds. T-IB produces sufficient representations (maximal autoinformation at the training time scale)
while minimizing the autoinformation for smaller scales.

10
0

10
1

10
2

10
3

Lag time

0

1

2

3

AI
([z

t];
) [

na
ts

]

Autoinformation

(a)
10

2
10

3

Transition steps ′

0.001

0.01

TJ
S@

′ [
na

ts
]

Slow Mode

Model
Original
TICA (1D)
VAMPNet
T-InfoMax
T-IB (= 0.01)

(b)

Figure 14: Measurements of autoinformation and transition JS estimated for several time scales. 14a:
values of autoinformation estimated at several lag times τ for representations trained with τ = 64.
14b: values of transition JS estimated at several time scales τ ′ from unfolded trajectories. T-IB
contains the least autoinformation at small time scales while preserving information at the train lag
time or larger. At the same time, T-IB results in the smaller TJS at all the considered time scales.
The measure of standard deviation is obtained by considering 3 seeds for each model.

Chignolin Villin
CC Cluster RMSD Cluster CC Cluster RMSD Cluster

MJS TJS@51.2 ns MJS TJS@51.2 ns MJS TJS@51.2 ns MJS TJS@51.2 ns
TICA 7.5± 7.6 5.2± 3.4 7.4± 7.8 6.4± 3.7 1.7± 0.5 6.1± 2.4 7.3± 6.1 5.3± 3.7

VAMPNet 30± 20 103± 68 31.9± 21.8 117± 102 63± 88 57± 47 7± 41 40± 7

T-InfoMax 5.0± 1.7 3.5± 0.8 4.8± 1.6 3.3± 0.7 2.1± 0.5 5.3± 1.9 5.8± 2.3 8.5± 2.4

T-IB 3.3± 2.3 1.1± 0.2 2.9± 2.2 4.1± 1.1 0.8± 0.3 4.4± 1.1 1.7± 1.1 4.1± 1.6

Table 1: Values of marginal (MJS) and transition (TJS) Jensen-Shannon divergence for trajectories
unfolded on latent spaces obtained with different models for the prediction of the CC and RMSD
cluster targets described in Appendix E.1.2. The regularized T-IB model consistently outperforms the
corresponding unregularized counterpart (T-InfoMax) at the considered time scale.

G SIMULATION TIME

G.1 MOLECULAR DYNAMICS SIMULATION

According to the data reported in Shaw et al. (2021), the 64-node Anton 3 supercomputer can simulate
up to 250 microseconds per day for a system consisting of ∼ 105 atoms, which is similar to the total
atoms in the Villin and Chignolin simulations. On the other hand, a single A100 GPU can simulate
only up to 1.5 microseconds each day. The estimate is based on the data reported in Table III in

35

10
2

10
3

Transition time ′ [ps]

10
2

10
1

TJ
S

@

′

 Alanine Dipeptide

10
4

10
5

10
6

Transition time ′ [ps]

10
2

10
1

 Chignolin

10
4

10
5

10
6

Transition time ′ [ps]

10
2

10
1

 Villin
TICA Cluster

Model
TICA
VAMPNet
T-InfoMax
T-IB

10
4

10
5

10
6

Transition time ′ [ps]

0.01

0.1

TJ
S@

′

 Chignolin

10
4

10
5

10
6

Transition time ′ [ps]

0.01

0.1

 Villin
CC Cluster

10
4

10
5

10
6

Transition time ′ [ps]

0.01

0.1

TJ
S@

′

 Chignolin

10
4

10
5

10
6

Transition time ′ [ps]

0.01

0.1

 Villin
RMSD Cluster

Figure 15: Measure of the average Jensen-Shannon divergence (y-axis) for the unfolded transition
matrix for several discrete targets yt as a function of the number of unfolding steps (x-axis).

Shaw et al. (2021) and the simulation condition described in the supplementary material provided
by Lindorff-Larsen et al. (2011). Therefore, simulating a time jump of τ = 3.2 nanoseconds would
require approximately 200s on an A100 GPU and about 1 second on Anton 3.

