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In the following, we give supplementary information and material to the main paper. This includes all mathematical
proofs of the propositions and corollaries established in the main paper (Part[A]), further details on the implementation and
reproducibility (Part[B]), further calculations for the robustified test statistics (Part[C), and further analyses of the applications
in the main paper (Part[D). If not explicitly stated otherwise, from now on, all references to equations, propositions, etc.
refer to the main part of the paper.

A PROOFS OF THE RESULTS IN THE MAIN PAPER

A.1 PROOFS FOR PROPOSITION IAND I: BOUNDED PREFERENCE SYSTEMS

We start by proving Propositions [I] resp. 2] from Sections 2] resp. ] that state that checking consistency resp. GSD simplifies
if the underlying preference system is bounded.

Proposition 1 Let A = [A, Ry, R2] be a bounded preference system. Then A is consistent iff it is O-consistent.

Proof. If A is 0-consistent, then it is obviously also consistent, since every normalized representation is in particular a
representation. For the other direction, assume A to be consistent. Choose u € U 4 arbitrarily and denote by a.,a* the
R;-minimal resp. R;-maximal elements satisfying (a*, a.) € Pg,. From the latter we know that u(a*) > u(a.). Thus, the
function

u(a) — u(ax)

u(a*) — u(a.)

is well-defined. Moreover, one easily verifies that & € U4, and u(a,) = 0, and u(a*) = 1. Thus, we can conclude that
@ € N4, which — by definition — implies O-consistency. 0

:A—=[0,1] , a—

Proposition 2 If A is consistent and bounded with a.., a* as before, then (X,Y) € R4 ) iff

Vu € Ng:Er(uoX)>E (uoY).
Proof. The direction = follows trivially by observing AN 4 C U 4. For the direction <=, assume that it holds Yu € N4 :
Er(uoX) > Er(uoY). Choose u € U arbitrarily. With the same argument as given in the proof of Proposition[I] we know
that then & € N4, where @ is defined as in the proof of Proposition[I] Since @ is a positive (affine) linear transformation of

u, we know that E; (v o X) > E (uoY)ifand only if E, (% o X) > E, (@ o Y). Since the latter is true by assumption
(utilizing @ € N 4), the first also is true. As u was chosen arbitrarily, this completes the proof. g

A.2 PROOFS OF PROPOSITIONS AND EI: COMPUTATIONS FOR THE PERMUTATION TEST

We now give proofs for Propositions [3|resp. ] from Section[5.3]that concern the computation of the maximum regularization
strength resp. the computation of the (regularized) test statistic for the permutation-test.

Accepted for the 39" Conference on Uncertainty in Artificial Intelligence (UAI 2023).


mailto:<christoph.jansen@stat.uni-muenchen.de>?Subject=Your UAI 2023 paper

Proposition 3 For samples x and 'y of the form (@) and ([7]) and ¢ € |0, 1], we consider the linear program

¢§ —  max
(v15004,05,6)

with constraints (v1, .. .,vs,§) € C(X,y). Denote by £* its optimal value. It then holds 0. (wg) = € - £*.

Proof. The Proposition follows from standard results on linear optimization and the fact that C'(x,y) is compact. Set
I :={l: (z,a*) € Ip, } and define the vector v := (0,1,v3,...,v5,0) € [0,1]*T by v, = 1if £ € T and vy = 0
otherwise. One then easily verifies that v is an admissible solution to the above linear program. Since C(x,y) is compact,
this implies the existence of an optimal solution. Denote thus by v* := (0,1, v}, ..., v, £*) an arbitrary optimal solution.
We have to show that

& =sup{¢ iNij #0} =:c.
Assume, for contradiction, the above equality does not hold. We distinguish two cases:

Case 1: £* < c. Then, one easily verifies that for any function v € NG the vector (u(21),...,u(z,),c) defines an
wo
admissible solution to the above linear program with an objective value of c. This constradicts the optimality of v*.

