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Motivation and Background

Research Questions:

1. Failing to consider the essential chemical properties for target binding can lead to a significant
lack of specificity and result in ineffective drug candidates. Moreover, drug candidates must
exhibit favorable absorption, distribution, metabolism, excretion (ADME), and toxicity profiles.

2. But, the respective data is often too sparse and too noisy for developing effective machine
learning models. Thus, designing ligands from scratch without addressing these critical
properties may produce molecules with poor bioavailability or potential toxicity, thereby
limiting their therapeutic potential.

3. However, can we use machine learning during the hit expansion phase of drug discovery?
This crucial stage involves enhancing and exploring the chemical space around promising hits
that are already identified through high-throughput screening or other methods and might
provide significantly better starting points for generative models.

4. Can we perform hit expansion by just adding one layer of control to a generative diffusion
model? We propose a latent-conditional training and sampling. Here, a seed molecule is given
to the model in form of a jointly learned latent embedding to steer the diffusion process.

We introduce PoLiGenX (Pocket-based Ligand Generator for hit eXpansion), a novel latent-
controlled de novo generative model, denoted as pθ(M |P, z), designed for generating 3D ligands
represented by x = (H, X, E), withH ∈ {0, 1}N×Ka, E ∈ {0, 1}N×N×Kb, X ∈ RN×3. This model
processes both continuous and discrete variables and is conditioned on a specific protein pocket
P and a seed molecule embedding z.

Experiments and Results

The effect of timestep-dependent loss weighting

We hypothesize that denoising requires high accuracy close to the data distribution for generating
valid molecules, while errors close to the noise distribution are negligible. We propose using the
time-dependent weighting:

ws(t) = max(0.05, min(1.5, SNR(t))). (1)

QM9 GEOM-Drugs

Weighting Mol. Stability ↑ Validity ↑ Connect. Comp. ↑ Mol. Stability ↑ Validity ↑ Connect. Comp. ↑
wu 97.39±0.23 97.99±0.20 99.70±0.03 87.59±0.19 71.44±0.22 86.57±0.33
ws(t) 98.68±0.11 98.96±0.07 99.94±0.03 91.60±0.14 84.02±0.19 95.08±0.12

Model parameterization (x̂0, ϵ̂) and Gaussian vs. discrete diffusion Kristof suggests to remove the
table and consolidate the results. As findings from upper-right panel from graphical abstract

Dataset QM9 GEOM-Drugs

Model EQGATx0
disc EQGATx0

cont EQGATϵ
cont EQGATx0

disc EQGATx0
cont EQGATϵ

cont

Mol. Stab. ↑ 98.68±0.11 96.45±0.17 96.18±0.16 91.60±0.14 90.46±0.09 85.19±0.72
Atom. Stab ↑ 99.92±0.00 99.79±0.01 99.68±0.02 99.72±0.01 99.73±0.01 99.32±0.04
Validity ↑ 98.96±0.07 96.79±0.15 97.04±0.17 84.02±0.19 80.96±0.38 79.13±0.58
Connect. Comp. ↑ 99.94±0.03 99.82±0.05 99.71±0.03 95.08±0.12 93.30±0.21 94.10±0.48
Novelty ↑ 64.03±0.24 60.96±0.54 73.40±0.32 99.87±0.04 99.83±0.04 99.82±0.0
Uniqueness ↑ 100.00±0.00 100.0±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Diversity ↑ 91.72±0.02 91.51±0.03 91.89±0.03 89.00±0.03 88.87±0.04 88.97±0.05
KL Divergence ↑ 91.36±0.29 91.41±0.54 88.97±0.31 87.17±0.34 87.35±0.35 87.70±0.58

