Solving Multi-Model MDPs by Coordinate Ascent and Dynamic Programming
(Supplementary Material)

Xihong Su! Marek Petrik!

1Department of Computer Science , University of New Hampshire , Durham, NH, USA

A PROOF OF THEOREM 4.1

Proof of Theorem 4.1. For any time step ¢t € 7, we can express the return as
i T
Amp™, (s 4
p(m) =EmP o~ 7" (5e, @)
t=1
-1 T
_ E)\,ﬂ',pm,u m(z = E)\,ﬂ',pm,u m(z =
= i (8, a¢) | + i (8¢,)
t=1 t=t

T

(a) m = . - .

ZCHENPH R g 7" (8¢, ar) | S5,
t=t

T
b - - m ~ . - - -
2o+ > P [= m, 5; = si] mi(sg,ap) - ENOPUR Y e (3p,a0) | 3 = .8 = agm=m

mEM,s,jGS,a,;G.A t=t

©
=C+ Z bgm(sf) : 7T7§(S£, af) ’ qgr,m(sfa af) .
mGM,S{ES,afeA

Here, we use C' = EX™p™ 1 {Zi;} (3¢, dt)} for brevity. The step (a) follows from the law of total expectation, the step

(b) follows from the definition of conditional expectation, and the step (c) holds from the definitions of b and ¢ in (3), (4),
and (8).

Using the expression above, we can differentiate the return for each s € S and a € A as

Op(r) i« x
871'5(8,(1) - bfym(s) qt:m(s,a),

which uses the fact that C, b7 . and ¢7 are constant with respect to ;. The desired result then holds by substituting ¢ for

t, s for s, and a for a.

O

B PROOF OF THEOREM 5.1

Proof of Theorem 5.1. Assume some iteration n. The proof then follows directly from the contruction of the policy 7" from
7"~ 1. By the construction in Eq. (13), we have that:

n—1 n—1 _n _n n n—1 n—1 _n—-1 _n n
p(my ™ o m T m Ty Tp) > p(m T T Ty - T

Accepted for the 39" Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<xihong.su@unh.edu>?Subject=UAI2023

Figure 1: Left: model m, right: model mo

Note that the optimal form of the policy in Eq. (13) follows immediately from the standard first-order optimality criteria over
a simplex (e.g, Ex. 3.1.2 in [Bertsekas, 2016]) and the fact that the function optimized in Eq. (13) is linear (Corollary 4.2).
In particular, we have that
7 € argmax p(n] "t L fy, L, T
FLERSXA

if and only if foreach s € Sanda € A

8p(7rf_1,...,7rf,...,7r§5) Op(ﬂ?_l,...,ﬂ'f,...,ﬂ'%)

Dmi(s, 7)) = Omi(s, a)

Intuitively, this means that the optimal policy 7 must choose actions that have the maximum gradient for each state. The
optimization in Eq. (13) then follows by algebraic manipulation from Theorem 4.1.

O

C PROOF OF THEOREM 5.3

Proof of Theorem 5.3. Consider the MMDP illustrated in Figure 1.

First, we describe the time steps, states, rewards, and actions for this MMDP. This MMDP has three time steps, four states
S ={1,2,3,4}, two actions A = {1, 2}, and two models M = {1, 2}. The model weight for m; is A, then the model
weight for mg is 1 — A. State 1 is the only initial state. In model m;, the only non-zero reward 2 is received upon reaching
state 2. The agent takes action 1, which leads to a transition to state 2 with a probability of 1. The agent takes action 2,
which leads to a transition to state 3 with probability 1. The agent takes action 1 or 2 in state 2, which leads to a transition to
state 1 with probability 1. The agent takes action 1 or 2 in state 3, which leads to a transition to state 1 with probability 1.
The agent takes action 1 or 2 in state 4, which leads to a transition to state 4 with probability 1.

