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A PRELIMINARY

A.1 VIRTUAL ADVERSARIAL TRAINING AND ITS VARIANTS

VAT (Miyato et al. [2018) extends the adversarial training by utilizing “virtual” adversarial pertur-
bations to construct the adversarial smoothness, and obtains better performance in semi-supervised
learning (SSL). Particularly, VAT replaces true labels y of samples in the formulation of adversarial

training by current estimate p(y|x; #) from model:

min max D {p(y\x;é),p(y|x+r;9)] , (6)
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where D]q, p] measures the divergence between two distributions ¢ and p. r is the adversarial per-

turbation depending on the current sample x that can further provide the smoothness in SSL. Then

the VAT regularization Ryaqy (, 7; 6) could be derived from the inner maximization:

Ryadv(z,7;0) = max D [p(y|x;é),p(y|x + 7";9)] (7)
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One elegant part of VAT is that it utilized the second-order Taylor’s expansion of virtual adversarial
loss to compute the perturbation 7, which can be computed efficiently by power iteration with finite
difference. Once the desired perturbation r* has been obtained, we can conduct forward and back
propagation to optimize the full loss function:

mein »C() + B]EzN’DRvadv ($7 T*; 9)7 (8)

where L is the original supervised loss and f3 is the hyper-parameter to control the degree of virtual
adversarial smoothness. There are a flurry of VAT variants (Luo et al.,[2017}; Yu et al.,2019), most of
which heavily rely on generative models to construct data manifold. For instance, VAT+SNTG (Luo
et al., 2017) constructed a graph based on the predictions of the teacher model to smooth the rep-
resentation on the low-dimensional manifold in the semi-supervised setting. By contrast, our Pani
method is a fine-grained patch-level and more general regularization that can be leveraged to refine
the representation in both semi- and supervised scenarios without the requirement of any generative
model.

A.2 MixUP AND ITS VARIANTS

Mixup (Zhang et al.| 2017)) augments the training data with linear interpolation on both input features
and target. The resulting feature-target vectors are shown as follows:

T =Ax; + (1 = Nz
¥ =y + (1= Ny,

where (x;,y;) and (z;,y,) are two feature-target vectors drawn randomly from the training data.
A ~ Beta(a,a) and a € (0,00). MixUp can be understood as a form of data augmentation that
encourages decision boundaries to transit linearly between classes. It is a kind of generic regulariza-
tion that provides a smoother estimate of uncertainty, yielding the improvement of generalization.
Recently, MixMatch (Berthelot et al.,2019b)) has been proposed by integrating several sought-after
strategies, working as a natural extension of Mixup and achieving the state-of-the-art accuracy in
the semi-supervised scenario. Nevertheless, we show our Pani Method can easily enhance the per-
formance of MixUp and MixMatch in both semi- and supervised settings.
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A.3 PEER-REGULARIZED NETWORKS (PEERNET)

The centerpiece of PeerNet (Svoboda et al., 2018)) is the learnable Peer Regularization (PR) layer
designed to focus on improving the adversarial robustness of deep neural networks. PR layer can be
flexibly added into the feature maps of deep models.

Let Z',...,Z" be n x d matrices as the feature maps of N images, where 7 is the number of pixels
and d represents the dimension of the feature in each pixel, i.e., number of channel in the feature
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map. The core of PeerNet is to find the K nearest neighboring pixels for each pixel among all the
pixels of N peer images via constructing a K nearest neighbor graph in the d-dimensional space.
Particularly, for the p-th pixel in the i-th image z;,, the k-th nearest pixel neighbor can be denoted

as zg; taken from the pixel g, of the peer image ji. Then the learnable PR layer is constructed by a

variant of Graph Attention Networks (GAT) (Velickovic et al., [2017):

K
Sl — .. Jk
Zy, = E :alﬂkp%zqk’
k=1

LeakyReLU (exp (f a (Zi z); )))

P’ 74qk
2521 LeakyReLU (exp (fa (z;,, ZZZ))) )

where «;j, pq, 1s the attention score determining the importance of the g;-th pixel of the j-th peer
image on the representation of current p-th pixel i; taken from the i-th image. f,() is a fully con-
nected layer mapping from 2d-dimensional input to scalar output. Therefore, the resulting learnable
PR layer involves non-local filtering by leveraging the wisdom of pixel neighbors from peer images,
showing robustness against adversarial attacks.

(10)
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B DISCUSSION ABOUT REGULARIZATION EFFECT

Manifold Regularization. There are a flurry of papers introducing regularization from the classical
manifold learning based on the assumption that the data can be modeled as a low-dimensional man-
ifold in the data space. More importantly, Hinton et al. (Hinton et al.l 2012)) and Ioffe et al. (Ioffe &
Szegedyl, [2015) demonstrated regularizers that work well in the input space can also be applied to
the hidden layers of a deep network, which could further improve the generalization performance.
Our Patch-level Neighborhood Interpolation can be easily extended from input to the hidden layers,
enjoying the benefits of manifold regularization.

Non-local Image Filtering. Past non-local image filter methods (Tomasi & Manduchi, [1998;
Buades et al., 2005; [Sochen et al., [1998)) leveraged both the pixel intensities and their pixel neigh-
bors together with their locations to design these non-shift-invariant filters. Recently, Non-local
Neural Networks (Wang et al.l 2018) presented one effective non-local operation and serves as a
generic component for capturing long-range dependencies with deep neural networks. Similar with
these approaches, our Patch-level Neighborhood Interpolation still has the capability to capture the
correlation knowledge of patch features within a batch, therefore yielding an improvement of per-
formance for the derived methods. Moreover, our Patch-level Neighborhood Interpolation can also
serve as a novel non-i.i.d. regularization and can reasonably generalize well to broader settings
especially when the natural correlation in the sub-group exists.

C IMPLEMENTATION DETAILS

Pani VAT. For the option of hyper-parameters, we conduct the delicate line search for the best
performance. In Pani VAT (input), we choose patch size as 2, K1 = 10 for the number of peer
images, K5 = 10 to construct the nearest patch neighbor graph, perturbation size € and adjustment
coefficient w; as 2.5 and 1.0, respectively. For our Pani VAT (+hidden) method, we opt K; = 10
and overall perturbation size ¢ = 2.1. On the considered two layers, we choose K5 as 10 and 50,
patch size as 2 and 1 and the adjustment coefficient w as 1 and 4, respectively.

Pani MixUp. After the line search of hyper-parameters for the best performance, we choose patch
size as 16, parameter a in Beta distribution as 2.0 for the data augmentation setting while we opt
patch size 8, a = 2.5 on the setting without data augmentation across all neural architectures and
datasets. On the TinyImageNet dataset, we set the image dimension as 64 x 64 and batch size as
100 expect WRN28-10 as 50 due to the memory limitation.

Mask Mechanism. To extend the flexibility of Pani MixUp, we additionally introduce the mask
mechanism on the interpolation coefficient 7 to random drop 7;,;, with certain ratio. The mask
mechanism can be viewed as dropout or enforcing sparsity, which can help to reduce redundant
information while conducting Pani MixUp. After tuning this hyper-parameter, we set the mask ratio
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as 0.6 in the data augmentation setting while fixing the ratio as 0.4 in the scenario without data
augmentation.
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