Train Similarity ↓ 0.076±0.00 0.076±0.00 0.075±0.00 0.113±0.00 0.114±0.00 0.114±0.00
AtomsTV [10−2] ↓ 1.0±0.00 2.0±0.00 2.7±0.00 3.4±0.10 3.6±0.10 2.9±0.20
BondsTV [10−2] ↓ 1.2±0.00 1.8±0.00 1.2±0.00 2.4±0.00 2.4±0.00 2.4±0.00
ValencyW1 [10−2] ↓ 0.6±0.10 1.9±0.00 0.9±0.00 1.2±0.10 1.9±0.10 1.6±0.00
BondLenghtsW1 [10−2] ↓ 0.2±0.10 0.5±0.00 0.2±0.10 0.2±0.10 0.3±0.00 0.7±0.40
BondAnglesW1 ↓ 0.42±0.03 1.86±0.06 0.52±0.03 0.92±0.02 0.95±0.02 1.07±0.06

State-of-the-art Molecule Generation

Dataset GEOM-Drugs

Model EQGATx0
disc EQGAT

x0,ft
disc EQGATx0,af

disc EQGATx0,af,ft
disc EDM MiDi

Mol. Stab. ↑ 93.11±0.31 93.92±0.13 94.51±0.18 95.01±0.37 40.3 89.7±0.60
Atom. Stab ↑ 99.79±0.01 99.81±0.01 99.83±0.01 99.84±0.00 97.8 99.7±0.01
Validity ↑ 85.86±0.33 88.04±0.17 87.89±0.31 88.42±0.26 87.8 70.5±0.41
Connect. Comp. ↑ 96.32±0.25 96.57±0.18 96.36±0.25 96.71±0.20 41.4 88.76±0.55
Novelty ↑ 99.82±0.05 99.84±0.02 99.82±0.05 99.82±0.03 100.00 100.00±0.00
Diversity ↑ 89.03±0.03 89.05±0.05 88.98±0.02 88.96±0.01 - -
KL Divergence ↑ 87.66±0.31 87.58±0.56 88.38±0.25 87.62±0.19 - -

Train Similarity ↓ 0.114±0.0 0.113±0.0 0.114±0.0 0.114±0.0 - -
AtomsTV [10−2] ↓ 3.02±0.08 3.02±0.10 2.88±0.10 2.91±0.10 21.2 5.11±0.19
BondsTV [10−2] ↓ 2.44±0.01 2.40±0.00 2.42±0.00 2.40±0.00 4.8 2.44±0.00
ValencyW1 [10−2] ↓ 1.18±0.09 1.20±0.00 0.85±0.12 0.90±0.10 28.5 2.48±0.52
BondLenghtsW1 [10−2] ↓ 0.56±0.38 0.10±0.00 0.50±0.51 0.20±0.10 0.2 0.2±0.10
BondAnglesW1 ↓ 0.83±0.03 0.79±0.02 0.65±0.01 0.62±0.01 6.23 1.73±0.32

Ourproposed EQGATx0
discmodel achieves state-of-the-art (SOTA) performance compared to other

recent Diffusion Models (EDM and MiDi) while showing significantly faster training convergence
and reduced inference time. See our manuscript for more details.

Transferability of Diffusion Models

Diffusion models are effective in learning vast data distributions but require large datasets to be
trained on. We explore the effect of pre-training on PubChem3d for generalization on the Geom-
Drugs dataeset. We observe that the fine-tuned model performs better than models trained from
scratch, even if the fine-tuning was done on a subset of data.

Structure-based ligand design

Here, we train a conditional diffusion model pθ(x|P ) where P is a protein pocket. Particularly,
a pre-trained model that learned on a vast, yet unconditional chemical space, generalizes better
when fine-tuned on CrossDocked2020 than a model trained from scratch.

Model Validity ↑ Connect. Comp. ↑ BondLengths W1 [10−2] ↓ BondAngles W1 ↓

EQGATx0
disc(wu) 85.51±0.09 95.15±0.14 0.20±0.0 4.37±0.20

EQGATx0
disc(ws(t)) 89.62±0.08 97.65±0.11 0.12±0.0 2.12±0.26

EQGATx0,ft
disc (ws(t)) 95.65±0.12 99.66±0.10 0.11±0.0 1.55±0.21

We compare our model against recent methods and show that the generated ligands exhibit on
average better evaluation metrics compared to TargetDiff and DiffSBDD.

