
A Theory

We aim to show that rank-game has an equilibrium that bounds the f -divergence between the
agent and the expert (Theorem A.1) in the imitation learning setting. For imitation learning, we have
the vanilla implicit ranking ρagent ⪯ ρE , between the behavior of agent and the expert. Later, we
show that, the bounded f -divergence can be used to bound the performance gap with the expert under
the expert’s unknown reward function using a solution to Vajda’s tight lower bound (Corollary 1).
Our proof proceeds by first showing that minimizing the empirical ranking loss produces a reward
function that is close to the reward function obtained by the true ranking loss. Then, we show that
even under the presence of policy optimization errors maximizing the obtained reward function will
lead to a bounded f -divergence with the expert.
Theorem A.1. (Performance of the rank-game equilibrium pair) Consider an equilibrium of
the imitation rank-game (π̂, R̂), such that R̂ minimizes the empirical ranking-loss for dataset
Dπ̂ = {(ρπ̂, ρE)} and the ranking-loss generalization error is bounded by ϵ′r = 2R2

maxϵr, and the
policy π̂ has bounded suboptimality with J(R̂; π̂) ≥ J(R̂;π′) − ϵπ ∀π

′
, then we have that at this

equilibrium pair:

Df

(
ρπ̂(s, a)||ρE(s, a)

)
≤ (1− γ)ϵπ + 4Rmax

√
2ϵr

k
(7)

where Df is an f -divergence with the generator function f(x) = 1−x
1+x [60, 61, 62, 63].

Proof. Previous works [18, 64] characterize the equilibrium in imitation learning based on the
supremum ranking loss/min-max adversarial setting under no error assumption. In this section, we
consider the ranking loss function Lk and derive the equilibrium for the rank-game in presence
of reward learning and policy optimization errors. Lk attempts to explain the rankings between the
agent and the expert using their state-action visitations Dπ = {ρπ(s, a), ρE(s, a)} respectively, by
attempting to induce a performance gap of k. With this dataset Dπ, Lk regresses the return of state
or state-action pairs in the expert’s visitation to a scalar k and the agent’s visitation to a value of 0.
Thus, we have:

Lk(D;R) = EρE(s,a)

[
(R(s, a)− k)2

]
+ Eρπ(s,a)

[
(R(s, a)− 0)2

]
(8)

The above ranking loss is minimized (∇Lk = 0) pointwise when

R∗(s, a) =
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)
(9)

In practice, we have finite samples from both the expert visitation distribution and the agent distribu-
tion so we minimize the following empirical ranking loss L̂k(D;R):

L̂k(D;R) =

∑
s,a∈ρ̂E [(R(s, a)− k)2]

|ρ̂E | +

∑
s,a∈ρ̂π [(R(s, a)− 0)2]

|ρ̂π| (10)

where ρ̂E and ρ̂π are empirical state-action visitations respectively.

From empirical loss function to reward optimality: Since the reward function is trained with
supervised learning, we can quantify the sample error in minimizing the empirical loss using concen-
tration bounds [65] up to a constant with high probability. Since 0 < R(s, a) < Rmax With high
probability,

∀R, |Lk(D;R)− L̂k(D;R)|≤ 2R2
maxϵr (11)

where ϵr is the statistical estimation error that can be bounded using concentration bounds such
as Hoeffding’s. Let R∗ belong to the optimal solution for Lk(D;R) and R̂∗ belong to the optimal
minimizing solution for L̂k(D;R). Therefore, we have that,

∀R, L̂k(D; R̂∗) ≤ L̂k(D;R) (12)
Using Eq 11 and Eq 12, we have

∀R, L̂k(D; R̂∗) ≤ L̂k(D;R) (13)

≤ Lk(D;R) + 2R2
maxϵr (14)

≤ Lk(D;R∗) + 2R2
maxϵr (15)

14



and similarly

∀R, Lk(D;R∗) ≤ Lk(D;R) (16)

≤ L̂k(D;R) + 2R2
maxϵr (17)

≤ L̂k(D; R̂∗) + 2R2
maxϵr (18)

Eq 15 and Eq 18 implies that Lk(D;R∗) and L̂k(D; R̂∗) are bounded with high probability. i.e

|Lk(D;R∗)− L̂k(D; R̂∗)|≤ 2R2
maxϵr (19)

We will use Eq 19 to show that indeed R̂∗ has a bounded loss compared to R∗.

L̂k(D; R̂∗)− Lk(D;R∗) ≤ 2R2
maxϵr (20)

Lk(D; R̂∗)− 2R2
max − Lk(D;R∗)ϵr ≤ 2R2

maxϵr (21)

Lk(D; R̂∗)− Lk(D;R∗) ≤ 4R2
maxϵr (22)

We consider the tabular MDP setting and overload R to denote a vector of reward values for the entire
state-action space of size |S × A|. Using the Taylor series expansion for loss function Lk, we have:

Lk(D; R̂∗)− Lk(D;R∗) ≤ 4R2
maxϵr (23)

Lk(D;R∗) + ⟨∇R∗Lk(D;R∗), R̂∗ −R∗⟩
+0.5(R̂∗ −R∗)TH(R̂∗ −R∗)− Lk(D;R∗) ≤ 4R2

maxϵr (24)

(R̂∗ −R∗)TH(R̂∗ −R∗) ≤ 8R2
maxϵr (25)

where H denotes the hessian for the loss function w.r.t R and is given by H = P ρπ

+P ρE

where P ρ

is a matrix of size |S × A|×|S × A| with ρ vector of visitations as its diagonal and zero elsewhere.

(R̂∗ −R∗)TH(R̂∗ −R∗) ≤ 8R2
maxϵr (26)

Es∼ρπ

[
(R̂∗(s, a)−R∗(s, a))2

]
+ Es∼ρE

[
(R̂∗(s, a)−R∗(s, a))2

]
≤ 8R2

maxϵr (27)

Since both terms in the LHS are positive we have Es,a∼ρπ

[
(R̂∗(s, a)−R∗(s, a))2

]
≤ 8R2

maxϵr

and Es,a∼ρE

[
(R̂∗(s, a)−R∗(s, a))2

]
≤ 8R2

maxϵr. Applying Jensen’s inequality, we further have

(Es,a∼ρπ

[
R̂∗(s, a)−R∗(s, a)

]
)2 ≤ 8R2

maxϵr and (Es,a∼ρE

[
R̂∗(s, a)−R∗(s, a)

]
)2 ≤ 8R2

maxϵr.
Hence,

∣∣∣Es,a∼ρπ

[
R̂∗(s, a)−R∗(s, a)

]∣∣∣ ≤ Rmax

√
8ϵr , and (28)

∣∣∣Es,a∼ρE

[
R̂∗(s, a)−R∗(s, a)

]∣∣∣ ≤ Rmax

√
8ϵr (29)

At this point we have bounded the expected difference between the reward functions obtained from
the empirical ranking loss and the true ranking loss. We will now characterize the equilibrium
obtained by learning a policy on the reward function R̂∗ that is optimal under the empirical ranking
loss. Under a policy optimization error of ϵπ we have:

J(R̂∗; π̂) ≥ J(R̂∗;π′)− ϵπ ∀π
′ ∈ Π (30)

where J(R;π) denotes the performance of policy π under reward function R.

Taking π
′
= πE , we can reduce the above expression as follows:

J(R̂∗, πE)− J(R̂∗, π̂) ≤ϵπ (31)
1

1− γ

[
EρE(s,a)

[
R̂∗(s, a)

]
− Eρπ(s,a)

[
R̂∗(s, a)

]]
≤ ϵπ (32)

15



Using Eq 28 and Eq 29 we can lower bound EρE(s,a)

[
R̂∗(s, a)

]
− Eρπ(s,a)

[
R̂∗(s, a)

]
as follows:

EρE(s,a)

[
R̂∗(s, a)

]
≥ EρE(s,a)[R

∗(s, a)]−Rmax

√
8ϵr (33)

Eρπ(s,a)

[
R̂∗(s, a)

]
≤ Eρπ(s,a)[R

∗(s, a)] +Rmax

√
8ϵr (34)

where R∗(s, a) is given by Equation 9.