Case 2: £ > c. Then, setting v : (XY),,, — [0,1] with u(2;) := v; defines an element of J\/'f;o, contradicting that c is
the largest number for which A, is c-consistent.

Thus, we have that ¢ = £*, implying 0. (wp) = € - £*. O

Proposition 4 For samples x and y of the form (@) and @ and € € [0, 1], we consider the following linear program

S
R (|{z:wfze}| _ \{zzyiu}\) — 'y min
(=1

(v1,..4,05)

with constraints (v1, ..., vs) € Cee+(X,y), where £ denotes the optimal value of (§). Denote by opt.(x,y) its optimal
value. It then holds:

i) opte(x,y) = di v (wo).
ii) There is in-sample GSD of X overY if and only if opty(x,y) > 0.

Proof. i) By definition and Proposition 2 , we know that Nf{;o = (). As these sets are nested with decreasing £-value and we

have e£* < £, this implies that also Nf* # (). Hence, we can choose u € ./\/jf* . One then easily verifies that the vector
wo wo

(u(#1),...,u(zs)) defines an admissible solution to the above linear program. Since Ce¢+ (x,y) is compact, this implies the

existence of an optimal solution. Thus, denote by v* := (v7, ..., v¥) an arbitrary such optimal solution. If we then define

rYs

u: (XY)y, — [0,1] with u(z¢) := v}, then one easily verifies that u € lei and that

opt-(,y) = Y u(z)- (7 ({=}) — 75 ({=}) ey

2€(XY)wq
(to see this, note that the right side of the equation is a simple reformulation of the objective function with v* plugged-in).
We have to show that
opt.(x, Y) = d§(7Y (WO)'

Assume, for contradiction, the above equality does not hold. We distinguish two cases:

Case 1: opt-(x,y) > di v (wo). This would imply that there exists an u’ € Njio that — if it was set in the right-hand
side of the above Equation (I)) (in the supplementary material) instead of u — would produce a value strictly smaller than
opt.(x,y). This contradicts the optimality of v*, since every u’ € Njéj produces an admissible solution to the linear
program with objective value given by the right-hand side of the above Equation ().

Case 2: opte(x,y) < dx y(wo). This would be an immediate contradiction to the above Equation (1) (in the supplementary
material), since dx v (wp) is by definition the infimum over all the expressions on the equation’s right-hand side.

This completes the proof of i). To see ii), note that i) implies opto(x,y) = d% y (wo). Thus, we have opto(x,y) > 0 if and
only if dgcyy(wo) > 0, which — by definition — is true if and only if there is in-sample GSD of X over Y. 0



A.3 PROOEFS OF PROPOSITION AND @: COMPUTATIONS FOR ROBUSTIFIED TESTING

We now give proofs of Proposition [5]resp. [6] from Section [6] concerning the computation of the robustified test statistic resp.
its simplification under the special case of a y-contamination model (with v € [0, 1]).

Proposition 5 For samples x and 'y of the form (6) and (7), € € [0,1], and (71, 73) € E(MS) x E(MSP), we consider
the following linear program:

Y ve-(m({z}) —m({z}) — min
(=1

(V1 5e0y0s)

with constraints (vi,...,vs) € Ceex(X,y), where §* denotes the optimal value of (@) Denote by opt.(x,y,m,m2) its
optimal value and by opt_(x,y) the minimal optimum over all combinations of (w1, m2) € E(MY) x E(M3P). It then
holds:

l) Lme(xa y) = d;(,Y(WO)'
ii) There is in-sample GSD of X overY for any m with #5? € M5 and #y° € MS® if opt (x,y) = 0.