Model Vina (All) ↓ Vina (Top-10%) ↓ QED ↑ SA ↑ Lipinski ↑ Diversity ↑

EQGATx0,ft
disc (ws(t)) -7.423±2.33 -9.571±2.14 0.522±0.18 0.697±0.20 4.66±0.72 0.742±0.07

TargetDiff -7.318±2.47 -9.669±2.55 0.483±0.20 0.584±0.13 4.594±0.83 0.718±0.09

DiffSBDD-cond -6.950±2.06 -9.120±2.16 0.469±0.21 0.578±0.13 4.562±0.89 0.728±0.07
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discussed in Le et al. (2024). During training, we sample a batch of pocket-ligand pairs and a step
t ∈ {1, . . . , 500}. Next, we encode the ligands M0 into latents z, apply the noise process to the
ligands to obtain Mt and minimize the diffusion loss while providing z as an additional input via
adaptive layer normalization Huang & Belongie (2017) next to the protein pocket P . We refer to the
supplementary material for further details.

Figure 3: UMAP plot showing the 2d projections of the latent embeddings of 100 sampled ligands
per target for ten randomly sampled test set targets.

4 RESULTS

We train PoLiGenX using the CrossDocked2020 Francoeur et al. (2020) dataset, following the same
dataset splits as found in previous research Luo et al. (2021); Peng et al. (2022); Guan et al. (2023);
Schneuing et al. (2023); Le et al. (2024). Unlike other models, PoLiGenX incorporates not only the
protein pocket as a condition for generating novel ligands but also utilizes a latent embedding of a
ligand from the dataset as an initial condition. This distinctive approach positions PoLiGenX differ-
ently from the mentioned models — it is specifically designed to perform tasks akin to hit expansion
by enhancing specificity, chemical diversity, and binding affinity, rather than operating solely as a
target-aware, but unconditional de novo model. In the following, we evaluate if PoLiGenX effec-
tively maintains the structural shape of the seed molecule while promoting chemical diversity.

Fig. 2 (top) shows the evaluation of the mean shape similarity on the CrossDocked test set for both
PoLiGenX (conditional) and EQGAT-diff (unconditional). The test set comprises 100 ligand-pocket
complexes for which 100 ligands each were sampled and the Tanimoto shape similarity measured
against the reference ligands. PoLiGenX exhibits significantly higher shape similarities across com-
plexes. However, we aim to preserve the shape between reference and sample without sacrificing
chemical diversity to ensure an efficient exploration of chemical space. Fig. 2 (bottom) shows the
distribution of shape similarity against chemical similarity for conditional and unconditional sam-
pling. We observe a mean shape similarity of 0.64 and 0.12 chemical similarity for EQGAT-diff. In
contrast, PoLiGenX exhibits a significant increase in shape similarity with mean value of 0.87, but
also generates a reasonably high diversity in samples with mean chemical similarity of 0.33.

To evaluate the expressiveness of the learned latent embeddings, Fig. 3 visualizes the UMAP pro-
jections of the latent embeddings. We sampled 100 ligands per receptor for ten randomly selected
targets of the CrossDocked test set. The resulting UMAP projections reveal that the latent embed-
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Figure 2: Top: Violin plot of the Tanimoto shape similarity evaluated across all test targets of the
CrossDocked dataset. PoLiGenX (left) is compared to EQGAT-diff (right). In the conditional setting
the model generates significantly more shape-similar molecules. Bottom: Heatmap histogram com-
paring PoLiGenX (left) with EQGAT-diff with respect to Tanimoto shape and chemical similarity
on the CrossDocked test set. The brighter the color the higher the molecule count.

ity of ECFP4 fingerprints (2048 bits) computed by RDKit, whereby shape similarity is defined by
Gaussian descriptions of molecular shape in form of atom-centered Gaussians and calculated by the
volume overlaps between them as in Adams & Coley (2023).