Subtracting Equation 34 from Equation 33, we have

EρE(s,a)

[
R̂∗(s, a)

]
−Eρπ(s,a)

[
R̂∗(s, a)

]
≥ EρE(s,a)[R

∗(s, a)]−Eρπ(s,a)[R
∗(s, a)]−2Rmax

√
8ϵr

(35)

Plugging in the lower bound from Equation 35 in Equation 32 we have:

1

1− γ
[EρE(s,a)[R

∗(s, a)]− Eρπ(s,a)[R
∗(s, a)]− 2Rmax

√
8ϵr] ≤ ϵπ (36)

Replacing R∗ using Equation 9 we get,

1

1− γ

[
EρE(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
− Eρπ(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
− 2Rmax

√
8ϵr

]
≤ ϵπ

(37)

EρE(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
− Eρπ(s,a)

[
k(ρE(s, a))

ρE(s, a) + ρπ(s, a)

]
≤ (1− γ)ϵπ + 2Rmax

√
8ϵr

(38)

EρE(s,a)

[
(ρE(s, a)− ρπ(s, a))

ρE(s, a) + ρπ(s, a)

]
≤ (1− γ)ϵπ + 2Rmax

√
8ϵr

k
(39)

The convex function f(x) = 1−x
1+x in R+ defines an f -divergence. Under this generator function, the

LHS of Equation 39 defines an f -divergence between the state-visitations of the agent ρπ(s, a) and
the expert ρE(s, a). Hence, we have that

Df [ρ
π(s, a), ρE(s, a)] ≤ (1− γ)ϵπ + 4Rmax

√
2ϵr

k
(40)

This bound shows that the equilibrium of the ranking game is a near-optimal imitation learning
solution when ranking loss target k trades off effectively with the policy optimization error ϵπ and
reward generalization error ϵr. We note that, since k ≤ Rmax we can get the tightest bound when
k = Rmax. Now, in imitation learning both k and Rmax are tunable hyperparameters. We vary k
while keeping k = Rmax and observe in appendix D.9 that this hyperparameter can significantly
affect learning performance.

Corollary 1. (From f -divergence to performance gap) For the equilibrium of the rank-game
(π̂, R̂) as described in Theorem A.1, we have that the performance gap of the expert policy with π̂ is
bounded under the unknown expert’s reward function (rgt) bounded in [0, RE

max] as follows:

|J(πE , rgt)− J(π̂, rgt)|≤
4RE

max

√
(1−γ)ϵπ+4Rmax

√
2ϵr

k

1− γ
(41)

Proof. In Theorem A.1, we show that the equilibrium of rank-game ensures that.the f -divergence
of expert visitation and agent visitation is bounded with the generator function f = 1−x

1+x . First we
attempt to find a tight lower bound of our f -divergence in terms of the total variational distance

16



between the two distributions. Such a bound has been discussed in previous literature for the usual
f -divergences like KL, Hellinger and χ2. This problem of finding a tight lower bound in terms of
variational distance for a general f -divergence was introduced in [66] and referred to as Vajda’s
tight lower bound and a solution for arbitrary f -divergences was proposed in [67]. The f -divergence
with generator function f = 1−x

1+x satisfies that f(t) = tf( 1t ) + 2f ′(1)(t − 1) and hence the total
variational bound for this f divergence takes the form Df ≥ 2−DTV

2 f( 2+DTV

2−DTV
) − f ′(1)DTV .

Plugging in the function definition f = 1−x
1+x the inequality simplifies to:

Df (ρ
π(s, a)∥ρE(s, a)) ≥ (DTV (ρ

π(s, a)∥ρE(s, a))2
4

(42)

We also note an upper bound for this f -divergence in TV distance, sandwiching this particular
f -divergence with TV bounds:

Df (ρ
π(s, a)∥ρE(s, a)) = EρE(s,a)

[
ρE(s, a)

ρE(s, a) + ρπ(s, a)

]
− Eρπ(s,a)

[
ρE(s, a)

ρE(s) + ρπ(s, a)

]
(43)

≤
∑

s,a∈S×A

∣∣ρE(s, a)− ρπ(s, a)
∣∣
∣∣∣∣

ρE(s, a)

ρE(s, a) + ρπ(s, a)

∣∣∣∣ (44)

≤ DTV (ρ
π(s, a)∥ρE(s, a)) (45)

So,

DTV (ρ
π(s, a)∥ρE(s, a)) ≥ Df (ρ

π(s, a)∥ρE(s, a)) ≥ (DTV (ρ
π(s, a)∥ρE(s, a))2

4
(46)

Therefore from Eq 40 we have that,

DTV (ρ
π(s, a)||ρE(s, a)) ≤ 2

√
(1− γ)ϵπ + 4Rmax

√
2ϵr

k
(47)

For any policy π, and experts unknown reward function rgt, J(π, r) = 1
1−γ [Es,a∼ρπ [r(s, a)]].

Therefore,

|J(πE , rgt)− J(π, rgt)| =
∣∣∣∣

1

1− γ
[Es,a∼ρE [rgt(s, a)]]−

1

1− γ
[Es,a∼ρπ [rgt(s, a)]]

∣∣∣∣ ∀π (48)

=
1

1− γ

∣∣∣∣∣∣
∑

s,a∈S×A
|(ρE − ρπ)rgt(s, a)

∣∣∣∣∣∣
(49)

≤ RE
max

1− γ

∑

s,a∈S×A

∣∣(ρE − ρπ)
∣∣ (50)

≤ 2RE
max

1− γ
DTV (ρE , ρπ) (51)

(52)

where RE
max is the upper bound for the expert’s reward function. Under a worst case expert reward

function which assigns finite reward values to the expert’s visitation and −∞ outside the visitation,
even a small mistake (visiting any state outside the expert’s visitation) by the policy can result in an
infinite performance gap between expert and the agent. Thus, this parameter is decided by the expert
and is not in control of the learning agent.

From Eq 47 and Eq 51 we have

|J(πE , rgt)− J(π̂, rgt)|≤
4RE

max

√
(1−γ)ϵπ+4Rmax

√
2ϵr

k

1− γ
(53)

17



Lemma A.2. (Regret bound under finite data assumptions) Let M̂t denote the approximate transition
model under the collected dataset of transitions until iteration t. Assume that the ground truth model
M and the reward function are realizable. Under these assumptions the regret of rank-game at tth
iteration:

V πE

M − V πt

M ≤ 2γϵπ
t

mRmax

(1− γ)2
+

4Rmax

1− γ

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
ϵr

k
(54)

where V π
M denotes the performance of policy π under transition dynamics M , ϵπ

t

m is expected model
error under policy πt’s visitation, ρπM is the visitation of policy π in transition dynamics M and ϵstat
is the statistical error due to finite expert samples.

Proof. We use M to denote the ground truth model and M̂t to denote the approximate transition
model with collected data until the tth iteration of rank-game. We are interested in solving the
following optimization problem under finite data assumptions:

max
π

Es,a∼ρπ
M̂t

[
f̂∗
π(s, a)

]
−

∑
s,a∈ρ̂E [f̂∗

π(s, a)]

|ρ̂E | s.t f̂∗
π = argmin

f
(L̂k(f ;D

π
M̂t

)) (55)

where ρ̂E is the empirical distribution generated from finite expert samples and Dπ
M̂t

= {(ρ̂π
M̂t

, ρ̂EM )}.
Using standard concentration bounds such as Hoeffding’s [68], we can bound the empirical estimate
with true estimate ∀π with high probability:

∣∣∣∣
∑

s,a∈ρ̂E [f∗
π(s, a)]

|ρ̂E | − Es∼ρE
M
[f∗

π(s, a)]

∣∣∣∣ ≤ ϵstat (56)

Using the concentration bounds and the fact that πt is the solution that maximizes the optimization
problem Eq 55 at t-iteration,

E
s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
−

∑
s,a∈ρ̂E [f̂∗

πt(s, a)]

|ρ̂E | ≥E
s,a∼ρπE

M̂t

[
f̂∗
πE (s, a)

]
−

∑
s,a∈ρ̂E [f̂∗

πE (s, a)]

|ρ̂E | (57)

≥ E
s,a∼ρπE

M̂t

[
f̂∗
πE (s, a)

]
− Es,a∼ρE

M

[
f̂∗
πE (s, a)

]
− ϵstat

(58)

f̂∗
πt is the reward function that minimizes the empirical ranking loss L̂k. Let f∗

πt be the solution to
the true ranking loss Lk. As shown previously in Eq 28 and Eq 29, we can bound the expected values
of these two quantities with high probability under agent or expert distribution.