Proof. i) Since nothing in the proof of Proposition 4] hinges on the concrete structure of the involved empirical image
measures, Propositionis still valid if we replace 7%° and 7y° by arbitrary m € M%® and mo € M3, respectively. This
specifically implies

opte(x,y,m,m) =  inf > uz)- (m({z}) —m({z}). @)

Se(wo)
UEN L 2E(XY )y

In order to show i), we now need to verify that

inf opte(x,y,m,m2) = dx v (wo).
(m1,m2) EE(MPL )X E(M3O) ’

Due to the above Equation (2)) (in the supplementary material) and the fact that iterated infima can be equivalently replaced

by one global infimum, we know that

inf opte(x,y,m,m2) = dx v (wo)- 3
(7r1,772)€./\/l;0 XM;O ’

We then can compute:

. (&) .
dx v (wo) = inf L Opte(X,y,m,ma)
(1,m2) ML X MO

= inf inf Z u(z) - (m({z}) — m2({2}))

wo wo e (w)
(7\'1;7T2)€Mx XMY "eNAi, ZG(XY)Q_)O

= inf inf Yo uz) - (m({z}) —m({=})

WENE) (mm) EMROX MY St
. v

® inf (inf Sl mE) - s> u(z)-m({z}))

Se (w) ) wo
weN ) \ M EMx 2€(XY)wq TEMY 2e(XY ),

=) ( inf 3w om(E) - s Y U<Z>~W2<{Z}>>

e (w) wo w
u€NE) mEE(MK )ZE(XY)“,O m€E(MSP) 2e (XY )y

= inf inf u(z) . (771({2}) _ WQ({Z}))
(7f1,772)€£(M§0)><5(M;0) ueN,iEw(w) ZE(g)wo
= inf opte(x,y, T, mT2)

(m1,m2) EE(MP)XE(MSO)



Here, (%) follows since — for u fixed — the infimum of the differences of the two sums is attained if the first sum is smallest
possible and the second sum is largest possible (note that all sums involved are finite). Further, (%) follows since — again for
u fixed — the sums are linear functions on the compact sets M resp. M3° and, therefore, attain their optima on £(M°)
resp. £(M3?). The fith and sixth equalities are just reversing the computation done in the first three equalities.

To see ii), note that i) implies opt (x,y) = d§7Y(w0). Thus, opt,(x,y) > 0 if and only if dg()y(wo) > 0. But — by
definition — the latter is true if and only if

inf Y u(z) - (m({z}) —m({z}) =0

N’O
N Ay 2e(XY)wq

for all (m1,m2) € MY x M5°. This obviously implies in-sample GSD of X over Y for any 7 with #5° € M and

AW w : 0 —
50 € M3P, since NAWO =Na,,- O

Proposition 6 Consider again the situation of Propositionwith the additional assumption that M%® and M5" are of the
form with extreme points as in (I2). It then holds:

opt_(x,y) = opte(x,y, ™, 7)
where
e = Y0a, + (1 — )7

and
T =0g+ + (1 —7)7y°.

Proof. By again utilizing Equation (2)) (of the supplementary material), the claim modifies to showing that

opt (xy)= inf > u(z)- (m({z)) -7 ({=)).

UEN L 2E(XY )y
Since, by Proposition 2, we know that dx y (wo) = opt_(x,y) and dx y(wo) is by definition the infimum over all the
expressions on the right-hand side, the direction < is immediate. So, it remains to show the direction >. To do so, choose
(m1,m2) € M5 X M3P arbitrarily. Since both M4 and M3? are of the form (1), we then know that there exist probability
measures 7 and v such that

~Wwo

T =7-v1+(1—-7) 7

and
~wo

mp =7 -vp+ (1 —7) 75°.
Here, we utilized the fact that credal sets of the form can be equivalently characterized as
& = {7r s> (1—7) ﬁ'%} = {'y ‘v + (1—7) 7% : v probability measure}.

