
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] We

believe that this work, which addresses a PU learning problem, does not present
a significant societal concern. While this could potentially guide practitioners to
improve classification and mixture proportion estimation in applications where negative
unlabeled data is not available but unlabeled data is abundant, we do not believe that it
will fundamentally impact how machine learning is used in a way that could conceivably
be socially salient.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Sec. 4.
(b) Did you include complete proofs of all theoretical results? [Yes] See App. B.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [Yes]
https://github.com/acmi-lab/PU_learning

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All plots in the paper are reported with error bars. See
tables in App. G.6 for aggregate numbers.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

https://github.com/acmi-lab/PU_learning

A Appendix

B Proofs from Sec. 4

Proof of Lemma 1. The proof primarily involves using DKW inequality [15] on pqupcq and pqppcq to
show convergence to their respective means qupcq and qppcq. First, we have∣∣∣∣ pqupcq

pqppcq
´
qupcq

qppcq

∣∣∣∣ “ 1

pqupcq ¨ qupcq
|pqupcq ¨ qppcq ´ qppcq ¨ qupcq ` qppcq ¨ qupcq ´ pqppcq ¨ qupcq|

ď
1

pqppcq
|pqupcq ´ qupcq|`

qupcq

pqppcq ¨ qupcq
|pqppcq ´ qppcq| . (1)

Using DKW inequality, we have with probability 1´δ: |pqppcq ´ qppcq| ď
b

logp2{δq
2np

for all c P r0, 1s.

Similarly, we have with probability 1´ δ: |pqupcq ´ qupcq| ď
b

logp2{δq
2nu

for all c P r0, 1s. Plugging
this in (1), we have∣∣∣∣ pqupcq

pqppcq
´
qupcq

qppcq

∣∣∣∣ ď 1

pqppcq

˜

d

logp4{δq

2nu
`
qupcq

qppcq

d

logp4{δq

2np

¸

.

Proof of Theorem 1. The main idea of the proof is to use the confidence bound derived in Lemma 1 at
pc and use the fact that pc minimizes the upper confidence bound. The proof is split into two parts. First,
we derive a lower bound on pqpppcq and next, we use the obtained lower bound to derive confidence
bound on pα. All the statements in the proof simultaneously hold with probability 1´ δ. Recall,

pc :“ argmin
cPr0,1s

pqupcq

pqppcq
`

1

pqppcq

˜

d

logp4{δq

2nu
` p1` γq

d

logp4{δq

2np

¸

and (2)

pα :“
pquppcq

pqpppcq
. (3)

Moreover,

c˚ :“ argmin
cPr0,1s

qupcq

qppcq
and α˚ :“

qupc
˚q

qppc˚q
. (4)

Part 1: We establish lower bound on pqpppcq. Consider c1 P r0, 1s such that pqppc1q “ γ
2`γ pqppc

˚q. We
will now show that Algorithm 1 will select pc ă c1. For any c P r0, 1s, we have with with probability
1´ δ,

pqppcq ´

d

logp4{δq

2np
ď qppcq and qupcq ´

d

logp4{δq

2nu
ď pqupcq . (5)

Since qupc
˚
q

qppc˚q
ď

qupcq
qppcq

, we have

pqupcq ě qppcq
qupc

˚q

qppc˚q
´

d

logp4{δq

2nu
ě

˜

pqppcq ´

d

logp4{δq

2np

¸

qupc
˚q

qppc˚q
´

d

logp4{δq

2nu
. (6)

Therefore, at c we have

pqupcq

pqppcq
ě α˚ ´

1

pqppcq

˜

d

logp4{δq

2nu
`
qupc

˚q

qppc˚q

d

logp4{δq

2np

¸

. (7)

15

Using Lemma 1 at c˚, we have

pqupcq

pqppcq
ě

pqupc
˚q

pqppc˚q
´

ˆ

1

pqppc˚q
`

1

pqppcq

˙

˜

d

logp4{δq

2nu
`
qupc

˚q

qppc˚q

d

logp4{δq

2np

¸

(8)

ě
pqupc

˚q

pqppc˚q
´

ˆ

1

pqppc˚q
`

1

pqppcq

˙

˜

d

logp4{δq

2nu
`

d

logp4{δq

2np

¸

, (9)

where the last inequality follows from the fact that α˚ “ qupc
˚
q

qppc˚q
ď 1. Furthermore, the upper

confidence bound at c is lower bound as follows:

pqupcq

pqppcq
`
1` γ

pqppcq

˜

d

logp4{δq

2nu
`

d

logp4{δq

2np

¸

(10)

ě
pqupc

˚q

pqppc˚q
`

ˆ

1` γ

pqppcq
´

1

pqppc˚q
´

1

pqppcq

˙

˜

d

logp4{δq

2nu
`

d

logp4{δq

2np

¸

(11)

“
pqupc

˚q

pqppc˚q
`

ˆ

γ

pqppcq
´

1

pqppc˚q

˙

˜

d

logp4{δq

2nu
`

d

logp4{δq

2np

¸

(12)

