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This document encloses additional information related to the submitted workshop paper Latent-Conditioned Equivariant
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A. Model and Training Details

We leverage the EQGAT-diff architecture as proposed in Le et al. (2024) which and modify it to process the pocket-ligand
(PL) complex. To build the PL complex, we use the creation strategy from DiffSBDD Schneuing et al. (2023) with a 5
Angstrom cutoff. In summary, a PL complex is built by iterating over the atoms in each residues in a protein and computing
all pairwise distances to all ligand atoms. If any distance between the residues’ atom to any ligand atom is below the cutoff,
the entire residue is included in the pocket.

To form the PL representation for message-passing we stack ligand and pocket features. Ligands represented as (X;, H;, E;),
indicating spatial coordinates, atom and edge types are in same fashion generated as in EQGAT-diff (Le et al., 2024). That
is, we create a fully-connected graph and include the bond adjacency with features (single, double, triple and no bond) into
the edge features.

The edge features in the pocket representation (X, Hp, E,), are all set to the no bond type. The edge indices and
connectivity for pocket-pocket and ligand-pocket/pocket-ligand interaction are obtained through a radius graph with SA
cutoff.

An important aspect for training diffusion models is the noise scheduler, particularly when different modalities such as
coordinates, atom- and bond-types are learnt. In similar fashion to the work by (Vignac et al., 2023), we leverage an adaptive

noise scheduler
o — cos (ﬂ WTH)) i
2 1+s ’
with v, = 2.5, v, = 1.5, v, = 1.0 denoting for atom coordinates, bond types, atom types, respectively. The rationale behind
these coefficients is to enable for slower decay of the signals of coordinates, bond- and atom-types.

We provide a high-level computational workflow in Figure 1.

A.l. G-invariant latent encoder EQGAT

The group-invariant graph encoder is implemented using the EQGAT message passing layer as proposed in Le et al.
(2022) whose computational graph is visualized in their Figure 1b. After L = 8 round of message passing, we extract the
SO(3)-invariant scalar node embeddings H € RV** and leverage a gated equivariant transformation as proposed in the
original EQGAT architecture (Le et al., 2022) followed by a SoftmaxAttention-pooling (Li et al., 2019) along the node
embeddings, to achieve the SO(3) as well as permutation invariant latent embedding z € R*. We set the latent dimension to
k= 128.

The derivation of the ELBO in B requires the variational distribution z ~ ¢(z|x¢). Such distribution can be simply obtained
through e.g., reparameterization using Gaussian variables as z = 4 (20) + 04 (x0) @€, € ~ N(0, Ik ). Here, we follow
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Figure 1. High level overview of the model computation. The lower part describes the group invariant graph encoder that inputs the
ground-truth ligand My and outputs the latent embedding z. EQGAT-diff inputs the perturbed ligand M, next to the pocket as well as
latent representation as context. EQGAT-diff is tasked in predicting the uncorrupted ligand M.

the approach of deterministic (V)AE where the standard deviation converges towards 0, i.e. each latent being a dirac-delta
point mass in RX.

A.2. Incorporating the latent 2z into EQGAT-diff

We include the latent embedding z € R¥ derived from the group-invariant graph encoder, via adaptive layer normalization
(AdaLN) to fuse the global latent embedding with the node embeddings S € RY*X from the current point cloud that
EQGAT-diff performs after every message-passing layer. That is, instead of having shared learnable affine parameters
for every input, we compute the affine parameters based on the latent (style) z, which is inspired by adaptive instance
normalization introduced by Huang & Belongie (2017).

AdaptiveLN(H, z) = sg(2) ® <W) + bg(2), (1)

where /1, o are functions that compute the mean and standard deviation embeddings € R¥ from the hidden node embeddings
H € RYXK The influence of the latent embedding is enforced through the scale and shift operation obtained through the
transformations sg, by which are both simple linear layers.

A.3. Training

We train PoLiGenX under the data parameterization leveraging Gaussian diffusion for coordinates and categorical diffusion
for discrete-valued data modalities, including chemical elements and bond types. Therefore, the loss function for a sampled
timestep on the diffusion loss reads

Liot = wy(t) (Aw||XO — Xol[? + ACE(Hy, Hy) + \.CE(Ej, EO)), @)

where CE refers to the cross-entropy loss and (A;, An, Ae) = (3, 0.4, 2) are weighting coefficients adapted from (Vignac
et al., 2023). The loss weighting w(t) is modified truncated signal-to-noise ratio in Le et al. (2024).

The EQGAT-diff model uses 256 scalar and vector features each and 128 edge features across 12 layers of fully connected
message passing. This corresponds to 13.4M trainable parameters.

The EQGAT graph-encoder model uses 128 scalar and vector features and 16 edge features across 8 layers of local message
passing based on a 5A radius cutoff. The graph-encoder has 2.0M trainable parameters. We compute the MMD loss
between a batch of latents Z with a random batch drawn from an isotropic Gaussian to enforce a smooth latent space as
proposed by (Tolstikhin et al., 2018). Apart from that, we implement a simple (self)-supervised learning task in that the
graph-encoder also predicts the number of nodes of the input molecule. This objective is optimized using cross-entropy loss,
while additional self-supervised learning task might also be suitable, e.g., regressing on chemical properties that can be
easily computed by the RDKit.