For u € Nji(:(’) fixed (but arbitrary), we then can compute:

Yooul@)mzh =y Y wl)on{EH+ (- Y uz) Az

2€(XY)wq 2€(XY)w, 2€(XY)w,
>~ -u(ay) + (1 —7) Z u(z) - 72 ({z})
zE(XY)WD
=7 Y u@ b2+ A—y) D ulx) - P
26(XY)u, 2€(XY ) g

= Y ul) m({z})

2€(XY)w,



Analogous reasoning yields:
YoouE) m{a) < Y ulz)-m({z))
zE(XY)wO zE(XY)WO
Putting the two together, we arrive at:
Yo u@)-(m{h) —m({)) = Y @) (n({z)) — 7 ({2))
2€(XY)wq 2€(XY)w,

As 1y, mo, and u were chosen arbitrarily, the inequality remains valid for the infimum, i.e.

inf S w) meh w2 it S ue) (m{=h) - 7 (=)

wo wg 5e (wo) Se(wo)
(m1,m2,u) EME X MY XNAZO 26(XY )y ueN’AEwO 26(XY )y

Observing that the left side of this inequality by definition equals d5 y (wo) and, therefore, by Proposition also opt_(x,y)
completes the direction > and thus the proof. g

A4 PROOEFES OF PROPOSITIONS AND MULTI-DIMENSIONAL SPACES

Finally, we give proofs of Propositions [7]and [§|from Section [7] concerning several different characterizing properties of
the GSD-order for the special case of preferences systems arising from multi-dimensional spaces with differently scaled
dimensions. For this, recall that in Section ] for a preference system .A and a probability measure 7 we defined

Fiam ={X € A% 1uo X € L1, 81,7) Yu € Un .
This definition is needed for stating the next proposition.

Proposition 7 Let 7 be a probability measure on (2,S1), and X = (Ay,...,A.),Y = (A1,...,Ar) € Frprerr),m)»
where the first 0 < z < r dimensions of pref(R") are of cardinal scale. Then, the following holds:
i) pref(R") is consistent.
ii) If z = 0, then R(prefrr),x) coincides with (first-order) stochastic dominance w.r.t. m and R7 (short: FSD(Rj,m)).
i) If (X,Y) € Rprefrr),ry and Aj, Aj € LY(Q, Sy, ) forall j =1,...,r, then
L Ex(Aj) >Ex(A)) forallj=1,...,r, and
II. (Aj,Aj) €FSD(>,m) forallj =z+1,...,r.

Additionally, in the special case where all components of X are jointly independent and all components of Y are jointly
independent, properties 1. and II. imply (X,Y') € R(prefrr),x) (i.e. also the converse implication holds).

Proof. i) Let aq,..., o, € RT and ¢, 1, ..., ¢, : R — R strictly isotone functions. Define u : R™ — R by setting
z T
u(x) ::Zas-xs—i— Z Qs - ds(Ts).
s=1 s=z+1

Then one easily verifies that u defines a representation of pref(R"), proving its consistency.

ii) Assume z = 0, i.e. all considered dimensions are purely ordinal. We claim that for Ay := [R", R}, (] it holds
Upreirr) = Ua,. The direction C is trivial, so assume u € U4, arbitrary. It suffices to show that u represents arbitrary
pairs of pairs in R5. As R3 is antisymmetric for z = 0, this reduces to show that  strictly represents arbitrary pairs of
pairs in Pg;. So, let ((v,w), (z,y)) € Prs. This means that for all j € {1,...,r} we have v; > z; > y; > w; and that
there is jo € {1,...,7} such that either v;, > z,, or y;, > w;,. Together, this implies u(v) > u(z) > u(y) > u(w)
or u(v) > u(x) > u(y) > u(w), either way implying u(v) — u(w) > u(x) — u(y). Thus u € Uperrr). As R(ay,m)
coincides with (first-order) stochastic dominance by definition and we have Uyrer(rr) = U4, also Rprei(rr),x) coincides
with (first-order) stochastic dominance.



i) Let (X,Y") € Rpref(rr),r)- We start by showing I, so choose j € {1,...,7} arbitrary. By part i) of the proof, for every
n € N, the function w,, : R” — R defined by

n( —x]+* qu

is a representation of pref(R"), that is u,, € Upret(rr)- Thus, by our assumption (X,Y) e R pret(rr),x)> we know that we
have E; (u, o X) > E;(u, oY). This implies (by the linearity of the expectation operator)

A+ TR 2B + L SR

s#£j s#J

Letting n — oo on both sides gives E(A;) > E(A;).