Using (12) at c “ c1, we have the following lower bound on ucb at c1:

pqupc
1q

pqppc1q
`
1` γ

pqppc1q

˜

d

logp4{δq

2nu
`

d

logp4{δq

2np

¸

(13)

ě
pqupc

˚q

pqppc˚q
`

1` γ

pqppc˚q

˜

d

logp4{δq

2nu
`

d

logp4{δq

2np

¸

, (14)

Moreover from (12), we also have that the lower bound on ucb at c ě c1 is strictly greater than the
lower bound on ucb at c1. Using definition of pc, we have

pqupc
˚q

pqppc˚q
`

1` γ

pqppc˚q

˜

d

logp4{δq

2nu
`

d

logp4{δq

2np

¸

(15)

ě
pquppcq

pqpppcq
`

1` γ

pqpppcq

˜

d

logp4{δq

2nu
`

d

logp4{δq

2np

¸

, (16)

and hence
pc ď c1 . (17)

Part 2: We now establish an upper and lower bound on pα. We start with upper confidence bound on
pα. By definition of pc, we have

pquppcq

pqpppcq
`

1` γ

pqpppcq

˜

d

logp4{δq

2nu
`

d

logp4{δq

2np

¸

(18)

ď min
cPr0,1s

«

pqupcq

pqppcq
`

1` γ

pqppcq

˜

d

logp4{δq

2nu
`

d

logp4{δq

2np

¸ff

(19)

ď
pqupc

˚q

pqppc˚q
`

1` γ

pqppc˚q

˜

d

logp4{δq

2nu
`

d

logp4{δq

2np

¸

. (20)

Using Lemma 1 at c˚, we get

pqupc
˚q

pqppc˚q
ď
qupc

˚q

qppc˚q
`

1

pqppc˚q

˜

d

logp4{δq

2nu
`
qupc

˚q

qppc˚q

d

logp4{δq

2np

¸

“ α˚ `
1

pqppc˚q

˜

d

logp4{δq

2nu
` α˚

d

logp4{δq

2np

¸

. (21)

16

Combining (20) and (21), we get

pα “
pquppcq

pqpppcq
ď α˚ `

2` γ

pqppc˚q

˜

d

logp4{δq

2nu
`

d

logp4{δq

2np

¸

. (22)

Using DKW inequality on pqppc
˚q, we have pqppc

˚q ě qppc
˚q ´

b

logp4{δq
2np

. Assuming np ě
2 logp4{δq
q2ppc

˚q
,

we get pqppc˚q ď qppc
˚q{2 and hence,

pα ď α˚ `
4` 2γ

qppc˚q

˜

d

logp4{δq

2nu
`

d

logp4{δq

2np

¸

. (23)

Finally, we now derive a lower bound on pα. From Lemma 1, we have the following inequality at pc

quppcq

qpppcq
ď

pquppcq

pqpppcq
`

1

pqpppcq

˜

d

logp4{δq

2nu
`
quppcq

qpppcq

d

logp4{δq

2np

¸

. (24)

Since α˚ ď quppcq
qpppcq

, we have

α˚ ď
quppcq

qpppcq
ď

pquppcq

pqpppcq
`

1

pqpppcq

˜

d

logp4{δq

2nu
`
quppcq

qpppcq

d

logp4{δq

2np

¸

. (25)

Using (23), we obtain a very loose upper bound on pquppcq
pqpppcq

. Assuming minpnp, nuq ě
2 logp4{δq
q2ppc

˚q
, we

have pquppcq
pqpppcq

ď α˚ ` 4` 2γ ď 5` 2γ. Using this in (25), we have

α˚ ď
pquppcq

pqpppcq
`

1

pqpppcq

˜

d

logp4{δq

2nu
` p5` 2γq

d

logp4{δq

2np

¸

. (26)

Moreover, as pc ě c1, we have pqpppcq ě
γ

2`γ pqppc
˚q and hence,

α˚ ´
γ ` 2

γpqppc˚q

˜

d

logp4{δq

2nu
` p5` 2γq

d

logp4{δq

2np

¸

ď
pquppcq

pqpppcq
“ pα . (27)

As we assume np ě
2 logp4{δq
q2ppc

˚q
, we have pqppc˚q ď qppc

˚q{2, which implies the following lower bound
on α:

α˚ ´
2γ ` 4

γqppc˚q

˜

d

logp4{δq

2nu
` p5` 2γq

d

logp4{δq

2np

¸

ď pα . (28)

Proof of Corollary 1. Note that since α ď α˚, the lower bound remains the same as in Theorem 1.
For upper bound, plugging in qupcq “ αqppcq`p1´αqqnpcq, we have α˚ “ α`p1´αqqnpc

˚q{qppc
˚q

and hence, the required upper bound.

B.1 Note on γ in Algorithm 1

We multiply the upper bound in Lemma 1 to establish lower bound on pqpppcq. Otherwise, in an
extreme case, with γ “ 0, Algorithm 1 can select pc with arbitrarily low pqpppcq (! qppc

˚q) and hence
poor concentration guarantee to the true mixture proportion. However, with a small positive γ, we
can obtain lower bound on pqpppcq and hence tight guarantees on the ratio estimate (pquppcq{pqpppcq) in
Theorem 1.