We also have from concentration bound:

E
s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
−

∑
s,a∈ρ̂E [f̂∗

πt(s, a)]

|ρ̂E | ≤ E
s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
− Es,a∼ρE

M

[
f̂∗
πt(s, a)

]
+ ϵstat

(59)
Therefore, combining Eq 59 and Eq 57:

E
s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
−Es,a∼ρE

M

[
f̂∗
πt(s, a)

]
≥ E

s,a∼ρπE

M̂t

[
f̂∗
πE (s, a)

]
−Es,a∼ρE

M

[
f̂∗
πE (s, a)

]
−2ϵstat

(60)

The LHS of the Eq. 60 can be further upper bounded as follows:

E
s,a∼ρπt

M̂t

[
f̂∗
πt(s, a)

]
− Es,a∼ρE

M

[
f̂∗
πt(s, a)

]
≤ E

s,a∼ρπt

M̂t

[f∗
πt(s, a)]− Es,a∼ρE

M
[f∗

πt(s, a)] + 2Rmax

√
8ϵr

(61)

= E
s,a∼ρπt

M̂t

[
kρπ

E

M (s, a)

ρπ
E

M (s, a) + ρπ
t

M̂t
(s, a)

]

− Es,a∼ρE
M

[
kρπ

E

M (s, a)

ρπ
E

M (s, a) + ρπ
t

M̂t
(s, a)

]
+ 2Rmax

√
8ϵr

(62)

18



= kE
s,a∼ρπE

M


ρπ

t

M̂t
(s, a)− ρπ

E

M (s, a)

ρπ
t

M̂t
(s, a) + ρπ

E

M (s, a)


+ 2Rmax

√
8ϵr (63)

= −kDf (ρ
πt

M̂t
∥ρπE

M ) + 2Rmax

√
8ϵr (64)

Similarly the RHS of Eq 60 can be further lower bounded as follows:

E
s,a∼ρπE

M̂t

[
f̂∗
πE (s, a)

]
− Es,a∼ρE

M

[
f̂∗
π(s, a)

]
− 2ϵstat (65)

≥ E
s,a∼ρπE

M̂t

[f∗
πE (s, a)]− Es∼ρE

M
[f∗

π(s, a)]− 2ϵstat − 2Rmax

√
8ϵr (66)

= kE
s,a∼ρπE

M


ρπ

E

M̂t
(s, a)− ρπ

E

M (s, a)

ρπ
E

M̂t
(s, a) + ρπ

E

M (s, a)


− 2ϵstat − 2Rmax

√
8ϵr (67)

= −kDf (ρ
E
M̂t
∥ρEM )− 2ϵstat − 2Rmax

√
8ϵr (68)

Plugging the relations obtained (Eq 68 and 64) back in Eq 60, we see that the f -divergence between
the agent visitation in the learned MDP and the expert visitation in the ground truth MDP is bounded
by the f -divergence of the expert policy’s visitation on the learned vs. ground truth environment. We
expect this term to be low if the dynamics are accurately learned at the transitions encountered in
visitation of expert.

Df (ρ
πt

M̂t
∥ρπE

M ) ≤ Df (ρ
πE

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(69)

We can use the total-variation lower bound for this f -divergence to later obtain a performance bound
between the policy in learned MDP and expert in ground-truth MDP.

DTV (ρ
πt

M̂t
∥ρπE

M ) ≤ 2
√

Df (ρπ
t

M̂t
∥ρπE

M ) ≤ 2

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(70)

Similar to Corollary 1, we can further get a performance bound:

|V πE

M − V πt

M̂
|≤ 2Rmax

1− γ
DTV (ρ

πt

M̂t
∥ρπE

M ) ≤ 4Rmax

1− γ

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(71)

Let the local model error in the visitation of πt be bounded by ϵπ
t

m , i.e
Es,a∼ρπt

[
DTV (PM (.|s, a)∥PM̂ (.|s, a))

]
≤ ϵπ

t

m . Using simulation lemma for local models [69, 70],
we have:

|V πt

M − V πt

M̂
|≤ 2γϵπ

t

mRmax

(1− γ)2
(72)

We are interested in bounding the performance of the policy πt in ground-truth MDP rather than the
learned MDP.

V πE

M − V πt

M ≤ V πE

M − V πt

M̂
+

4Rmax

1− γ

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(73)

≤ 2γϵπ
t

mRmax

(1− γ)2
+

4Rmax

1− γ

√
Df (ρπ

E

M̂t
∥ρπE

M ) +
2ϵstat + 4Rmax

√
8ϵr

k
(74)

The regret of an algorithm with ranking-loss depends on the accuracy of the approximate transition
model at the visitation of the output policy πt and the expected accuracy of the approximate tran-
sition model at the transitions encountered in the visitation of expert. Using an exploratory policy
optimization procedure, the regret grows sublinearly as shown in [2]. [2] uses an exploration bonus
and shows that the RHS in the above regret simplifies to be information gain and for a number of
MDP families the growth rate of information gain is mild.

19



Potential imitation suboptimality with additional rankings

In this section, we consider how additional rankings can affect the intended performance gap
as discussed in 4.2. Consider a tabular MDP setting in which we are given a set of rankings
ρπ ⪯ ρ1 ⪯ .. ⪯ ρn ⪯ ρE . In such a case, we regress the state-action pairs from their respective
visitations to [0, k1, k2, ..kn, k] where 0 < k1 < k2.. < kn < k. We will discuss in Appendix B.1.1
how this regression generalizes Lk . For this regression, the optimal reward function that minimizes
the ranking loss pointwise is given by:

R∗(s, a) =

∑n
i=1 kiρ

πi

(s, a) + ρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
πi(s, a) + ρE(s, a)

(75)

We consider a surrogate ranking loss with regression target keff that achieves the same optimal
reward when only ρ ⪯ ρE ranking is given. Therefore:

∑n
i=1 kiρ

i(s, a) + kρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
i(s, a) + ρE(s, a)

=
keffρ

E(s, a)

ρE(s, a) + ρπ(s, a)
(76)

k′ can be upper bounded as follows:

keff =
ρE(s, a) + ρπ(s, a)

ρE(s, a)

∑n
i=1 kiρ

πi

(s, a) + kρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
πi(s, a) + kρE(s, a)

(77)

≤ ρE(s, a) + ρπ(s, a)

ρE(s, a)

∑n
i=1 kiρ

πi

(s, a) + kρE(s, a)

ρπ(s, a) + ρE(s, a)
(78)

= k +
n∑

i=1

ki
ρπ

i

(s, a)

ρE(s, a)
(79)

keff can be lower bounded by:

keff =
ρE(s, a) + ρπ(s, a)

ρE(s, a)

∑n
i=1 kiρ

πi

(s, a) + kρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
πi(s, a) + ρE(s, a)

(80)

≥ ρE(s, a) + ρπ(s, a)

ρE(s, a)

kρE(s, a)

ρπ(s, a) +
∑n

i=1 ρ
πi(s, a) + ρE(s, a)

(81)

=
k

1 +
∑n

i=1 ρπi (s,a)

ρπ(s,a)+ρE(s,a)

(82)

Thus, keff can increase or decrease compared to k after augmenting the ranking dataset. We discuss
the consequences of a decreased k in Section 4.2.

20



B Algorithm Details

B.1 Ranking Loss for the Reward Agent

Consider a dataset of behavior rankings D = {(ρ11 ⪯ ρ21), (ρ
1
2 ⪯ ρ22), ...(ρ

1
n ⪯ ρ2n)}, wherein for ρij

— i denotes the comparison index within a pair of policies, j denotes the pair number, and ρ11 ⪯ ρ21
denotes that ρ21 is preferable in comparison to ρ11 and in turn implies that ρ21 has a higher return. Each
pair of behavior comparisons in the dataset are between the state-action or state visitations. We will
restrict our attention to a specific instantiation of the ranking loss (a regression loss) that attempts to
explain the rankings between each pair of policies present in the dataset by a performance gap of at
least k, i.e. Eρ1 [R(s, a)] ≤ Eρ2 [R(s, a)]− k. Formally, the ranking loss is defined as follows:

min
R

Lk(D;R) = min
R

E(ρ1,ρ2)∼D
[
Es∼ρ1(s,a)

[
(R(s, a)− 0)2

]
+ Es∼ρ2(s,a)

[
(R(s, a)− k)2

]]

(83)

When k is set to 1 (k = 1), this loss function resembles the loss function used for SQIL [71]. Thus,
SQIL can be understood as a special case.