We use a very similar argument to see II: Choose j € {z + 1,...,r} arbitrarily and let ¢ : R — R be strictly isotone. By
part i) of the proof, for every n € N, the function u}, : R” — R defined by

<>—¢>x]+f >

is a representation of pref(R"), that is wu,, € Upre(rr). Thus, by our assumption (X,Y) € Rpref(rr),x)» We know that we
have E; (u, 0 X) > E;(u, o Y). This implies (by the linearity of the expectation operator)

Er(¢oA;) ZE E.(¢oA;) ZE

s#j s#j
Letting n — oo gives Ex(¢ 0 A;) > E(¢ o Aj). As ¢ was chosen arbitrarily, this implies (A;, A;) €FSD(>, ).

To see the addition to part iii), let X = (Aq,...A,)and Y = (Aq4,..., A,) have both jointly independent components,
respectively, and let I. and IL. of iii) be true. Let furthermore u € Uper(r+) be an arbitrary utility function that represents the
preference system pref(R"). We now show that E,(u o X) > E,(u o Y) holds: Because of independence we can compute
the expectations of u o X and u o Y by using Fubini’s theorem. To prove the inequality, we first integrate over the ordinal
part and use isotonicity of u in every integration. Then we integrate over the cardinal parts and iteratively use the fact that
the corresponding functions are representing the corresponding cardinal subsystem built by the components we did not
integrate over before. Formally, we arrive at:

E(uoX) = /UOXd’JT

(ig')/ / w(d1, ..., 02,0541,...0.)dTA,. - dﬂ'Asz A, ... dTa,
AL(Q) AL(Q

(*)

> / / u(§1,...,52,/\Z+1,...)\T)d7TAT...d7TAz+1d7TAZ...d7TA1
A1(9) Ar(S2)

(x%)

> / / w(Ag, .. )\z,)\z+17~-~)\r)d7TA,.~--d7TAz+1d7TAz~-~d7TA1
A (Q) Ar(2)

(1nd ) E, (u o Y)

Here, (x) is valid because, for fixed cardinal components, v is isotone in every ordinal component and we have first order
stochastic dominance, which means that the iterated integrals gets smaller if one switches from ma, to 7y, .
Similarly, (%) is valid because e.g., for the mapping
’l/):RzilﬁR N (61,...,52_1)F—> u(61,...,5r)d7rAz
AL(Q)

is a positive (affine) linear transformation w.r.t. the corresponding subsystem. 0



Corollary 1 IfC = [C, R{, RS] is a bounded subsystem of pref(R") and X,Y &€ Fc r), then C is 0-consistent and ii) and
iii) from Prop. [7]hold, if we replace Rprefrr),r) by R(c ), FSD(R}, ) by FSD(RS{, ), and (X,Y) € Rprefrr),x) by
Vu e Ng :Er(uoX) >E (uoY).

Proof. As, according to Propositioni), we know that pref(R") is consistent, the same holds true for all of its subsystems.
Hence, C is consistent. Since C is assumed to be bounded, it then is O-consistent by Proposition 1. The rest of the Corollary
follows, since — by Proposition 2 — for bounded preference systems it suffices to check for dominance only over all
normalized representations. 0

Proposition 8 Let z = 1 and denote by Usp the set of all v : R™ — R such that, for (z2,...,z,) € R"~! fixed, the

function u(-, xa, ..., x,) is strictly increasing and (affine) linear and such that, for z1 € R fixed, the function u(z1,-,...,-)
is strictly isotone w.r.t. the the componentwise partial order on R" 1. Then Use, = oref(Rr)-
Proof. First, let u € Uperrr). One easily verifies that, for z_ := (wg,...,2,) € R fixed, the preference system

Z = [R,R]{™, R ], where R]~ :=> and R, is defined by

oo ((() ()2 )}

is a complete positive-difference structure in the sense of Krantz et al.|[[1971] Definition 1, p. 147]. According to |Krantz
et al.|[1971} Theorem 1, p. 147] this implies that any two representations of Z are positive (affine) linear transformations
of each other. But it is immediate that both u(-, o, ..., x,) and idg(-) are representations of Z. Thus, u(-, 22, ..., 2,) =
a-idg(+) + (3 for some o € R™ and 3 € R, proving the first claim of this direction. The second claim — i.e., the strict isotony
of the function u(z1, -, ..., -) w.r.t. the the componentwise partial order on R” ! for fixed 1 € R — is also immediate. Thus,
U € Usep.