In our experiments, we choose γ “ 0.01. However, we didn’t observe any (significant) differences
in mixture proportion estimation even with γ “ 0. implying that we never observe pqpppcq taking
arbitrarily small values in our experiments.

17

Dataset Model (TED)n BBE˚ DEDPUL˚ Scott˚

Binarized CIFAR ResNet 0.018 0.072 0.075 0.091

CIFAR Dog
vs Cat

ResNet 0.074 0.120 0.113 0.158

Binarized MNIST MLP 0.021 0.028 0.027 0.063

MNIST17 MLP 0.003 0.008 0.006 0.037

Table 3: Absolute estimation error when α is 0.5. "*" denote oracle early stopping as defined in Sec. 6.
As mentioned in Scott [39] implementation in https://web.eecs.umich.edu/~cscott/code/mpe_v2.zip,
we use the binomial inversion at δ instead of δ{n (rescaling using the union bound). Since we are
using Binomial inversion at n discrete points simultaneously, we should use the union-bound penalty.
However, using union bound penalty substantially increases the bias in their estimator.

C Comparison of BBE with Scott [39]

Heuristic estimator due to Scott [39] is motivated by the estimator in Blanchard et al. [6]. The
estimator in Blanchard et al. [6] relies on VC bounds, which are known to be loose in typical
deep learning situations. Therefore, Scott [39] proposed an heuristic implementation based on the
minimum slope of any point in the ROC space to the point p1, 1q. To obtain ROC estimates, authors
use direct binomial tail inversion (instead of VC bounds as in Blanchard et al. [6]) to obtain tight
upper bounds for true positives and lower bounds for true negatives. Finally, using these conservatives
estimates the estimator in Scott [39] is obtained as the minimum slope of any of the operating points
to the point p1, 1q.

While the estimate of one minus true positives at a threshold t is similar in spirit to our number of
unlabeled examples in the top bin and the estimate of one minus true negatives at a threshold t is
similar in spirit to our number of positive examples in the unlabeled data, the functional form of these
estimates are very different. Scott [39] estimator is the ratio of quantities obtained by binomial tail
inversion (i.e. upper bound in the numerator and lower bound in the denominator). By contrast, the
final BBE estimate is simply the ratio of empirical CDFs at the optimal threshold. Mathematically,
we have

pαScott “
pqupcScottq ` binvpnu, pqupcScottq, δ{nuq

pqppcScottq ´ binvpnp, pqppcScottq, δ{npq
and (29)

pαBBE “
pqupcBBEq

pqppcBBEq
, (30)

where cScott “ argmincPr0,1s
pqupcq`binvpnu,pqupcq,δ{nuq

pqppcq´binvpnp,pqppcq,δ{npq
and binvpnp, qppcq, δ{npq is the tightest pos-

sible deviation bound for a binomial random variable [39] and and cBBE is given by Algorithm 1.
Moreover, Scott [39] provide no theoretical guarantees for their heuristic estimator pαScott. On the
hand, we provide guarantees that our estimator pαBBE will converge to the best estimate achievable over
all choices of the bin size and provide consistent estimates whenever a pure top bin exists. Supporting
theoretical results of BBE, we observe that these choices in BBE create substantial differences in the
empirical performance as observed in Table 3. We repeat experiment for MPE from Sec. 6 where we
compare other methods with the Scott [39] estimator as defined in (29).

As a side note, a naive implementation of pαScott instead of (29) where we directly minimize the
empirical ratio yields poor estimates due to noise introduced with finite samples. In our experiments,
we observed that pαScott improves a lot over this naive estimator.

D Toy setup

Jain et al. [21] and Ivanov [20] discuss Bayes optimality of the PvU classifier (or its one-to-one
mapping) as a sufficient condition to preserve α in transformed space. However, in a simple toy setup
(in App. D), we show that even when the hypothesis class is well specified for PvN learning, it will
not in general contain the Bayes optimal scoring function for PvU data and thus PvU training will not
recover the Bayes-optimal scoring function, even in population.

18

https://web.eecs.umich.edu/~cscott/code/mpe_v2.zip

(a)

Figure 4: Blue points show samples from the positive distribution and orange points show samples
from the negative distribution. Unalabeled data is obtained by mixing positive and negative distribu-
tion with equal proportion. BCE (or Brier) loss minimization on P vs U data leads to a classifiers that
is not consistent with the ranking of the Bayes optimal score function.

Consider a scenario with X “ R2. Assume points from the positive class are sampled uni-
formly from the interior of the triangle defined by coordinates tp´1, 0.1q, p0, 4q, p1, 0.1qu and
negative points are sampled uniformly from the interior of triangle defined by coordinates
tp´1,´0.1q, p4,´4q, p1,´0.1qu. Ref. to Fig. 4 for a pictorial representation. Let mixture pro-
portion be 0.5 for the unlabeled data. Given access to distribution of positive data and unlabeled data,
we seek to train a linear classifier to minimize logistic or Brier loss for PvU training.