In model ms, the agent receives rewards 3 upon reaching state 4 and receives rewards 2 upon reaching state 2. The agent
takes action 1, which leads to a transition to state 2 with probability 1. The agent takes action 2, which leads to a transition
to state 4 with probability 1. The agent takes action 1 or 2 in state 2, which leads to a transition to state 1 with probability 1.
The agent takes action 1 or 2 in state 4, which leads to a transition to state 1 with probability 1. The agent takes action 1 or 2
in state 3, which leads to a transition to state 3 with probability 1.

Now, let us analyze the regret of this MMDP. The optimal policy of the above example is a history-dependent policy. That is,
to take action 2 at time step 1. At time step 2, the agent takes action 1 or 2, which leads to a transaction back to state 1. From
time step 3, if the agent is in model m, then take action 1; if the agent is in model m, then take action 2.

Next, let us analyze the regret of a Markov policy for the MMDP. S, represents a state at time step ¢. State 1 has two
options: select action 1 or select action 2. If action 1 is selected, this will give a regret value of 0 in model 1 and a
regret value of 1 in model 2. If action 2 is selected, this will give a regret value of 2 in model 1 and a regret value of
0 in model 2. Therefore, at time step 1, the total regret is 2\ or 1(1 — \). At time step 2, the agent takes action 1 or
2 in state S5(1,3 or 4), which leads to a transition back to state 1, and gets zero rewards and zero regrets. Then repeat
the procedure. At time step 3, the agent can take action 1 or action 2 in state 1 again. For T" = 3, the trajectory of

a Markov pohcy can be (Sl = 1,A1 = 1,SQ,A2,S3 = 17A3 = 1), (Sl = 1,A1 = I,SQ,AQ,Sg = 1,A3 = 0),
(S1=1,41 =0,855,A42,53 =1,A3 = 1),0r (51 = 1,A; = 0,52, Ay, S3 = 1, A3 = 0). The accumulated regret can be
2A+1(1 = A), 2X+ 2\, 1(1 — A) + 1(1 — N). That is, the regret is increased by 1(1 — \) or 2 for every two time steps.
in{2\,1 — A\
Ry(m) > ML 1= A - gy

Letc = > 2, then we always have

Riy(m)>c-t forall t >+

min{2\,1-\}
2 ’ t

No matter which Markovian policy the agent follows, the accumulated regret will be linear with respect to ¢. Therefore, for
this MMDP, there exists no Markovian policy that achieves sub-linear regret. O

D ADAPTED MIXTS ALGORITHM

The adapted MixTS algorithm is formalized in Algorithm 1. F; is the prior of MDPs and follows the uniform distribution.
At the beginning of episode ¢, sample a MDP M, from the posterior P; and compute a policy 7, that maximizes the value of
M;. Then at each time step h, take the action A, based on the policy 7; and obtain reward Y},. For each MDP m € M,
update its posterior based on the received rewards.

Algorithm 1 Adapted MixTS
Input: The prior of MDPs P,
1: Initialize P, <— Py
2: for episodes t =1, --- N do
3: Sample M; ~ P;

4: Compute 7; = 7

5. for timestepsh=1,---,H do

6: Select Ay, < 7(Sh)

7: Observe reward Y7,

8: Update Py 1(m) o< By(m)P(Y}, | Ap;m),¥Ym € M
9: end for

10: end for

E NUMERICAL RESULTS: DETAILS

E.1 DOMAIN DETAILS

The CSV files of all domains are available at https://github.com/suxh2019/CADP. “initial.csv” specifies the initial distri-
bution over states. “parameters.csv”’ contains the discount factor. “training.csv”’and “test.csv”’have the following columns:
“idstatefrom”, “idaction”, “idstateto”, “idoutcome”, “probability”, and “reward”. Each row entry specifies a transition from
“idstatefrom” after taking an action “idaction” to state “idstateto” with the associated “probability” and “reward” in model
“idoutcome”. A policy is computed from the “training.csv”, and the policy is evaluated on the “test.csv”’. The models are
identified with integer values O, - - - , M — 1, and each model is defined on the same state space and the action space. The
states are identified with integer values 0, - - - ,.S — 1, and the actions are identified with integer values 0, --- , A — 1. Note
that the number of actions taken in each state s is less or equal to A. Each MDP model has its unique reward functions and

transition probability functions.