Our work explores the setting of imitation learning given samples from state or state-action visitation
ρE of the expert πE . We will use πagent

m to denote the mth update of the agent in Algorithm 1. The
updated agent generates a new visitation in the environment which is stored in an empty dataset
Donline

m given by Donline
m = {ρπagent

m ⪯ ρπ
E}

B.1.1 Reward loss with automatically generated rankings (auto)

The ranking dataset Dp contains pairwise comparison between behaviors ρi ⪯ ρj . First, we assume
access to the trajectories that generate the behaviors, i.e ρi = {τ i1, τ i2...τ in} and ρj = {τ j1 , τ j2 ...τ jm} In
this method we propose to automatically generate additional rankings using the following procedure:
(a) Sample trajectory τ i ∼ ρi and τ j ∼ ρj . Both trajectories are equal length because of our use of
absorbing states (see Appendix C). (b) Generate an interpolation τ ijλp

between trajectories depending
on a parameter λp. A trajectory is a matrix of dimensions H × (|S|+|A|), where H is the horizon
length of all the trajectories.

τ ijλp
= λpτi + (1− λp)τj (84)

These intermediate interpolated trajectories lead to a ranking that matches the ranking under the
expert reward function if the reward function is indeed linear in state features. We further note that τ
can also be a trajectory of features rather than state-action pairs.

Next, we generate regression targets for the interpolated trajectories. For a trajectory τ ijλp
the

regression target is given by a vector λp0 + (1 − λp)k1, where vectors 0, 1 are given by [0,0,..0]
and [1,1,...,1] of length H respectively. This procedure can be regarded as a form of mixup [46] in
trajectory space. The set of obtained τ ijλp

after expending the sampling budget forms our behavior

ρijλp
.

A generalized and computationally efficient interpolation strategy for rank-game

Once we have generated P interpolated rankings, we effectively have O(P 2) rankings that we can
use to augment our ranking dataset. Using them all naively would incur a high memory burden.
Thus, we present another method for achieving the same objective of using automatically generated
rankings in a more efficient and generalized way. For each pairwise ranking ρi ⪯ ρj in the datasetDp,
we have the following new set of rankings ρi ⪯ ρijλ1

⪯ .. ⪯ ρijλP
⪯ ρj . Using the O(P 2) rankings

in the ranking loss Lk, the ranking loss can be simplified to the following using basic algebraic
manipulation:

(P + 1)E(s,a)∼ρj

[
(R(s, a)− k)2

]
+ (P )E(s,a)∼ρij

λP

[
(R(s, a)− k)2

]
+ ..+ (1)E(s,a)∼ρij

λ1

[
(R(s, a)− k)2

]

+(P + 1)E(s,a)∼ρi

[
(R(s, a)− 0)2

]
+ (P )E(s,a)∼ρij

λ1

[
(R(s, a)− 0)2

]
+ ..+ (1)E(s,a)∼ρij

λP

[
(R(s, a)− 0)2

]

(85)

21



The reward function that minimizes the above loss pointwise is given by:

R∗(s, a) =
k[(P + 1)ρj + PρijλP

+ (P − 1)ρijλP−1
+ ..+ ρijλ1

]

(P + 1)(ρj + ρijλP
+ ..+ ρijλ1

+ ρi)
(86)

=
k[ρj + P

P+1ρ
ij
λP

+ P−1
P+1ρ

ij
λP−1

+ ..+ 1
P+1ρ

ij
λ1
]

(ρj + ρijλP
+ ..+ ρijλ1

+ ρi)
(87)

We consider a modification to the ranking loss objective (Equation 83) that increases flexibility in
regression targets for ranking as well as reducing the computational burden from dealing with O(P 2)
rankings pairs to O(P ). In this modification we regress the current agent, the expert, and each of
the intermediate interpolants (ρi, ρijλ1

, ..., ρijλP
, ρE) to a fixed scalar return (k0, k1, ..., kP+1) where

k0 ≤ k1 ≤ ... ≤ kP+1 = k. The optimal reward function for this loss function is given by:

R∗(s, a) =
kp+1ρ

E(s, a) + kpρ
ij
λP

(s, a) + kp−1ρ
ij
λP−1

(s, a) + ..+ k1ρ
ij
λ1
(s, a) + k0ρ

π(s, a)

(ρE(s, a) + ρijλP
(s, a) + ..+ ρijλ1

(s, a) + ρπ)(s, a)
(88)

This modified loss function generalizes Eq 86 and recovers it exactly when [k0, k1.., kP+1] is set to
be [0, k 1

P+1 , .., k
P

P+1 , k]. We will call this reward loss function a generalized ranking loss.

Shaping the ranking loss: The generalized ranking loss contains a set of regression targets
(k0, k1, ..., kP+1) which needs to be decided apriori. We propose two strategies for deciding these
regression targets.We consider two families of parameterized mappings: (1) linear in α (kα = α ∗ k)
and (2) rate of increase in return exponential in α (dkα

dα ∝ eβα), where β is the temperature parameter
and denote this family by exp-β. We also set kα=0 = 0 (in agent’s visitation) and kα=1 = k (in
expert’s visitation) under the reward function that is bounded in [0, Rmax]. The shaped ranking
regression loss, denoted by SLk(D;R), that induces a performance gap between p+ 2 consecutive
rankings (ρi = ρijλ0

, ρijλ1
, ..., ρijλP

, ρj = ρijλP+1
) is given by:

SLk(D;R) =
1

p+ 2

p+1∑

i=0

Es∼ρij
λi

(s,a)

[
(R(s, a)− ki)

2
]

(89)

0.0 0.2 0.4 0.6 0.8 1.0

 - interpolation

0

2

4

6

8

10

k

linear exp 1 exp 2 exp 5 exp -1 exp -2 exp -5

Figure 6: This figure shows the assignment of value kα (intended return value) corresponding to values of α
(degree of time-conditional interpolation between the visitation distribution of the agent and the expert). When
the rate of increase is exponential with positive slope, we have a higher performance gap over comparisons
closer to the expert and when the rate of increase is negative, the performance gap is higher for comparisons
closer to the agent.
Figure 6 above shows the flexibility in reward shaping afforded by the two families of parameterized
functions. The temperature parameter β > 0 encourages the initial preferences to have a smaller
performance gap than the latter preferences. Conversely, β < 0 encourages the initial preferences
to have a larger performance gap compared to the latter preferences. We ablate these choices of
parameteric functions in Appendix D.5.

22



B.1.2 Reward loss with offline annotated rankings (pref)

Automatically generated rankings are generated without any additional supervision and can be
understood as a form of data augmentation. By contrast, with offline annotated rankings, we are
given a fixed dataset of comparisons which is a form of additional supervision for the reward
function. Automatically generated rankings can only help by making the reward landscape easier
to optimize, but offline rankings can help reduce the exploration burden by informing the agent
about counterfactuals that it had no information about. This can, for instance, help the agent avoid
unnecessary exploration by providing a dense improvement signal. The offline rankings are either
provided by a human or extracted from a set of trajectories for which ground truth reward is known.
In our work, we extract offline preferences by uniformly sampling p trajectories from an offline
dataset obtained from a training run of an RL method (SAC) [53] with ground truth reward.

For imitation learning with offline annotated rankings, at every iteration m of Algorithm 1 we have
a new dataset of rankings given by Donline

m = {ρagentm ⪯ ρE} along with a fixed offline dataset
containing rankings of the form (Doffline = {ρ1 ⪯ ρ2... ⪯ ρp}). We always ground the offline
preferences by expert’s visitation in our experiments, i.e ρp ⪯ ρE . We incorporate the offline rankings
as a soft constraint in reward learning by combining the ranking loss Lk between the policy agent
and the expert, with a shaped ranking loss SLk over offline trajectories:

Loffline
k (Donline

, ,Doffline;R) = λLk(Donline;R) + (1− λ) ∗ SLk(Doffline;R) (90)

where SLk is the smooth ranking loss from Equation 89. Here, instead of the consecutive rankings be-
ing interpolants, they are offline rankings. The videos attached in the supplementary show the benefit
of using preferences in imitation learning. The policy learned without preferences in the pen environ-
ment drops the pen frequently and in the door environment is unable to successfully open the door.