PoLiGenX To model the dependence on variable z, we include a variational distribution qφ(z|M0)
similar to Luo & Hu (2021); Zeng et al. (2022) and obtain the ELBO

pθ(M0|P ) = Eq(M1:T |M0)qφ(z|M0)[
pθ(M0,M1:T , z|P )

q(M1:T |M0)qφ(z|M0)
]

≥ Eq(M1:T |M0)qφ(z|M0)[log
pθ(M0,M1:T , z|P )

q(M1:T |M0)qφ(z|M0)
]

= Eq(M1|M0)qφ(z|M0)[log pθ(M0|M1, P, z)]

+ Eq(MT |M0)qφ(z|M0)[log
p(MT |z)
q(MT |M0)

]

−DKL(qφ(z|M0)||p(z))−
T∑

t=2

Eq(Mt|M0)qφ(z|M0)[Lt−1],

(1)

where the diffusion loss Lt−1 is per timestep and defined as Lt−1 =
DKL(q(Mt−1|Mt,M0)||pθ(Mt−1|Mt, P, z)).

We extend the diffusion model by a conditioning on z and train pθ(M |P, z) to minimize the KL
divergence to the tractable reverse distribution, which is achieved when predicting the original data
points M̂0 Ho et al. (2020); Austin et al. (2021); Le et al. (2024). Similar to prior works, we
optimize the diffusion Lt−1 by drawing steps per minibatch instead of the entire trajectory. We
adopt a Gaussian prior for the latent distribution, i.e., p(z) ∼ N(0, I) and enforce a smooth latent
space by choosing the maximum mean discrepancy (MMD) loss Tolstikhin et al. (2018) over the
KL divergence. The prior distribution for the ambient data space, i.e., MT is a 0-CoM Gaussian
for coordinates and empirical categorical distribution for discrete data types from the training set as
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Figure 4: Reference molecules extracted from the CrossDocked test split (left) and four generated
molecules sampled randomly with PoLiGenX. Below each generated ligand, we also show the chem-
ical similarity to the reference ligand.

dings effectively separate the ligands into distinct clusters specific to each target. This observation
suggests that our latent model successfully captures the context of ligands in relation to their respec-
tive protein receptors.

Table 1: Docking performance on the CrossDocked test set and ligands generated using PoLiGenX.
QuickVina2 is employed for docking. We report mean values across all targets with standard devia-
tions given as subscripts. Drug-likeness is measured via RDKit’s QED value. Further, molecules are
evaluated in terms of the octanol–water partition coefficient (logP), the molecular weight (MolWt)
and the number of hydrogen acceptors and donors. Following Lipinski’s rule of five, we report
the percentage of molecules that obey the respective rule. The last column gives the average of
molecules fulfilling all rules.

Data QVina2 (All) ↓ QVina2 (Top-10%) ↓ QED ↑ logP ↑ MolWt ↑ H-acceptors ↑ H-donors ↑ Lipinski ↑
CrossDocked test set -6.85±2.33 - 0.47±0.20 0.79 0.85 0.84 0.8 3.35±1.14