E.2 ADDITIONAL SIMULATION RESULTS

Table 1 shows mean returns of algorithms on five domains at different time steps. Table 2 shows the standard deviations of
returns of algorithms on five domains at different time steps. The algorithm “Oracle” knows the true model and its standard
deviation summarizes the variability of MDP models in an MMDP. The standard deviations of other algorithms include both
the variability of MDP models and the variability of a policy in a MDP model. Table 3 shows runtimes of algorithms on five
domains at different time steps. C'AD P performs best with some runtime penalty.

https://github.com/suxh2019/CADP

Table 1: Mean Returns p(7) on the Test Set of Policies 7 Computed by Each Algorithm.

Algorithm RS POP POPS INV HIV
T=100 T=150 T=100 T=150 T=100 T=150 T=100 T=150 T=5 T=20
CADP 207 207 -368 -368 -1082 -1082 348 350 33348 42566
WSU 206 206 -551 -551 -1934 -1932 347 349 33348 42564
MVP 204 204 =717 =717 -2178 -2179 348 350 33348 42564
Mirror 183 183 -1601 -1600 -3810 -3800 343 345 33348 42566
Gradient 206 206 -551 -551 -1934 -1932 347 349 33348 42564
MixTS 172 176 -1961 -1711 -3042 -3016 350 350 293 -1026
QMDP 201 183 - - - - - - 30705 39626
POMCP 54 64 - - - - - - 25794 30910
Oracle 213 213 -172 -172 -894 -894 358 360 40159 53856
Table 2: Standard Deviation of Returns of Algorithms on Five Domains.
Algorithm RS POP POPS INV HIV
T=100 T=150 T=100 T=150 T=100 T=150 T=100 T=150 T=5 T=20
CADP 98 98 1095 1095 2007 2007 51 51 9342 11309
MVP 90 90 2046 2046 3619 3620 52 52 7729 12234
WSU 100 100 1364 1364 3147 3146 53 53 7729 12234
Mirror 70 70 2081 2081 4534 4530 57 58 7729 12237
Gradient 100 100 1364 1364 3147 3146 53 53 7729 12234
MixTS 226 231 4436 4187 5507 5542 58 58 23689 27792
QMDP 193 204 - - - - - - 42987 61596
POMCP 66 118 - - - - - - 42208 57772
Oracle 95 95 1045 1045 1889 1889 51 51 9029 14796
Table 3: Run-times of Algorithms on Five Domains in Minutes.
Algorithm RS POP POPS INV HIV
T=100 T=150 T=100 T=150 T=100 T=150 T=100 T=150 T=50 T=100
MVP 0.05 0.05 27.68 27.51 0.36 0.36 0.22 0.22 0.0003 0.0003
WSU 0.12 0.14 40.02 45.39 1.53 2.37 0.67 0.89 0.0033 0.0048
CADP 0.52 1.13 12439 173.04 12.12 16.21 1.53 222 0.0109 0.0164
Mirror 1.86 3.11 113.08 158.06 8.08 11.90 35.90 53.6 0.0221 0.0330
Gradient 0.51 0.74 56.82 69.32 2.97 431 1.12 1.44 0.0083 0.0123
MixTS 0.09 0.12 32.08 35.36 0.80 1.03 0.47 0.59 0.0033 0.0047
QMDP 712 712 - - - - - - 0.7071 0.7071
POMCP 68 68 - - - - - - 02066 0.2066

	Proof of Theorem 4.1
	Proof of Theorem 5.1
	Proof of Theorem 5.3
	Adapted MixTS Algorithm
	Numerical Results: Details
	Domain Details
	Additional Simulation Results