B.2 Stackelberg Game Instantiation

A Stackelberg game view of optimizing the two-player game with a dataset of behavior rankings leads
to two methods: PAL (Policy as Leader) and RAL (Reward as Leader) (refer Section 4.3). PAL uses
a fast reward update step and we simulate this step by training the reward function until convergence
(using a validation set) on the dataset of rankings. We simulate a slow update step of the policy by
using a few iterations of the SAC [53] update for the policy. RAL uses a slow reward update which
we approximate by dataset aggregation — aggregating all the datasets of rankings generated by the
agent in each previous iteration enforces the reward function to update slowly. A fast policy update is
simulated by using more iterations of SAC. Since SAC does not perform well with a high update to
environment step ratio, more iterations of SAC would imply more environment steps under a fixed
reward function. This was observed to lead to reduced learning efficiency, and an intermediate value
of SAC updates was observed to perform best (Table 5).

B.2.1 Policy as Leader

Algorithm 2 presents psuedocode for a practical instantiation of the PAL methods - RANK-PAL
(vanilla), RANK-PAL (auto) and RANK-PAL (pref) that we use in our work. Recall that (vanilla)
variant uses no additional rankings, whereas (auto) uses automatically generated rankings and (pref)
uses offline annotated ranking.

B.2.2 Reward as Leader

Algorithm 3 presents psuedocode for a practical instantiation of the RAL methods - RANK-RAL
(vanilla), RANK-RAL (auto).

C Implementation and Experiment Details

Environments: Figure 7 shows some of the environments we use in this work. For benchmarking
we use 6 MuJoCo (licensed under CC BY 4.0) locomotion environments. We also test our method on
manipulation environments - Door opening environment from Robosuite [55] (licensed under MIT
License) and the Pen-v0 environment from mjrl [56] (licensed under Apache License 2.0).

23



Algorithm 2 Policy As Leader (PAL) practical instantiation

1: Initialize: Policy network πθ, reward network Rϕ, replay bufferR
2: Hyperparameters: Common: Policy update steps npol, Reward update steps nrew, Performance

gap k, empty ranking dataset Donline, RANK-PAL (auto): number of interpolations P , RANK-
PAL(pref): Offline annotated rankings Doffline.

3: for m = 0, 1, 2, . . . do
4: Collect transitions in the environment and add to replay buffer R. Run policy update step:

πm
θ = Soft Actor-Critic(Rm−1

ϕ ;πm−1
θ ) with transitions relabelled with reward obtained from

Rm−1
ϕ . // call npol times

5: Add absorbing state/state-actions to all early-terminated trajectories collected in the current
npol policy update steps to make them full horizon and collect in Donline

m . Donline = Donline
m

(discard old data).
6: (for RANK-PAL(auto)) Generate interpolations for rankings in the dataset Donline and collect

in Donline
auto

7: Reward Update step: // call nrew times

Rm
ϕ =





minLk(Donline;Rm−1
ϕ ), RANK-PAL (vanilla) (Equation 83)

minSLk(Donline
auto ;Rm−1

ϕ ), RANK-PAL (auto) (Equation 89)
minLoffline

k (Donline,Doffline;R), RANK-PAL (pref) (Equation 90)

8: end for

Algorithm 3 Reward As Leader (RAL) practical instantiation

1: Initialize: Policy network πθ, reward network Rϕ, replay bufferR, trajectory buffer D
2: Hyperparameters: Common: Policy update steps npol, Reward update steps nrew, Performance

gap k, empty ranking dataset Donline, RANK-PAL (auto): number of interpolations P , RANK-
PAL (pref): Offline annotated rankings Doffline.

3: for m = 0, 1, 2, . . . do
4: Collect transitions in the environment and add to replay buffer R. Run policy update step:

πm
θ = Soft Actor-Critic(Rm−1

ϕ ;πm−1
θ ) with transitions relabelled with reward obtained from

Rm−1
ϕ . // call npol times

5: Add absorbing state/state-actions to all early-terminated trajectories collected in the current
npol policy update steps to make them full horizon and collect in Donline

m . Aggregate data in
Donline = Donline

m ∪ Donline.
6: (for RANK-RAL(auto)) Generate interpolations for rankings in the datasetDonline and collect

in Donline
auto

7: Reward Update step: // call nrew times

Rm
ϕ =

{
minLk(Donline;Rm−1

ϕ ), RANK-RAL (vanilla) (Equation 83)
minSLk(Donline

auto , Rm−1
ϕ ), RANK-RAL(auto) (Equation 89)

8: end for

Expert data: For all environments, we obtain expert data by a policy trained until convergence using
SAC [53] with ground truth rewards.

Baselines: We compare our proposed methods against 6 representative LfO approaches that cover a
spectrum of on-policy and off-policy, model-free methods from prior work: GAIfO [8, 51], DACfO
[52], BCO [30], f -IRL [28], OPOLO [26] and IQ-Learn [54]. GAIfO [51] is a modification of the
adversarial GAIL method [8], in which the discriminator is trained to distinguish between state-
distributions rather than state-action distributions. DAC-fO [52] is an off-policy modification of
GAIfO [51], in which the discriminator distinguishes the expert states with respect to the entire
replay buffer of the agent’s previously visited states, with additional implementation details such as
added absorbing states to early-terminated trajectories. BCO [30] learns an inverse dynamics model,
iteratively using the state-action-next state visitation in the environment and using it to predict the
actions that generate the expert state trajectory. OPOLO [26] is a recent method which presents

24



Env Swimmer Hopper HalfCheetah Walker Ant Humanoid
BCO 102.76±0.90 20.10±2.15 5.12±3.82 4.00±1.25 12.80±1.26 3.90±1.24
GaiFO 99.04±1.61 81.13± 9.99 13.54±7.24 83.83±2.55 20.10±24.41 3.93±1.81
DACfO 95.09±6.14 94.73±3.63 85.03±5.09 54.70±44.64 86.45±1.67 19.31±32.19
f -IRL 103.89±2.37 97.45± 0.61 96.06±4.63 101.16±1.25 71.18±19.80 77.93±6.372
OPOLO 98.64±0.14 89.56±5.46 88.92±3.20 79.19±24.35 93.37± 3.78 24.87±17.04
IMIT-PAL
(ours)

105.93±3.12 86.47± 7.66 90.65±15.17 75.60±1.90 82.40±9.05 94.49±3.21

IMIT-RAL
(ours)

100.35±3.6 92.34±8.63 96.80±2.45 94.41±2.94 78.06±4.24 91.27±9.33

RANK-
PAL (ours)

98.83±0.09 87.14± 16.14 94.05±3.59 93.88±0.72 98.93±1.83 96.84±3.28

RANK-
RAL (ours)

99.31±1.50 99.34±0.20 101.14±7.45 93.24±1.25 93.21±2.98 94.45±4.13

Expert 100.00± 0 100.00± 0 100.00± 0 100.00± 0 100.00± 0 100.00± 0
(|S|, |A|) (8, 2) (11, 3) (17, 6) (17, 6) (111, 8) (376, 17)

Table 3: Asymptotic normalized performance of LfO methods at 2 million timesteps on MuJoCo locomotion
tasks. The results in this Table also include evaluations for the IMIT-{PAL, RAL} methods.