Since we need a monotonic transformation of the Bayes optimal scoring function, we want to recover
a predictor parallel to x-axis, the Bayes optimal classifier for PvN training. However, minimizing
the logistic loss (or Brier loss) using numerical methods, we obtain a predictor that is inclined at a
non-zero acute angle to the x-axis. Thus, the PvU classifier obtained fails to satisfy the sufficient
condition from Jain et al. [21] and Ivanov [20]. On the other hand, note that the linear classifier
obtained by PvU training satisfies the pure positive bin property.

Now we show that under the subdomain assumption [39, 35], any monotonic transformation of
Bayes optimal scoring function induces positive pure bin property. First, we define the subdomain
assumption.

Assumption 1 (Subdomain assumption). A family of subsets S Ď 2X , and distributions pp, pn are
said to satisfy the anchor set condition with margin γ ą 0, if there exists a compact set A P S such
that A Ď supppppq{suppppnq and pppAq ě γ.

Note that any monotonic mapping of the Bayes optimal scoring function can be represented by
τ 1 “ g ˝ τ , where g is a monotonic function and

τpxq “

"

pppxq{pupxq if pppxq ą 0

0 o.w .
(31)

For any point x P A and x1 P X {A, we have τpxq ą τpx1q which implies τ 1pxq ą τ 1px1q. Thus, any
monotonic mapping of Bayes optimal scoring function yields the positive pure bin property with
εp ě γ.

E Analysis of CVIR

First we analyse our loss function in the scenario when the support of positives and negatives is sepa-
rable. We assume that the true alpha α is known and we have access to populations of positive and un-
labeled data. We also assume that their exists a separator f˚ : X ÞÑ t0, 1u that can perfectly separate
the positive and negative distribution, i.e.,

ş

dxpppxqI rf˚pxq ‰ 1s `
ş

dxpnpxqI rf˚pxq ‰ 0s “ 0.
Our learning objective can be written as jointly optimizing a classifier f and a weighting function w

19

on the unlabeled distribution:

min
fPF,w

ż

dxpppxqlpfpxq, 1q `
1

1´ α

ż

dxpupxqwpxqlpfpxq, 0q ,

s.t. w : X ÞÑ r0, 1s ,

ż

dxpupxqwpxq “ 1´ α . (32)

The following proposition shows that minimizing the objective (32) on separable positive and negative
distributions gives a perfect classifier.
Proposition 1. For α P p0, 1q, if there exists a classifier f˚ P F that can perfectly separate the
positive and negative distributions, optimizing objective (32) with 0-1 loss leads to a classifier f that
achieves 0 classification error on the unlabeled distribution.

Proof. First we observe that having wpxq “ 1´ f˚pxq leads to the objective value being minimized
to 0 as well as a perfect classifier f . This is because

1

1´ α

ż

dxpupxqp1´ f
˚pxqqlpfpxq, 0q “

ż

dxpnpxqlpfpxq, 0q

thus the objective becomes classifying positive v.s. negative, which leads to a perfect classifier if
F contains one. Now we show that for any f such that the classification error is non-zero then the
objective (32) must be greater than zero no matter what w is. Suppose f satisfies

ż

dxpppxqlpfpxq, 1q `

ż

dxpnpxqlpfpxq, 0q ą 0 .

We know that either
ş

dxpppxqlpfpxq, 1q ą 0 or
ş

dxpnpxqlpfpxq, 0q ą 0 will hold. If
ş

dxpppxqlpfpxq, 1q ą 0 we know that (32) must be positive. If
ş

dxpppxqlpfpxq, 1q “ 0 and
ş

dxpnpxqlpfpxq, 0q ą 0 we have lpfpxq, 0q “ 1 almost everywhere in pppxq thus

1

1´ α

ż

dxpupxqwpxqlpfpxq, 0q

“
α

1´ α

ż

dxpppxqwpxqlpfpxq, 0q `

ż

dxpnpxqwpxqlpfpxq, 0q

“
α

1´ α

ż

dxpppxqwpxq `

ż

dxpnpxqwpxqlpfpxq, 0q .

If
ş

dxpppxqwpxq ą 0 we know that (32) must be positive. If
ş

dxpppxqwpxq “ 0, since we know
that

ż

dxpupxqwpxq “ α

ż

dxpppxqwpxq ` p1´ αq

ż

dxpnpxqwpxq “ 1´ α

we have
ş

dxpnpxqwpxq “ 1 which means wpxq “ 1 almost everywhere in pnpxq. This leads to
the fact that

ş

dxpnpxqlpfpxq, 0q ą 0 indicates
ş

dxpnpxqwpxqlpfpxq, 0q ą 0, which concludes the
proof.

The intuition is that, any classifier that discards an rα ą 0 proportion of negative distribution from
unlabeled will have loss strictly greater than zero with our CVIR objective. Since only a perfect linear
separator (with weightsÑ8) can achieves lossÑ 0, CVIR objective will (correctly) discard the α
proportion of positive from unlabeled data achieving a classifier that perfectly separates the data.