G.2 LATENT SIMULATION

Unfolding one transition step using the Flow++ transition model used in our experiments requires
approximately 100 milliseconds on a single A100 GPU. As a result, for the reported Chignolin
and Villin experiments, our estimated acceleration is about a factor ×1000 compared to molecular
simulations on the same hardware and ×10 for the highly specialized Anton 3 supercomputer. The
total simulation time to produce a new molecular simulation of the same length as the training one
(T ∼ 100 microseconds) is approximately 3 months on a single A100 GPU, 1 hour with Latent
Simulation on the same GPU, and 10 hours on 64-nodes Anton 3.

Note that total time require to unfold a latent simulation TLS decreases as we increase the lag time τ :

TLS = T tLS/τ,

in which the cost tLS is determined by the size of the latent space, the transition model, the prediction
model, and the hardware. As shown in Table 2, for our experiments, the prediction time is negligible
when compared to the cost of unfolding latent transitions. This is because the prediction model
consists of a simple MLP. Whenever the target of interest yt is also high-dimensional, the prediction
cost may increase significantly. However, it is reasonable to assume both tLSP and tLST to require in
the order of 100 milliseconds for most tasks of interest.

The Latent Simulation process is also highly parallelizable. As shown in Table 2, it is possible to
simultaneously unfold more than 105 trajectories on a single A100 GPU with little to no overhead.

It is important to note that learning encoder, transition, and prediction models for Latent Simulation
still require several ground truth trajectories of length T >= τ , and the unfolded Latent Simulations
are approximations of the molecular dynamics. This is because we do not directly represent the water
molecules around the proteins nor the single atoms composing the amino acids.

36

10 Trajectories 100 Trajectories 1000 Trajectories 10000 Trajectories
Transition 124± 3 128± 1 130± 1 166± 1
Prediction 0.690± 0.001 0.700± 0.001 0.732± 0.002 0.739± 0.003

Table 2: Estimations for the time (in milliseconds) required to unfold one step of parallel Latent
Simulation of Chignoling and Villin on a single A100 GPU. The estimates refer to the time required to
produce samples from the conditional distribution qϕ(zt+τ |zt) and qψ(yt|zt) for given zt. Note that
the cost of conditioning and sampling the transition model dominates the one of making predictions.
Details on the architectures for the transition prediction models are described in Appendix E.2.

TICA [s] VAMPnet [103s] T-InfoMax [103s] T-IB [103s]
Alanine Dipeptide 1.04± 0.01 2.39± 0.02 2.63± 0.08 2.78± 0.02

Chignolin 42.2± 0.2 2.8± 0.3 3.0± 0.3 3.5± 0.3
Villin 60± 1 12.5± 0.3 12.8± 0.2 13.3± 0.4

Table 3: Training time required to train the encoder architectures on the Alanine Dipeptide, Chignolin,
and Villin data. The measurements are reported in seconds for the TICA experiments, and 103

seconds for the other models relying on TorchMD encoders.

Data Training Time [103s]
Alanine Dipeptide 1.7± 0.1

Chignolin 4.5± 0.3
Villin 4.5± 0.5

Table 4: Estimated training time required to fit the transition and predictive model for a fixed
representation. The estimates also include the time required to unroll and evaluate latent simulation
for validation purposes.

G.3 TRAINING TIME

We report the training time corresponding to all the models reported in our experimental section
by differentiating the time required to train the encoder (step 1) from the training of transition and
prediction model (step 2) described in Section 2.1.

Table 3 reports the total time required to train the encoder architectures with the TICA, VAMPnet,
T-InfoMax and T-IB objectives. The training time for TICA is substantially shorter since it relies
on linear mapping instead of a flexible TorchMD architecture. The variance of the time estimates is
computed over three runs per experiment.

The training time for the second step is equivalent for all models since the same transition and
prediction architecture are fit to each representation using maximum likelihood. Train time is not
influenced by the encoder (linear or Deep NN) since we encode and store the entire dataset to disk at
the end of step 1. As a result, the total cost depends solely on the dataset size and size of the latent
representation, as reported in Table 4.

The total training time (step 1 + step 2) for the T-IB model on Villin amounts to approximately 5
hours. Unfolding a latent simulation of the same length of the training trajectory requires another
hour, bringing the total to 6 hours. Even by including the training time, Latent Simulation is 100× to
1000× faster than running molecular dynamics on comparable hardware.

37