Env Swimmer Hopper HalfCheetah Walker Ant Humanoid
BCO 210.22±3.43 721.92±89.89 410.83±238.02 224.58±71.42 704.88±13.49 324.94±44.39

GAIfO 202.66±4.87 2871.47±365.73 1532.57±693.72 4666.31±143.75 1141.66±1400.11 326.69±13.26
DACfO 194.65±14.08 3350.55±141.69 11057.54±407.26 3045.21±2485.33 5112.15±38.01 1165.40±1867.61
f -IRL 212.50±6.43 3446.33±35.66 12527.24±344.95 5630.32±71.35 4200.48±1124.17 4362.46±459.72

OPOLO 210.84±1.31 3168.35±206.26 11576.12±155.09 4407.70±1356.39 5529.44±164.94 1468.90± 1041.853
IMIT-PAL (ours) 216.64±7.95 3059.43±283.85 11806.47± 1750.24 4208.17±107.41 4872.39±480.23 5265.60±287.44
IMIT-RAL (ours) 205.33±8.92 3266.28±318.03 12626.18±54.71 5254.54±165.19 4612.8±192.06 5089.88±621.07

RANK-PAL (ours) 202.24±1.80 3082.98±582.59 12259.06± 206.82 5225.49±42.02 5862.42±47.68 5393.45±291.16
RANK-RAL (ours) 203.20±4.65 3512.67±21.09 13204.49±721.77 5189.51±71.27 5520.14±116.77 5262.96±337.44

Expert 204.6 ± 0 3535.88 ± 0 13051.46 ± 0 5456.91 ± 0 5926.17 ± 0 5565.53 ± 0
(|S|, |A|) (8, 2) (11, 3) (17, 6) (17, 6) (111, 8) (376, 17)

Table 4: Asymptotic performance of LfO methods at 2 million timesteps on MuJoCo locomotion tasks. The
results in this Table also include evaluations for the IMIT-{PAL, RAL} methods.

a principled off-policy approach for imitation learning by minimizing an upper-bound of the state
marginal matching objective. IQ-Learn [54] proposes to make imitation learning non-adversarial by
directly optimizing the Q-function and removing the need to learn a reward as a subproblem. All the
approaches only have access to expert state-trajectories.

We use the author’s open-source implementations of baselines OPOLO, DACfO, GAIfO, BCO avail-
able at https://github.com/illidanlab/opolo-code. We use the author-provided
hyperparameters (similar to those used in [26]) for all MuJoCo locomotion environments. For f -IRL,
we use the author implementation available at https://github.com/twni2016/f-IRL and
use the author provided hyperparameters. IQ-Learn was tested on our expert dataset by following
authors implementation found here: https://github.com/Div99/IQ-Learn. We tested
two IQ-Learn loss variants: ’v0’ and ’value’ as found in their hyperparameter configurations and took
the best out of the two runs.

Figure 7: We evaluate rank-game over environments including Hopper-v2, Ant-v2, Humanoid-v2, Door, and
Pen-v0.

Policy Optimization: We implement RANK-PAL and RANK-RAL with policy learning using
SAC [53]. We build upon the SAC code [72] (https://github.com/openai/spinningup) without changing
any hyperparameters.

Reward Learning: For reward learning, we use an MLP parameterized by two hidden layers of
64 dimensions each. Furthermore, we clip the outputs of the reward network between [−10, 10]
range to keep the range of rewards bounded while also adding an L2 regularization of 0.01. We add
absorbing states to early terminated agent trajectories following [35]. For training the ranking loss

25



until convergence in both update strategies (PAL and RAL), we used evaluation on a holdout set that
is 0.1 the total dataset size as a proxy for convergence.

Data sharing between players: We rely on data sharing between players to utilize the same collected
transitions for both players’ gradient updates. The reward learning objective in RANK-PAL and
RANK-RAL requires rolling out the current policy. This makes using an off-policy routine for
training the policy player quite inefficient, since off-policy model-free algorithms update a policy
frequently even when executing a trajectory. To remedy this, we reuse the data collected with a
mixture of policies obtained during the previous off-policy policy learning step for training the reward
player. This allows us to reuse the same data for policy learning as well as reward learning at each
iteration.

Ranking loss for reward shaping via offline annotated rankings: In practice for the (pref) setting
(Section 4.2), to increase supervision and prevent overfitting, we augment the offline dataset by
regressing the snippets (length l) of each offline trajectory τ i for behavior ρi to k ∗ l, in addition to
regressing the rewards for each state to k. The snippets are generated as contiguous subsequence
from the trajectory, similar to [3].

C.1 Hyperparameters

Hyperparameters for RANK-{PAL,RAL} (vanilla,auto and pref) methods are shown in Table 5.
For RANK-PAL, we found the following hyperparameters to give best results: npol = H and
nrew = (’validation’ or H/b), where H is the environment horizon (usually set to 1000 for MuJoCo
locomotion tasks) and b is the batch size used for the reward update. For RANK-RAL, we found
npol = H and nrew = (’validation’ or |D|/b), where |D| indicates the cumulative size of the ranking
dataset. We found that scaling reward updates proportionally to the size of the dataset also performs
well and is a computationally effective alternative to training the reward until convergence (see
Section D.7).

Hyperparameter Value
Policy updates npol H
Reward batch size(b) 1024
Reward gradient updates nrew val or |D|/1024
Reward learning rate 1e-3
Reward clamp range [-10,10]
Reward l2 weight decay 0.0001
Number of interpolations [auto] 5
Reward shaping parameterization [auto] exp-[-1]
Offline rankings loss weight (λ) [pref] 0.3
Snippet length l [pref] 10

Table 5: Common hyperparameters for the RANK-GAME algorithms. Square brackets in the left column
indicate which hyperparameters that are specific to ‘auto’ and ‘pref’ methods.

D Additional Experiments

D.1 Complete evaluation of LfO with rank-game(auto)

Figure 8 shows a comparison of RANK-PAL(auto) and RANK-RAL(auto) for the LfO setting on the
Mujoco benchmark tasks: Swimmer-v2, Hopper-v2, HalfCheetah-v2, Walker2d-
v2, Ant-v2 and Humanoid-v2. This section provides complete results for Section 5.1 in the
main paper.

D.2 Evaluation of LfD with rank-game(auto)

rank-game is a general framework for both LfD(with expert states and actions) and LfO (with only
expert states/observations). We compare performance of rank-game compared to LfD baselines:
IQ-Learn [54], DAC [52] and BC [11].

26



0 1 2 3 4
1e5

50

0

50

100

150

200

A
ve

ra
ge

 R
ew

ar
d

Swimmer-v2

0 1 2 3 4 5
1e5

0

1000

2000

3000

4000
Hopper-v2

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

2500

5000

7500

10000

12500

HalfCheetah-v2

0 2 4 6

Timesteps 1e5

0

2000

4000

6000

A
ve

ra
ge

 R
ew

ar
d

Walker-v2

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6

0

2000

4000

6000

Ant-v2

0 1 2 3 4 5

Timesteps 1e5

0

2000

4000

6000

Humanoid-v2

RANK-PAL (ours) RANK-RAL (ours) OPOLO IQ-learn f-IRL DACfO GAIfO BCO
Figure 8: Comparison of performance on OpenAI gym benchmark tasks. The shaded region represents standard
deviation across 5 random runs. RANK-PAL and RANK-RAL substantially outperform the baselines in sample
efficiency. Dotted blue line shows the expert’s performance.

0 1 2 3 4
1e5

0

50

100

150

200

250

300

A
ve

ra
ge

 R
ew

ar
d

Swimmer-v2

0 1 2 3 4 5
1e5

0

1000

2000

3000

4000
Hopper-v2

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

2500

5000

7500

10000

12500

HalfCheetah-v2

0 2 4 6

Timesteps 1e5

0

2000

4000

6000

A
ve

ra
ge

 R
ew

ar
d

Walker-v2

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6

2000

0

2000

4000

6000

Ant-v2

0 1 2 3 4 5

Timesteps 1e5

0

1000

2000

3000

4000

5000

6000

Humanoid-v2

LFD-RANK-PAL (ours) LFD-RANK-RAL (ours) IQlearn DAC BC

Figure 9: Comparison of rank-game methods with baselines in the LfD setting (expert actions are available).
RANK-{PAL,RAL} are competitive to state of the art methods.

In figure 9, we observe that rank-game is among the most sample efficient methods for learning
from demonstrations. IQlearn shows poor learning performance on some tasks which we suspect is
due to the low number of expert trajectories we use in our experiments compared to the original work.
DAC was tuned using the guidelines from [50] to ensure fair comparison.

D.3 Utility of automatically generated rankings in rank-game(auto)

We investigate the question of how much the automatically generated rankings actually help in this
experiment. To do that, we keep all the hyperparameters same and compare RANK-GAME (vanilla)
with RANK-GAME (auto). RANK-GAME (vanilla) uses no additional ranking information and Lk

is used as the reward loss.