We leave theoretic investigation on non-separable distributions for future work. However, as an
initial step towards a general theory, we show that in the population case one step of our alternating
procedure cannot increase the loss.

Consider the following objective function

Lpft, wtq “ Ex„Pprlpftpxq, 0qs ` Ex„Purwtpxqlpftpxq, 1qs (33)

such that Ex„Pu
rwpxqs “ 1´ α and wpxq P t0, 1u

20

Given ft and wt, CVIR can be summarized as the following two step iterative procedure: (i) Fix
ft, optimize the loss to obtain wt`1; and (ii) Fix wt`1 and optimize the loss to obtain ft`1. By
construction of CVIR, we select wt`1 such that we discard points with highest loss, and hence
Lpft, wt`1q ď Lpft, wtq. Fixing wt`1, we minimize the Lpft, wt`1q to obtain ft`1 and hence
Lpft`1, wt`1q ď Lpft, wt`1q. Combining these two steps, we get Lpft`1, wt`1q ď Lpft, wtq.

F Experimental Details

Below we present dataset details. We present experiments with MNIST Overlap in App. G.8.

Dataset Simulated PU Dataset P vs N #Positives #Unlabeled
Train Val Train Val

CIFAR10
Binarized CIFAR [0-4] vs [5-9] 12500 12500 2500 2500

CIFAR Dog vs Cat 3 vs 5 2500 2500 500 500

MNIST
Binarized MNIST [0-4] vs [5-9] 15000 15000 2500 2500

MNIST 17 1 vs 7 3000 3000 500 500
MNIST Overlap [0-7] vs [3-9] 150000 15000 2500 2500

IMDb IMDb pos vs neg 6250 6250 5000 5000

For CIFAR dataset, we also use the standard data augementation of random crop and horizontal flip.
PyTorch code is as follows:

(transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip())

F.1 Architecture and Implementation Details

All experiments were run on NVIDIA GeForce RTX 2080 Ti GPUs. We used PyTorch [33] and Keras
with Tensorflow [1] backend for experiments.

For CIFAR10, we experiment with convolutional nets and MLP. For MNIST, we train MLP. In
particular, we use ResNet18 [19] and all convolution net [40] . Implementation adapted from: https:
//github.com/kuangliu/pytorch-cifar.git. We consider a 4-layered MLP. The PyTorch
code for 4-layer MLP is as follows:

nn.Sequential(nn.Flatten(),
nn.Linear(input_dim, 5000, bias=True),
nn.ReLU(),
nn.Linear(5000, 5000, bias=True),
nn.ReLU(),
nn.Linear(5000, 50, bias=True),
nn.ReLU(),
nn.Linear(50, 2, bias=True)
)

For all architectures above, we use Xaviers initialization [18]. For all methods except nnPU and uPU,
we do cross entropy loss minimization with SGD optimizer with momentum 0.9. For convolution
architectures we use a learning rate of 0.1 and MLP architectures we use a learning rate of 0.05.
For nnPU and uPU, we minimize sigmoid loss with ADAM optimizer with learning rate 0.0001 as
advised in its original paper. For all methods, we fix the weight decay param at 0.0005.

For IMDb dataset, we fine-tune an off-the-shelf uncased BERT model [10]. Code adapted from
Hugging Face Transformers [42]: https://huggingface.co/transformers/v3.1.0/custom_
datasets.html. For all methods except nnPU and uPU, we do cross entropy loss minimization

21

https://github.com/kuangliu/pytorch-cifar.git
https://github.com/kuangliu/pytorch-cifar.git
https://huggingface.co/transformers/v3.1.0/custom_datasets.html
https://huggingface.co/transformers/v3.1.0/custom_datasets.html

with Adam optimizer with learning rate 0.00005 (default params). With the same hyperparameters
and Sigmoid loss, we could not train BERT with nnPU and uPU due to vanishing gradients. Instead
we use learning rate 0.00001.

F.2 Division between training set and hold-out set

Since the training set is used to learn the classifier (parameters of a deep neural network) and the
hold-out set is just used to learn the mixture proportion estimate (scalar), we use a larger dataset for
training. Throughout the experiments, we use an 80-20 split of the original set.

At a high level, we have an error bound on the mixture proportion estimate and we can use that to
decide the split in general. As long as we use enough samples to make the Op1{

?
nq small in our

bound in Theorem 1, we can use the rest of the samples to learn the classifier.

G Additional Experiments

G.1 nnPU vs PN classification

In this section, we compare the performance of nnPU and PvN training on the same positive and
negative (from the unlabeled) data at α “ 0.5. We highlight the huge classification performance gap
between nnPU and PvN training and show that training with CVuO objective partially recovers the
performance gap. Note, to train PvN classifier, we use the same hyperparameters as that with PvU
training.