For the other direction, assume that u € U,,. It follows directly from the assumptions that u is strictly isotone w.r.t. R]. To
see that u also strictly represents R, choose ((z,y), (¢/,y’)) € R} arbitrary. We have two cases:
Case 1: ((x,y), (*',y")) € Iry. This implies that z; — y; = @} — y; and therefore also 1 — x} = y; — y;. Moreover, one
easily verifies that the restriction of R3 to the ordinal dimensions is antisymmetric . Since we have that z_ componentwise
dominates &’ and vice versa and that y_ componentwise dominates 3’ and vice versa, this antisymmetry then implies that
x_ =x' and y_ =y’ . Therefore, there are common a1, as € R and 81, B2 € R such that

wx)=a1-z1+p1 , u@)=a-2)+p

u(y) =z -y + B2, uw(y)=az-y;+ 5o
Moreover, observe that ai; = «a, since otherwise there wolud be 2* € R with u(z*,z_) < u(z*, y_), which is not possible,
since wu is strictly isotone w.r.t. R}. Define

D = (u(z) — u(y)) — (u(@’) — u(y’)).
Simple computations then yield
D=ap(z1—2y) —az (y1 —¥)) = (21 — 21) - (1 — a2)

which, as a1 = ag, implies D = 0.
Case 2: ((x,y),(2',y')) € Pr;. Thisimplies z_ > 2’ >y’ > y_, where > is to be understood componentwise. Using
the same argument as seen before, this implies that there exists a o« € R* and 31, 82, 83, 84 € R such that

wz)=a-z1+ B , u@)=a- x| +p8s

u(y) =a-yi+ P, uly)=a- y+ b
Thus, computing D defined as above yields:

D=a-((z1—y1)— (@1 —y1)) + B — P2 — B3+ Ba

Sub-Case 2.1: x1 — y1 > x} — y}. Observe that, as v is isotone w.r.t. R}, we have that u(y}, y" ) > u(y}, y). However, this
implies 84 > Ps. Analogous reasoning yields 3; > (3. Using the assumptions of the sub-case, this implies D > 0.

Sub-Case 2.2: x1 — y; = x; — y. Using the case assumption, this implies that either z_ > z’_ or ' > y_, where the
> is to be understood as the strict part of the componentwise >. As w is strictly isotone w.r.t. R, this implies that either
u(yy,y_) > u(yy, y) or u(xl, x—) > u(x],x_), which itself implies either 84 > B3 or 81 > B3. As we know 34 > [ and
B1 > Bs, this, together with the sub-case assumption, implies D > 0. O



B DETAILS ON IMPLEMENTATION AND REPRODUCIBILITY

In Sectionwe stated that the implementation of the constraint matrix has worst-case complexity O(s*). This worst case
occurs when everything in R} and R is comparable and then

s-(s—=1)+(s-(s=1)-((s-(s—1)) —=1) = s* — 253 + 5°
many pairwise comparisons have to be considered. Note that we omit the reflexive part of the pre-orders R} and Rj.

We are interested in the non-regularized test statistic as well as the regularized test statistic with ¢ € {0.25,0.5,0.75,1},
see Section[8] For all these cases, we compute the test statistics based on the sample, as well as 1000 times on a permuted
version of that sample. Note that the linear programs for computing the test statistics based on the permuted data are identical
to that for the non-permuted data except for the objective function, see Section In Section C (in the supplementary
material), we prove that the robustified test statistics are a shift of the non-robustified test statistic. Thus, the robustified test
statistics are immediately given.