PoLiGenX -7.21±2.22 -8.04±2.44 0.59±0.20 0.91 0.87 0.85 0.91 3.57±0.93

Next, we compare molecules sampled conditionally from our model, PoLiGenX, with the reference
test data, focusing on docking scores and chemical properties. As previously outlined, the purpose
of PoLiGenX is significantly different to recent de novo models, such as EQGAT-diff, hence we omit
a comparison. Tab. 1 summarizes the results. We observe improved docking scores for generated
samples compared to the CrossDocked test data, in particular within the top 10% of each target.
Here, we reach a docking score of −8.04± 2.44 compared to −6.85± 2.33 for the test data. At
the same time, the generated ligands per target show improvement in RDKit’s drug-likeness score
(QED) and adherence to Lipinski’s Rule of Five. These are chemical features recognized from a
medicinal chemistry perspective as guidelines to identify compounds likely to possess favorable
bioavailability. Specifically, the octanol-water partition coefficient (logP) should be less than 5,
molecular weight (MolWt) should be less than 500 Daltons, hydrogen bond acceptors (H-acceptors)
less than 10 and hydrogen bond donors (H-donors) should be less than 5.
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Figure 4: Reference molecules extracted from the CrossDocked test split (left) and four generated
molecules sampled randomly with PoLiGenX. Below each generated ligand, we also show the chem-
ical similarity to the reference ligand.

dings effectively separate the ligands into distinct clusters specific to each target. This observation
suggests that our latent model successfully captures the context of ligands in relation to their respec-
tive protein receptors.

Table 1: Docking performance on the CrossDocked test set and ligands generated using PoLiGenX.
QuickVina2 is employed for docking. We report mean values across all targets with standard devia-
tions given as subscripts. Drug-likeness is measured via RDKit’s QED value. Further, molecules are
evaluated in terms of the octanol–water partition coefficient (logP), the molecular weight (MolWt)
and the number of hydrogen acceptors and donors. Following Lipinski’s rule of five, we report
the percentage of molecules that obey the respective rule. The last column gives the average of
molecules fulfilling all rules.

Data QVina2 (All) ↓ QVina2 (Top-10%) ↓ QED ↑ logP ↑ MolWt ↑ H-acceptors ↑ H-donors ↑ Lipinski ↑
CrossDocked test set -6.85±2.33 - 0.47±0.20 0.79 0.85 0.84 0.8 3.35±1.14

PoLiGenX -7.21±2.22 -8.04±2.44 0.59±0.20 0.91 0.87 0.85 0.91 3.57±0.93

Next, we compare molecules sampled conditionally from our model, PoLiGenX, with the reference
test data, focusing on docking scores and chemical properties. As previously outlined, the purpose
of PoLiGenX is significantly different to recent de novo models, such as EQGAT-diff, hence we omit
a comparison. Tab. 1 summarizes the results. We observe improved docking scores for generated
samples compared to the CrossDocked test data, in particular within the top 10% of each target.
Here, we reach a docking score of −8.04± 2.44 compared to −6.85± 2.33 for the test data. At
the same time, the generated ligands per target show improvement in RDKit’s drug-likeness score
(QED) and adherence to Lipinski’s Rule of Five. These are chemical features recognized from a
medicinal chemistry perspective as guidelines to identify compounds likely to possess favorable
bioavailability. Specifically, the octanol-water partition coefficient (logP) should be less than 5,
molecular weight (MolWt) should be less than 500 Daltons, hydrogen bond acceptors (H-acceptors)
less than 10 and hydrogen bond donors (H-donors) should be less than 5.
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Motivation and Background

Research Questions:

1. Failing to consider the essential chemical properties for target binding can lead to a significant
lack of specificity and result in ineffective drug candidates. Moreover, drug candidates must
exhibit favorable absorption, distribution, metabolism, excretion (ADME), and toxicity profiles.

2. But, the respective data is often too sparse and too noisy for developing effective machine
learning models. Thus, designing ligands from scratch without addressing these critical
properties may produce molecules with poor bioavailability or potential toxicity, thereby
limiting their therapeutic potential.

3. However, can we use machine learning during the hit expansion phase of drug discovery?
This crucial stage involves enhancing and exploring the chemical space around promising hits
that are already identified through high-throughput screening or other methods and might
provide significantly better starting points for generative models.

4. Can we perform hit expansion by just adding one layer of control to a generative diffusion
model? We propose a latent-conditional training and sampling. Here, a seed molecule is given
to the model in form of a jointly learned latent embedding to steer the diffusion process.