Dataset Model nnPU
(known α) PvN CVuO

(known α)
(TED)n

(unknown α)

Binarized
CIFAR

ResNet 76.8 86.9 82.6 82.7

All Conv 72.1 76.7 77.1 76.8

MLP 63.9 65.1 65.9 63.2

CIFAR Dog
vs Cat

ResNet 72.6 80.4 74.0 76.1

All Conv 68.4 77.9 71.0 72.2

Binarized
MNIST

MLP 95.9 96.7 96.4 95.9

MNIST17 MLP 98.2 99.0 98.6 98.6

IMDb BERT 86.2 89.1 87.4 88.1

Table 4: Accuracy for PvN classification with nnPU, PvN, CVuO objective and (TED)n training.
Results reported by aggregating aggregating over 10 epochs.

G.2 Under-Fitting due to pessimistic early stopping

Ivanov [20] explored the following heuristics for ad-hoc early stopping criteria: training proceeds
until the loss on unseen PU data ceases to decrease. In particular, the authors suggested early
stopping criterion based on the loss on unseen PU data doesn’t decrease in epochs separated by a
pre-defined window of length l. The early stopping is done when this happens consecutively for
l epochs. However, this approach leads to severe under-fitting. When we fix l “ 5, we observe a
significant performance drop in CIFAR classification and MPE.

With PvU training, the performance of ResNet model on Binarized CIFAR (in Table 2) drops from
78.3 (orcale stopping) to 60.4 (with early stopping). Similar on CIFAR CAT vs Dog, the performance
of the same architecture drops from 71.6 (orcale stopping) to 58.4 (with early stopping). Note that
the decrease in accuracy is less or not significant for MNIST. With PvU training, the performance of
MLP model on Binarized MNIST (in Table 2) drops from 94.5 (orcale stopping) to 94.1 (with early
stopping). This is because we obtain good performance on MNIST early in training.

22

G.3 Results parallel to Fig. 3

Epoch wise results for all models for Binarized CIFAR, CIFAR Dog vs Cat, Binarized MNIST,
MNIST 17 and IMDb.

0 500 1000 1500 2000
Epochs

50
55
60
65
70
75
80
85

Ac
cu

ra
cy

(TED)n

Dedpul
nnPU (*)
uPU (*)
PvU

0 500 1000 1500 2000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

M
ix

tu
re

 P
ro

po
rti

on

(TED)n

DEDPUL
EN
Alphamax (*)
True MPE

Figure 5: Epoch wise results with ResNet-18 network trained on CIFAR-binarized.

0 500 1000 1500 2000
Epochs

50

55

60

65

70

75

80

Ac
cu

ra
cy

(TED)n

Dedpul
nnPU (*)
uPU (*)
PvU

0 500 1000 1500 2000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

M
ix

tu
re

 P
ro

po
rti

on

(TED)n

DEDPUL
EN
Alphamax (*)
True MPE

Figure 6: Epoch wise results with All convolutional network trained on CIFAR-binarized.

0 250 500 750 1000
Epochs

50
52
54
56
58
60
62
64
66

Ac
cu

ra
cy

(TED)n

Dedpul
nnPU (*)
uPU (*)
PvU

0 250 500 750 1000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

M
ix

tu
re

 P
ro

po
rti

on

(TED)n

DEDPUL
EN
True MPE

Figure 7: Epoch wise results with FCN trained on CIFAR-binarized.

23

0 500 1000 1500 2000
Epochs

50

55

60

65

70

75

Ac
cu

ra
cy

(TED)n

Dedpul
nnPU (*)
uPU (*)
PvU

0 500 1000 1500 2000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

M
ix

tu
re

 P
ro

po
rti

on

(TED)n

DEDPUL
EN
True MPE

Figure 8: Epoch wise results with ResNet-18 trained on CIFAR Dog vs Cat.

0 500 1000 1500 2000
Epochs

50

55

60

65

70

75

Ac
cu

ra
cy

(TED)n

Dedpul
nnPU (*)
uPU (*)
PvU

0 500 1000 1500 2000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

M
ix

tu
re

 P
ro

po
rti

on
(TED)n

DEDPUL
EN
True MPE

Figure 9: Epoch wise results with All convolutional network trained on CIFAR Dog vs Cat.

0 500 1000 1500 2000
Epochs

84
86
88
90
92
94
96

Ac
cu

ra
cy (TED)n

Dedpul
nnPU (*)
uPU (*)
PvU

0 500 1000 1500 2000
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

M
ix

tu
re

 P
ro

po
rti

on

(TED)n

DEDPUL
EN
True MPE

Figure 10: Epoch wise results with MLP trained on Binarized MNIST.

0 100 200 300 400 500
Epochs

84
86
88
90
92
94
96
98

100

Ac
cu

ra
cy

(TED)n

Dedpul
nnPU (*)
uPU (*)
PvU

0 100 200 300 400 500
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

M
ix

tu
re

 P
ro

po
rti

on

(TED)n

DEDPUL
EN
True MPE

Figure 11: Epoch wise results with MLP trained on MNIST 17.

24

Figure 12: Epoch wise results with BERT trained on IMDb.