To train PoLiGenX, we use 8 NVIDIA A100 32GB GPUs with batch-size 8 for 300 epochs on the CrossDocked2020 5A
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dataset similar to (Schneuing et al., 2023). As optimizer we use AdamW with learning rate 2 - 10~*, weight-decay of
1-10712, and gradient clipping for values higher than 10.

B. Derivation ELBO

We derive the variational lower bound for the latent diffusion model acting on data zg € RP, where the latent variable
is lower-dimensional z € RX with K < D. Since we leverage diffusion models, which construct a sequence of latent
variables of the same size, i.e., 1, Tg, ..., xp With x; € RP, the following general equation holds through marginalization

p(xzo) = /p(xo, Z1y...,¢7)dx1dTe, . . . dTT 3)

= /p($0a~r1:T)dl'1:T- 4)

We use p(zo.7) as abbreviation for p(xg,x1,...z7) and include two variational distributions (VD) ¢(z|z¢) as well as
g(z1.7|x0). The first VD q(z|zg) is the commonly known from the VAE (Kingma & Welling, 2014), while the second
q(z1.7|20) is the Markov model (Sohl-Dickstein et al., 2015) which factorizes as

T

q(zrrlzo) = [ [ alwilaiy), &)

t=1

by the Markov assumption (*) where the next state only depends on the previous. Note that this also states for the reverse.
We develop the ELBO as

p(zo) = /P(l“o:T,Z)d:cl:sz
:/p(xOZT’z)Q($1:T|$o)q(Z\sc0)

q(x1.7|x0)q(2]20)
s [ p(@r|2)p(2) g?_1p<xt1|xt,z>]
| a(zl@o) [Ty a(@e]ai—1)
o (p(xﬂz)p(z) ry_lpmlxt,z))]
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= Eq(ar.r|20)q(zlz0) |108 ( H ) (6)

p(xo.7]2)p(2)
q(z1:7]70)q(2|20)
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q(z1:7|z0)q(2|z0)

q(z Ixo xllxo q(xe|Te—1)

where we condition on xq for the forward variatonal distribution g(z¢|z:—1) = q(a¢|x:—1, x¢) because we require it later to
obtain closed-form solution to regress on. We have as a side computation (using Bayes theorem)

5 a(walz zo)awalro) _ T § R
t—1|4ty L0 t|L0 t|40
g(xe|zem1,20) = = [T atwi-rlar.20) T]
tzl_[z t:HQ q(z¢-1|z0) t:HQ tzl_IQ q(x¢-1|z0)
. g(wrzo)
T
= HQ(IEt—ﬂxt,fo) : 70, (7)
a(1]20)
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where Ht 9 qg(”fm is a telescoping series cancelling out intermediate products. We can insert (7) into the product series

in (6) to obtain

—
Q
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Next we evaluate the expectation, which is the (multi-dimensional) integral over the variational distributions
q(z1.7)20)q(2|20), i.€., integrating over the domains of x1.7 and z, to obtain

p(2) p(zr|2)
>E x1|T z|lx 1 ) E z|lx 1 N E xrT|T z|lx 1 N
p(zo) > q(z1]zo)q(z| 0)[ng(x0|x1 Z)] + q(z] 0)[0g q(z|xo)]+ q(zr|z0)q(2| o)[Og q(xﬂxo)]
= p(@i—1|zt,2)
]E 1 t—1|L4ty 9
where the (reverse) KL divergence between any distribution ¢(z) and p(z) reads
Dic(a(@)|Ip(a)) = Equflog 221, (10)
q(x)
Plugging Eq. (10) into (8), we obtain
p(JST z
P0) >Eqofanraclon 108 P(@0l1, 2)] + Dt (p(2)(210)) + Eqgopanpatetan log 2oL (1)
q(zr|2o)
T
+Eq(mt|mg)q(z|m0)[z Drr(p(wi—1lwe, 2)|lq(we—1|2t, 70))]- (12)
t=2

The first expectation in the ELBO is commonly known as the reconstruction loss, while the second expectation is defined
as KL-prior regularization loss. For the third expectation, we make the assumption that the ambient space prior x7 is
independet of the latent variable z, i.e., p(xr|z) = p(xr). It could be interesting to further investigate if the ambient
prior can be influenced through a latent variable but due to simplicity, we remove it. This leads to simplyfing the third
expectation into Dx . (p(xr)||¢(x1|x0), where by design of the diffusion model and its noise-schedule, g(xr|z¢) should
converge to a multivariate standard normal distribution N (0, I). The last expectation is the summation over (T — 1)
KL-divergences to train the generative diffusion model matching the reverse p(x;_1|x¢, ) with the tractable g(x;—_1|x¢, xo).
Instead of summing over all noise-levels indexed from ¢ = 2 until ¢ = T optimizing the derived ELBO, we only optimize
Dk (p(2)]lg(z]zo)) using the Maximum-Mean-Discrepancy (MMD) (Tolstikhin et al., 2018) loss instead of KL and
uniformly sample a timestep from ¢ ~ U(2,T') to minimize Dy 1, (p(x1—1|%¢, 2)||¢(zi—1]2¢, T0))].
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