We introduce PoLiGenX (Pocket-based Ligand Generator for hit eXpansion), a novel latent-
controlled de novo generative model, denoted as pθ(M |P, z), designed for generating 3D ligands
represented by x = (H, X, E), withH ∈ {0, 1}N×Ka, E ∈ {0, 1}N×N×Kb, X ∈ RN×3. This model
processes both continuous and discrete variables and is conditioned on a specific protein pocket
P and a seed molecule embedding z.

Experiments and Results

The effect of timestep-dependent loss weighting

We hypothesize that denoising requires high accuracy close to the data distribution for generating
valid molecules, while errors close to the noise distribution are negligible. We propose using the
time-dependent weighting:

ws(t) = max(0.05, min(1.5, SNR(t))). (1)

QM9 GEOM-Drugs

Weighting Mol. Stability ↑ Validity ↑ Connect. Comp. ↑ Mol. Stability ↑ Validity ↑ Connect. Comp. ↑
wu 97.39±0.23 97.99±0.20 99.70±0.03 87.59±0.19 71.44±0.22 86.57±0.33
ws(t) 98.68±0.11 98.96±0.07 99.94±0.03 91.60±0.14 84.02±0.19 95.08±0.12

Model parameterization (x̂0, ϵ̂) and Gaussian vs. discrete diffusion Kristof suggests to remove the
table and consolidate the results. As findings from upper-right panel from graphical abstract

Dataset QM9 GEOM-Drugs

Model EQGATx0
disc EQGATx0

cont EQGATϵ
cont EQGATx0

disc EQGATx0
cont EQGATϵ

cont

Mol. Stab. ↑ 98.68±0.11 96.45±0.17 96.18±0.16 91.60±0.14 90.46±0.09 85.19±0.72
Atom. Stab ↑ 99.92±0.00 99.79±0.01 99.68±0.02 99.72±0.01 99.73±0.01 99.32±0.04
Validity ↑ 98.96±0.07 96.79±0.15 97.04±0.17 84.02±0.19 80.96±0.38 79.13±0.58
Connect. Comp. ↑ 99.94±0.03 99.82±0.05 99.71±0.03 95.08±0.12 93.30±0.21 94.10±0.48
Novelty ↑ 64.03±0.24 60.96±0.54 73.40±0.32 99.87±0.04 99.83±0.04 99.82±0.0
Uniqueness ↑ 100.00±0.00 100.0±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Diversity ↑ 91.72±0.02 91.51±0.03 91.89±0.03 89.00±0.03 88.87±0.04 88.97±0.05
KL Divergence ↑ 91.36±0.29 91.41±0.54 88.97±0.31 87.17±0.34 87.35±0.35 87.70±0.58

Train Similarity ↓ 0.076±0.00 0.076±0.00 0.075±0.00 0.113±0.00 0.114±0.00 0.114±0.00
AtomsTV [10−2] ↓ 1.0±0.00 2.0±0.00 2.7±0.00 3.4±0.10 3.6±0.10 2.9±0.20
BondsTV [10−2] ↓ 1.2±0.00 1.8±0.00 1.2±0.00 2.4±0.00 2.4±0.00 2.4±0.00
ValencyW1 [10−2] ↓ 0.6±0.10 1.9±0.00 0.9±0.00 1.2±0.10 1.9±0.10 1.6±0.00
BondLenghtsW1 [10−2] ↓ 0.2±0.10 0.5±0.00 0.2±0.10 0.2±0.10 0.3±0.00 0.7±0.40
BondAnglesW1 ↓ 0.42±0.03 1.86±0.06 0.52±0.03 0.92±0.02 0.95±0.02 1.07±0.06