G.4 Overfitting on unlabeled data as PvU training proceeds

0.0 0.2 0.4 0.6 0.8
Output Prob

0
2
4
6
8

10
12

De
ns

ity

Epoch 5
pos
neg

0.0 0.2 0.4 0.6 0.8
Output Prob

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

De
ns

ity

Epoch 50
pos
neg

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Output Prob

0
1
2
3
4
5

De
ns

ity

Epoch 100
pos
neg

0.0 0.2 0.4 0.6 0.8 1.0
Output Prob

0
2
4
6
8

De
ns

ity

Epoch 200
pos
neg

0.0 0.2 0.4 0.6 0.8 1.0
Output Prob

0
2
4
6
8

De
ns

ity

Epoch 400
pos
neg

0.0 0.2 0.4 0.6 0.8 1.0
Output Prob

0
2
4
6
8

De
ns

ity

Epoch 500
pos
neg

Figure 13: Score assigned by the classifier to positive and negative points in the unlabeled training
set as PvU training proceeds. As training proceeds, classifier memorizes both positive and negative in
unlabeled as negatives.

In Fig. 13, we show the distribution of unlabeled training points. We show that as positive versus
unlabeled training proceeds with a ResNet-18 model on binarized CIFAR dataset, classifier memorizes
all the unlabeled data as negative assigning them very small scores (i.e., the probability of them being
negative).

G.5 Ablations to (TED)n

Varying the number of warm start epochs We now vary the number of warm start epochs with
(TED)n. We observe that increasing the number of warm start epochs doesn’t hurt (TED)n even
when the classifier at the end of the warm start training memorized PU training data due PvU training.
While in many cases (TED)n training without warm start is able to recover the same performance, it
fails to learn anything for CIFAR Dog vs Cat with all convolutional neural network. This highlights
the need for warm start training with (TED)n.

Figure 14: Classification and MPE results with varying warm start epochs W with (TED)n

Varying the true mixture proportion α Next, we vary α, the true mixture proportion and present
results for MPE and classification in Fig. 15. Overall, across all α, our method (TED)n is able to

25

achieve superior performance as compared to alternate algorithms. We omit high α for CIFAR and
IMDb datasets as all the methods result in trivial accuracy and mixture proportion estimate.

Figure 15: MPE and Classification results with varying mixture proportion. For each method we
show results with the best performing architecture.

G.6 Classification and MPE results with error bars

Dataset Model (TED)n BBE˚ DEDPUL˚ EN KM2 TiCE

Binarized
CIFAR

ResNet 0.026 ˘ 0.005 0.091 ˘ 0.027 0.091 ˘ 0.023 0.192 ˘ 0.007

All Conv 0.042 ˘ 0.003 0.037 ˘ 0.018 0.052 ˘ 0.017 0.221 ˘ 0.017 0.168 ˘ 0.207 0.194 ˘ 0.039

MLP 0.225 ˘ 0.013 0.177 ˘ 0.011 0.138 ˘ 0.009 0.372 ˘ 0.002

CIFAR Dog
vs Cat

ResNet 0.078 ˘ 0.010 0.176 ˘ 0.015 0.170 ˘ 0.010 0.226 ˘ 0.003 0.331 ˘ 0.238 0.286 ˘ 0.013

All Conv 0.066 ˘ 0.015 0.128 ˘ 0.020 0.115 ˘ 0.014 0.250 ˘ 0.019

Binarized MNIST MLP 0.024 ˘ 0.001 0.032 ˘ 0.001 0.031 ˘ 0.003 0.080 ˘ 0.009 0.029 ˘ 0.008 0.056 ˘ 0.05

MNIST17 MLP 0.003 ˘ 0.000 0.023 ˘ 0.017 0.021 ˘ 0.011 0.028 ˘ 0.017 0.022 ˘ 0.003 0.043 ˘ 0.023

IMDb BERT 0.008 ˘ 0.001 0.011 ˘ 0.002 0.016 ˘ 0.005 0.07 ˘ 0.01 - -

Table 5: Absolute estimation error when α is 0.5. "*" denote oracle early stopping as defined in
Sec. 6. Results reported by aggregating absolute error over 10 epochs and 3 seeds.

Dataset Model (TED)n

(unknown α)
CVIR

(known α)
PvU˚

(known α)
DEDPUL˚

(unknown α)
nnPU

(known α)
uPU˚

(known α)