27



0 2 4 6

Timesteps 1e5

0

2000

4000

A
ve

ra
ge

 R
ew

ar
d

Walker-v2

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6

0

2000

4000

6000

Ant-v2

RANK-PAL(auto) RANK-PAL(vanilla)

Figure 10: RANK-PAL(vanilla) has high variance learning curves with lower sample efficiency compared to
RANK-PAL(auto).

Figure 10 shows that in RANK-PAL (auto) has lower variance throughout training (more stable) and
is more sample efficient compared to RANK-PAL(vanilla).

D.4 Comparison of imit-game and rank-game methods

Imitation learning algorithms, particularly adversarial methods, have a number of implementation
components that can affect learning performance. In this experiment, we aim to further reduce any
implementation/hyperparameter gap between adversarial imitation learning (AIL) methods that are
based on the supremum-loss (described in section 3) function and rank-game to bring out the
obtained algorithmic improvements. To achieve this, we swap out the ranking loss Lk based on
regression with a supremum-loss and call this method IMIT-{PAL,RAL}. This results in all the
other hyperparameters such as batch size, reward clipping, policy and reward learning iterations, and
optimizer iterations to be held constant across experiments.

We present a comparison of RANK-{PAL, RAL} and IMIT-{PAL, RAL} in terms of asymptotic
performance in Table 3 and their sample efficiency in Figure 11. Note that Table 3 shows normalized
returns that are mean-shifted and scaled between [0-100] using the performance of a uniform random
policy and the expert policy. The expert returns are given in Table 4 and we use the following
performance values from random policies for normalization: { Hopper= 13.828, HalfCheetah=
−271.93, Walker= 1.53, Ant=−62.01, Humanoid= 112.19}. Table 4 shows unnormalized asymptotic
performance of the different methods.

In terms of sample efficiency, we notice IMIT-{PAL, RAL} methods compare favorably to other
regularized supremum-loss counterparts like GAIL and DAC but are outperformed by RANK-{PAL,
RAL} (auto) methods. We hypothesize that better learning efficiency in Lk compared to supremum-
loss is due to regression to fixed targets being a simpler optimization than maximizing the expected
performance gap under two distributions.

D.5 Effect of parameterized reward shaping in rank-game (auto)

We experiment with different ways of shaping the regression targets (Appendix B) for automatically
generated interpolations in RANK-GAME (auto) in Figure 12. In the two left-most plots for RANK-
PAL (auto), we see that reward shaping instantiations (exponential with negative temperature) which
learns a higher performance gap for pairs of interpolants closer to the agent lead to higher sample
efficiency. We note that decreasing the temperature too much leads to a fall in sample efficiency. The
same behavior is observed in RANK-RAL (two right-most plots) methods but we find them to be
more robust to parameterized shaping than PAL methods. We use the following interpolation scheme:
exponential with temperature=−1 for our experiments in the main paper.

D.6 On the rank preserving nature of SLk

The ranking loss SLk (Appendix B, Eq 89) regresses the ρi, ρj and each of the intermediate
interpolants (ρi = ρijλ0

, ρijλ1
, ..., ρijλP

, ρj = ρijλP+1
) to fixed scalar returns (k0, k1, ..., kP+1) where

28



0 1 2 3 4
1e5

0

100

200

300

A
ve

ra
ge

 R
ew

ar
d

Swimmer-v2

0 1 2 3 4 5
1e5

0

1000

2000

3000

4000
Hopper-v2

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

2500

5000

7500

10000

12500

HalfCheetah-v2

0 2 4 6

Timesteps 1e5

0

2000

4000

6000

A
ve

ra
ge

 R
ew

ar
d

Walker-v2

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6

2000

0

2000

4000

6000

Ant-v2

0 1 2 3 4 5

Timesteps 1e5

0

2000

4000

6000
Humanoid-v2

RANK-PAL (ours) RANK-RAL (ours) IMIT-PAL (ours) IMIT-RAL (ours) OPOLO DACfO GaiFO

Figure 11: Comparison of performance on OpenAI gym benchmark tasks. Specifically, we seek to compare
RANK-{PAL, RAL} methods to IMIT-{PAL, RAL} methods and IMIT-{PAL, RAL} methods to their non-
Stackelberg counterparts GAIfO and DACfO. The shaded region represents standard deviation across 5 random
runs. RANK-PAL and RANK-RAL substantially outperform the baselines in sample efficiency and IMIT-{PAL,
RAL} is competitive to the strongest prior baseline OPOLO.

0 2 4 6

Timesteps 1e5

0

2000

4000

A
ve

ra
ge

 R
ew

ar
d

Walker-v2

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6

0

2000

4000

6000

Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6

0

5000

10000

A
ve

ra
ge

 R
ew

ar
d

HalfCheetah-v2

0 2 4 6

Timesteps 1e5

0

2000

4000

6000
Walker-v2

linear exp 1 exp 2 exp 5 exp -1 exp -2 exp -5

Figure 12: The two left-most plots show the effect of reward shaping in RANK-PAL (auto) methods using
linear and exponential shaping functions. The two right-most plots show the same effect of reward shaping in
RANK-RAL (auto) methods. Reward shaping instantiations which induce a higher performance gap between
pairs of interpolants closer to the agent perform better and RAL is more robust to reward shaping variants than
PAL.

k0 ≤ k1 ≤ ... ≤ kp+1 = k. The ranking loss SLk is given by:

SLk(D;R) =
1

p+ 2

P+1∑

i=0

Es∼ρij
λi

(s,a)

[
(R(s, a)− ki)

2
]

(91)

SLk provides a dense reward assignment for the reward agent but does not guarantee that minimizing
SLk would lead to the performance ordering between rankings, i.e Eρ1 [f(s)] < Eρ2 [f(s)] <
Eρ3 [f(s)] < .. < EρP+1 [f(s)]. An ideal loss function for this task regresses the expected return
under each behavior to scalar values indicative of ranking, but needs to solve a complex credit
assignment problem. Formally, we can write the ideal loss function for reward agent as follows

SLideal
k (D;R) =

1

p+ 2

P+1∑

i=0

[Es∼ρij
λi

(s,a)[R(s, a)]− ki]
2 (92)

We note that the SLk upper bounds SLideal
k using Jensen’s inequality and thus is a reasonable target

for optimization. In this section we wish to further understand if SLk has a rank-preserving policy.
SLk is a family of loss function for ranking that assigns a scalar reward value for each states of a

29



particular state visitation corresponding to its ranking. Ideally, given a ranking between behaviors
ρ0 ⪯ ρ1 ⪯ ρ2... ⪯ ρP+1 we aim to learn a reward function f that satisfies Eρ0 [f(s)] < Eρ1 [f(s)] <
Eρ2 [f(s)] < .. < EρP+1 [f(s)]. We empirically test the ability of the ranking loss function SLk to
facilitate the desired behavior in performance ranking. We consider a finite state space S and number
of rankings P . We uniformly sample P + 1 possible state visitations and the intermediate regression
targets {ki}ni=1 s.t ki ≤ ki+1. To evaluate the rank-preserving ability of our proposed loss function
we study the fraction of comparisons the optimization solution that minimizes SLk is able to get
correct. Note that P + 1 sequential ranking induces P (P + 1)/2 comparisons.

Figure 13: Increasing the state size of the domain increases the rank consistency afforded by SLk and increasing
the number of rankings decreases the rank consistency.

Figure 13 shows that with large state spaces SLk is almost rank preserving and the rank preserving
ability degrades with increasing number of rankings to be satisfied.

D.7 Stackelberg game design

0 2 4 6

Timesteps 1e5

0

2000

4000

A
ve

ra
ge

 R
ew

ar
d

Walker-v2

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6

2000

0

2000

4000

6000

Ant-v2

0 2 4 6

Timesteps 1e5

0

2000

4000

6000

A
ve

ra
ge

 R
ew

ar
d

Walker-v2

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6

0

2000

4000

6000
Ant-v2

val 1 rew itr 2 rew itr 5 rew itr 10 rew itr

Figure 14: The left two plots use PAL strategy and the right two plots use RAL strategy. Reward learning using
a validation loss on a holdout set leads to improved learning performance compared to hand designed reward
learning iterations.