State-of-the-art Molecule Generation

Dataset GEOM-Drugs

Model EQGATx0
disc EQGAT

x0,ft
disc EQGATx0,af

disc EQGATx0,af,ft
disc EDM MiDi

Mol. Stab. ↑ 93.11±0.31 93.92±0.13 94.51±0.18 95.01±0.37 40.3 89.7±0.60
Atom. Stab ↑ 99.79±0.01 99.81±0.01 99.83±0.01 99.84±0.00 97.8 99.7±0.01
Validity ↑ 85.86±0.33 88.04±0.17 87.89±0.31 88.42±0.26 87.8 70.5±0.41
Connect. Comp. ↑ 96.32±0.25 96.57±0.18 96.36±0.25 96.71±0.20 41.4 88.76±0.55
Novelty ↑ 99.82±0.05 99.84±0.02 99.82±0.05 99.82±0.03 100.00 100.00±0.00
Diversity ↑ 89.03±0.03 89.05±0.05 88.98±0.02 88.96±0.01 - -
KL Divergence ↑ 87.66±0.31 87.58±0.56 88.38±0.25 87.62±0.19 - -

Train Similarity ↓ 0.114±0.0 0.113±0.0 0.114±0.0 0.114±0.0 - -
AtomsTV [10−2] ↓ 3.02±0.08 3.02±0.10 2.88±0.10 2.91±0.10 21.2 5.11±0.19
BondsTV [10−2] ↓ 2.44±0.01 2.40±0.00 2.42±0.00 2.40±0.00 4.8 2.44±0.00
ValencyW1 [10−2] ↓ 1.18±0.09 1.20±0.00 0.85±0.12 0.90±0.10 28.5 2.48±0.52
BondLenghtsW1 [10−2] ↓ 0.56±0.38 0.10±0.00 0.50±0.51 0.20±0.10 0.2 0.2±0.10
BondAnglesW1 ↓ 0.83±0.03 0.79±0.02 0.65±0.01 0.62±0.01 6.23 1.73±0.32

Ourproposed EQGATx0
discmodel achieves state-of-the-art (SOTA) performance compared to other

recent Diffusion Models (EDM and MiDi) while showing significantly faster training convergence
and reduced inference time. See our manuscript for more details.

Transferability of Diffusion Models

Diffusion models are effective in learning vast data distributions but require large datasets to be
trained on. We explore the effect of pre-training on PubChem3d for generalization on the Geom-
Drugs dataeset. We observe that the fine-tuned model performs better than models trained from
scratch, even if the fine-tuning was done on a subset of data.

Structure-based ligand design

Here, we train a conditional diffusion model pθ(x|P ) where P is a protein pocket. Particularly,
a pre-trained model that learned on a vast, yet unconditional chemical space, generalizes better
when fine-tuned on CrossDocked2020 than a model trained from scratch.

Model Validity ↑ Connect. Comp. ↑ BondLengths W1 [10−2] ↓ BondAngles W1 ↓

EQGATx0
disc(wu) 85.51±0.09 95.15±0.14 0.20±0.0 4.37±0.20

EQGATx0
disc(ws(t)) 89.62±0.08 97.65±0.11 0.12±0.0 2.12±0.26

EQGATx0,ft
disc (ws(t)) 95.65±0.12 99.66±0.10 0.11±0.0 1.55±0.21

We compare our model against recent methods and show that the generated ligands exhibit on
average better evaluation metrics compared to TargetDiff and DiffSBDD.

Model Vina (All) ↓ Vina (Top-10%) ↓ QED ↑ SA ↑ Lipinski ↑ Diversity ↑

EQGATx0,ft
disc (ws(t)) -7.423±2.33 -9.571±2.14 0.522±0.18 0.697±0.20 4.66±0.72 0.742±0.07

TargetDiff -7.318±2.47 -9.669±2.55 0.483±0.20 0.584±0.13 4.594±0.83 0.718±0.09

DiffSBDD-cond -6.950±2.06 -9.120±2.16 0.469±0.21 0.578±0.13 4.562±0.89 0.728±0.07
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