Binarized
CIFAR

ResNet 82.7 ˘ 0.13 82.3 ˘ 0.18 76.9 ˘ 1.12 77.1 ˘ 1.52 77.2 ˘ 1.03 76.7 ˘ 0.74

All Conv 77.9 ˘ 0.29 78.1 ˘ 0.47 75.8 ˘ 0.75 77.1 ˘ 0.64 73.4 ˘ 1.31 72.5 ˘ 0.21

MLP 64.2 ˘ 0.37 66.9 ˘ 0.28 61.6 ˘ 0.38 62.6 ˘ 0.30 63.1 ˘ 0.79 64.0 ˘ 0.24

CIFAR Dog
vs Cat

ResNet 75.2 ˘ 1.74 73.3 ˘ 0.94 67.3 ˘ 1.52 67.0 ˘ 1.46 71.8 ˘ 0.33 68.8 ˘ 0.53

All Conv 73.0 ˘ 0.81 71.7 ˘ 0.47 70.5 ˘ 0.60 69.2 ˘ 0.86 67.9 ˘ 0.52 67.5 ˘ 2.28

Binarized
MNIST

MLP 95.6 ˘ 0.42 96.3 ˘ 0.07 94.2 ˘ 0.58 94.8 ˘ 0.10 96.1 ˘ 0.14 95.2 ˘ 0.19

MNIST17 MLP 98.7 ˘ 0.25 98.7 ˘ 0.09 96.9 ˘ 1.51 97.7 ˘ 0.62 98.4 ˘ 0.20 98.4 ˘ 0.09

IMDb BERT 87.6 ˘ 0.20 87.4 ˘ 0.25 86.1 ˘ 0.53 87.3 ˘ 0.18 86.2 ˘ 0.25 85.9 ˘ 0.12

Table 6: Accuracy for PvN classification with PU learning. "*" denote oracle early stopping as
defined in Sec. 6. Results reported by aggregating over 10 epochs and 3 seeds.

26

G.7 Experiments on UCI dataset

In this section, we will present results on 5 UCI datasets.

Dataset #Positives #Unlabeled
Train Val Train Val

concrete 162 162 81 81
mushroom 1304 1304 652 652

landsat 946 946 472 472
pageblock 185 185 92 92
spambase 604 604 302 302

We train a MLP with 2 hidden layers each with 512 units. The PyTorch code for 4-layer MLP is as
follows:

nn.Sequential(nn.Flatten(),
nn.Linear(input_dim, 512, bias=True),
nn.ReLU(),
nn.Linear(512, 512, bias=True),
nn.ReLU(),
nn.Linear(512, 2, bias=True),
)

Similar to vision datasets and architectures, we do cross entropy loss minimization with SGD
optimizer with momentum 0.9 and learning rate 0.1. For nnPU and uPU, we minimize sigmoid loss
with ADAM optimizer with learning rate 0.0001 as advised in its original paper. For all methods, we
fix the weight decay param at 0.0005.

Dataset (TED)n BBE˚ DEDPUL˚ EN˚ KM2 TiCE

concrete 0.071 0.152 0.176 0.239 0.099 0.268

mushroom 0.001 0.015 0.014 0.013 0.038 0.069

landsat 0.022 0.021 0.012 0.080 0.037 0.027

pageblock 0.007 0.066 0.041 0.135 0.008 0.298

spambase 0.006 0.047 0.077 0.127 0.062 0.276

Table 7: Absolute estimation error when α is 0.5. "*" denote oracle early stopping as defined in
Sec. 6. Results reported by aggregating absolute error over 10 epochs.

Dataset (TED)n

(unknown α)
CVuO

(known α)
PvU˚

(known α)
DEDPUL˚

(unknown α)
nnPU

(known α)
uPU˚

(known α)

concrete 86.3 80.1 83.1 83.7 83.2 84.4

mushroom 96.4 96.3 98.7 98.7 97.5 93.9

landsat 93.8 93.1 93.4 92.4 92.9 92.3

pageblock 95.7 95.7 95.1 94.5 93.9 93.9

spambase 89.4 88.1 89.2 86.8 88.5 87.7

Table 8: Accuracy for PvN classification with PU learning. "*" denote oracle early stopping as
defined in Sec. 6. Results reported by aggregating aggregating over 10 epochs.

On 4 out of 5 UCI datasets, our proposed methods are better than the best performing alternatives
(Table 7 and Table 8).

27

G.8 Experiments on MNIST Overlap

Similar to binarized MNIST, we create a new dataset called MNIST Overlap, where the positive class
contains digits from 0 to 7 and the negative class contains digits from 3 to 9. This creates a dataset
with overlap between positive and negative support. Note that while the supports overlap, we sample
images from the overlap classes with replacement, and hence, in absence of duplicates in the dataset,
exact same images don’t appear both in positive and negative subsets.

We train MLP with the same hyperparameters as before. Our findings in Table 9 and Table 10
highlight superior performance of the proposed approaches in the cases of support overlap.

Dataset (TED)n BBE˚ DEDPUL˚ EN˚ KM2 TiCE

MNIST Overlap 0.035 0.100 0.104 0.196 0.099 0.074

Table 9: Absolute estimation error when α is 0.5. "*" denote oracle early stopping as defined in
Sec. 6. Results reported by aggregating absolute error over 10 epochs.

Dataset (TED)n

(unknown α)
CVuO

(known α)
PvU˚

(known α)
DEDPUL˚

(unknown α)
nnPU

(known α)
uPU˚

(known α)

MNIST Overlap 79.0 78.4 77.4 77.5 78.6 78.8

Table 10: Accuracy for PvN classification with PU learning. "*" denote oracle early stopping as
defined in Sec. 6. Results reported by aggregating aggregating over 10 epochs.

28