The simulation is based on a random sample of the data set. Two of the data sets and the corresponding R-code can be found
here:

https://github.com/hannahblo/Robust_GSD_Tests

The data set used for the poverty analysis (ALLBUS) is freely accessible, but registration in the corresponding online portal
is needed[T]

For the computation of the linear programs, we used the R interface of Gurobi optimizer, which is documented in| Gurobi
Optimization, LLC|[2020]. This is a commercial solver that offers free academic licenseﬂ In particular, the computation of
linear programs is faster than using the free and open source solvers known to us, see Meindl and Templ|[2012]]. We also used
the R-packages purrr, dplyr, slam, readr, tidyr, forcast, ggplot2, reshape2, tidyverse, ggridges, latex2exp, RColorBrewer,
rcartocolor and foreign for our implementation, see Mailund [2022], [Yarberry and Yarberry| [[2021], Wickham et al.|[2022],
Hornik et al.|[2022],|Wickham et al.|[2023]],[Hyndman et al.|[2023]], Wickham and Chang|[2014]], Wickham|[2022], Wickham
and RStudio| [2022], Wilke|[2022], Meschiari| [2022], Neuwirth| [2022]], Nowosad| [2022], R Core Team et al.| [2022].

The computation was done for

* ALLBUS data set, see GESIS|[2018]], on a commodity desktop laptop with a 8-core Intel(R) Core(TM) i7-8665U CPU
@ 1.90GHz processor and 16 GB RAM in R version 4.2.2.

* dermatology data set, see [Demiroz et al.|[1998] accessed via|Dua and Graff][2017]], on a commodity desktop computer
with a 32-core Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz processor and 64 GB RAM in R version 4.2.1

* German credit data set, see [Dua and Graff|[2017]], on a commodity desktop laptop with a 8-core Intel(R) Core(TM)
i7-10510U CPU @ 1.80GHz processor and 16 GB RAM in R version 4.2.2.

C CALCULATIONS FOR ROBUSTIFIED TEST STATISTICS

In Section [§] we show a graph visualizing the fraction of resamples in favor of nen-rejection of Hy (i.e., the p-values) as a
function of the size of the contamination + of the underlying linear-vacuous model (see Figure[3). We will briefly show here
how the exact function is calculated. For general (polyhedral) credal sets, a resample [ is in favor of rejection of Hy under
the robustified resampling scheme, if d% y(wo) > d; - Hence, the fraction of resamples in favor of rejection of Hy is given
by

1
N’ I;N i ywosa)

where N denotes the number of resamples and Zy is the corresponding set of resamples. In the special case that the credal
sets involved are y-contamination models, we can use Proposition[6] (and a slight variation of it with 7, and 7* in reversed

"Further information on the survey and the data set itself can be found here: https://search.gesis.org/research_
data/ZA5240 (accessed: Febr 16, 2023)
“Further details can be found here: https://www.gurobi.com/academia/academic-program—and—-licenses/ (ac-

cessed: Febr 16, 2023)


https://github.com/hannahblo/Robust_GSD_Tests
https://search.gesis.org/research_data/ZA5240
https://search.gesis.org/research_data/ZA5240
https://www.gurobi.com/academia/academic-program-and-licenses/

roles) to obtain
d;(,Y(WO) =(1-7) 'dg(,Y(WO) -7
and
dy=(1-7)-di+~
and, therefore, the condition in the indicator above is satisfied if and only if
2y

€ _JE

Finally, if we interpret ¢ as a function parameter, then we can write the fraction of resamples in favor of non-rejection of H
(i.e., the observed p-values) as a function of the size ~ of the contamination of the underlying linear-vacuous model:

1
=1-—" 1 :
f<(7) N IEZI:N {d;yy(wo)fd§>(12_7ﬂf.y)}

D FURTHER DETAILS ON THE APPLICATIONS
D.1 DATA SETS

We applied our analysis to three different data sets:

* For the poverty analysis, see Section [8] we used the ALLBUS data set. The data set is described by [GESIS| [2018]] and
Breyer and Danner; [2015]]. As mentioned already in the previous section, the data set is freely accessible, but only after
registration in the corresponding online portal: https://search.gesis.org/research_data/ZA5240
(accessed: 08.02.2023). Please download the file ZA5240_v2-2-0.sav (5.31MB) there.