We consider the sensitivity of the two-player game with respect to policy update iterations and reward
update iterations. Our results (Figure 14) draw analogous conclusions to [36] where we find that
using a validation loss for training reward function on on-policy and aggregate dataset in PAL and
RAL respectively works best. Despite its good performance, validation loss based training can be
wall-clock inefficient. We found a substitute method to perform similarly while giving improvements
in wall-clock time - make number of iterations of reward learning scale proportionally to the dataset
set size. A proportionality constant of (1/batch-size) worked as well as validation loss in practice.
Contrary to [36] where the policy is updated by obtaining policy visitation samples from the learned
model, our ability to increase the policy update is hindered due to unavailability of a learned model
and requires costly real-environment interactions. We tune the policy iteration parameter (Figure 15)
and observe the increasing the number of policy updates can hinder learning performance.

D.8 Sensitivity of reward range for the ranking loss Lk

In Section 4.2, we discussed how the scale of learned reward function can have an effect on learning
performance. We validate the hypothesis here, where we set Rmax = k and test the learning
performance of RANK-PAL (auto) on various different values of k. Our results in figure D.9 show
that the hyperparameter k has a large effect on learning performance and intermediate values of k
works well with k = 10 performing the best.

30



0 2 4 6

Timesteps 1e5

0

2000

4000

A
ve

ra
ge

 R
ew

ar
d

Walker-v2

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6

0

2000

4000

6000

Ant-v2

5_sac (auto) 1_sac (auto) 5_sac (vanilla) 1_sac (vanilla)

Figure 15: Small number of policy updates are useful for good learning performance in the PAL setting here.

0 2 4 6

Timesteps 1e5

0

1000

2000

3000

4000

5000

A
ve

ra
ge

 R
ew

ar
d

Walker-v2

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6

0

2000

4000

6000
Humanoid-v2

k=1 k=10 k=100 k=1000

Figure 16: Intermediate values of k work best in practice.

D.9 Effect of regularizer for rank-game

rank-game(auto) incorporates automatically generated rankings which can be understood as a
form of regularization, particularly mixup [46] in trajectory space. In this experiment, we work in the
PAL setting with ranking loss Lk and compare the performances of other regularizers: Weight-decay
(wd), Spectral normalization (sn), state-based mixup to (auto). Contrary to trajectory based mixup
(auto) where we interpolate trajectories, in state-based mixup we sample states randomly from the
behaviors which are pairwise ranked and interpolate between them.

0 2 4 6

Timesteps 1e5

0

2000

4000

A
ve

ra
ge

 R
ew

ar
d

Walker-v2

0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e6

0

2000

4000

6000
Humanoid-v2

(auto) state-mixup wd=0.01 wd=0.1 wd=1.0 wd=10.0 sn

Figure 17: (auto) regularization outperforms other forms of regularization in rank-game

Figure 17 shows learning with (auto) regularizer is more efficient and stable compared to other
regularizers.

D.10 Ablation analysis summary

We have ablated the following components for our method: Automatically-generated rankings D.3,
Ranking loss D.4, Parameterized reward shaping D.5, Stackelberg game design D.7 and range of the
bounded reward D.9. Our analysis above (Figure 11,16 and 14) shows quantitatively that the key im-
provements over baselines are driven by using the proposed ranking loss, controlling the reward range
and the reward/policy update frequency in the Stackelberg framework. Parameterized reward shaping
(best hyperparameter : exp -1 compare to unshaped/linear shaping) and automatically-generated rank-
ings contribute to relatively small improvements. We note that a single hyperparameter combination
(Table 5) works well across all tasks demonstrating robustness of the method to environment changes.

31



1-
ex
pe
rt

2-
ex
pe
rt

5-
ex
pe
rt

10
-e
xp
er
t

60
-e
xp
er
t

0

50

100

150

200

RANK-PAL (auto) OPOLO DACfO BCO

Swimmer-v2

A
v
e
r
a
g
e
 
R
e
t
u
r
n

1-
ex
pe
rt

2-
ex
pe
rt

5-
ex
pe
rt

10
-e
xp
er
t

60
-e
xp
er
t

0

500

1000

1500

2000

2500

3000

3500

RANK-PAL (auto) OPOLO DACfO BCO

Hopper-v2

A
v
e
r
a
g
e
 
R
e
t
u
r
n

1-
ex
pe
rt

2-
ex
pe
rt

5-
ex
pe
rt

10
-e
xp
er
t

60
-e
xp
er
t

0

2k

4k

6k

8k

10k

12k

RANK-PAL (auto) OPOLO DACfO BCO

HalfCheetah-v2

A
v
e
r
a
g
e
 
R
e
t
u
r
n

1-
ex
pe
rt

2-
ex
pe
rt

5-
ex
pe
rt

10
-e
xp
er
t

60
-e
xp
er
t

0

1000

2000

3000

4000

5000

6000

RANK-PAL (auto) OPOLO DACfO BCO

Walker2d-v2

A
v
e
r
a
g
e
 
R
e
t
u
r
n

1-
ex
pe
rt

2-
ex
pe
rt

5-
ex
pe
rt

10
-e
xp
er
t

60
-e
xp
er
t

0

1000

2000

3000

4000

5000

6000

RANK-PAL (auto) OPOLO DACfO BCO

Ant-v2

A
v
e
r
a
g
e
 
R
e
t
u
r
n

1-
ex
pe
rt

2-
ex
pe
rt

5-
ex
pe
rt

10
-e
xp
er
t

60
-e
xp
er
t

−1000

0

1000

2000

3000

4000

5000

6000

RANK-PAL (auto) OPOLO DACfO BCO

Humanoid-v2

A
v
e
r
a
g
e
 
R
e
t
u
r
n

Figure 18: Performance analysis of different algorithms in the LfO setting with varying number of expert
trajectories. RANK-PAL (auto) compares favorably to other methods

32



D.11 Varying number of expert trajectories for imitation learning

In the main text, we considered experiment settings where the agent is provided with only 1
expert trajectory. In this section, we test how our methods perform compared to baselines
as we increase the number of available expert observation trajectories. We note that these
experiments are in the LfO setting. Figure 18 shows that RANK-GAME compares favor-
ably to other methods for a varying number of expert demonstrations/observations trajectories.

0 1 2 3

Timesteps 1e5

0

200

400

A
ve

ra
ge

 R
ew

ar
d

Door-v0

noise=0.0 noise=0.2 noise=0.4 noise=0.6 noise=0.8

Figure 19: We investigate learning from ex-
pert observation+offline preferences where
the offline preferences are noisy. RANK-PAL
shows considerable robustness to noisy pref-
erences.

D.12 Robustness to noisy preferences

In this section, we investigate the effect of noisy prefer-
ences on imitation learning. We consider the setting of
Section 5.2 where we attempt to solve hard exploration
problems for LfO setting by leveraging trajectory snippet
comparisons. In this experiment, we consider a setting
similar to [3] where we inject varying level of noise, i.e
flip x% of trajectory snippet at random. Figure 19 shows
that RANK-PAL(pref) is robust in learning near-expert
behavior upto 60 percent noise in the Door environment.
We hypothesize that this robustness to noise is possible
because the preferences are only used to shape reward
functions and does not change the optimality of expert.

D.13 Learning purely
from offline rankings in manipulation environments

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Timesteps 1e5

0

100

200

300

400

A
ve

ra
ge

 R
ew

ar
d

Door-v0

0.0 0.5 1.0 1.5 2.0

Timesteps 1e6

0

1000

2000

3000
Pen-v0

T-REX (10 pref) T-REX (20 pref) T-REX (50 pref)

Figure 20: Testing with 10, 20 and 50 suboptimal preferences uniformly sampled from a replay buffer of SAC
trained from pre-specified reward we see that TREX is not able to solve these tasks. The black dotted line shows
asymptotic performance of RANK-PAL (auto) method.

In section 5.2, we saw that offline annotated preferences can help solve complex manipulation tasks
via imitation. Now, we compare with the ability of a prior method—TREX [3] that learns purely from
suboptimal preferences—under increasing numbers of preferences. We test on two manipulation
tasks: Pen-v0 and Door-v0 given varying number of suboptimal preferences: 10, 20, 50. These
preferences are uniformly sampled from a replay buffer of SAC trained until convergence under a
pre-specified reward, obtained via D4RL (licensed under CC BY) .We observe in Figure 20 that
T-REX is unable to solve these tasks under any selected number of suboptimal preferences.

33