The analysis was done on a sample consisting of 100 female and 100 male observations.

* We analyzed the dermatology data set, see Demiroz et al.|[[1998]] accessed via|Dua and Graft][2017]].

The analysis was performed on a sample of 46 individuals with family history of eryhemato-squamous disease and 100
individuals without.

¢ We analyzed the German credit data set, see Dua and Graff] [2017].

The analysis was performed on a sample of 100 credit risks classified as good and 100 credit risks classified as poor
individuals.

D.2 APPLICATION ON CREDIT DATA

We focus on three variables (features) in the German credit data setDua and Graff] [2017]): credit amount (numeric), credit
history (ordinal, 5 levels ranging from “delay in paying off in the past” to “all credits paid back duly”) and employment
status (ordinal, 5 levels ranging from “unemployed” to “present employment longer than 7 years”). We use a subsample with
n = m = 100 high-risk applicants and low-risk applicants each. We are interested in the hypothesis that high-risk applicants
are dominated by low-risk applicants w.r.t. GSD. The test results (see Figures|I]and 2]in the supplementary material) can be
interpreted analogously to Section For ¢ € {0.75, 1} we reject for the common significance level of « 2 0.05. This time,
we do not reject in case of € = 0.5.

Similar to the example of poverty analysis in Section [§] rejecting Hyy does not necessarily mean that high-risk applicants are
dominated by low-risk applicants. They could also be incomparable, see also Section[5] However, our tests with reversed
variables give no evidence of incomparability: The observed p-values for all these reversed tests are all 1.


https://search.gesis.org/research_data/ZA5240
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Figure 1: Distributions of d5 with ¢ € {0,0.25,0.5,0.75,1} obtained from N = 1000 resamples of Credit data. Black

stripes show exact positions of d7 values. Vertical black line marks median. Red line shows value of the respective observed
test statistics d y (w).
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Figure 2: P-values as function of the contamination v (see Supp. C) for tests with different regularization strength ¢
performed nd on credit data set. Dotted red line marks significance level o = 0.05.



D.3 APPLICATION ON DERMATOLOGICAL DATA

We focus on three variables (features) in the dermatology data set[Demiroz et al|[1998]],[Dua and Graff| [2017]]: age of skin
(numeric), the intensity of itching (ordinal, 4 levels ranging from “no itching” to “strong itching”) and erythema (redness of
skin) (ordinal, 4 levels again ranging from no to highest intensity). We use a subsample with n = 46 patients with a family
history of eryhemato-squamous disease and m = 100 without. We are interested in the hypothesis that patients without
a family history of the disease are dominated by patients without a family history with respect to GSD. The test results
(see Figures [3[and E| in the supplementary material) can be interpreted analogously to Section [8} For ¢ € {0.75,1} we
again reject for the common significance level of a = 0.05. However, the p-values are much higher than in the other two
applications, see also Figure[d] (in the supplementary material).

Similar to the example of poverty analysis in Section[8] rejecting Hyy does not necessarily mean that patients with a family
history of eryhemato-squamous disease are dominated by patients without. They could also be incomparable; see also

Section[5] However, our tests with reversed variables give no evidence of incomparability: The observed p-values for all
these reversed tests are all 1.

Distribution of Test Statistics
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Figure 3: Distributions of d5 with ¢ € {0,0.25,0.5,0.75, 1} obtained from N = 1000 resamples of dermatology data. Black

stripes show exact positions of d7 values. Vertical black line marks median. Red line shows value of the respective observed
test statistics d v (w).
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Figure 4: P-values as function of the contamination v (see Supp. C) for tests with different regularization strength ¢
performed on Dermatology data set. The dotted red line marks significance level o = 0.05.
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