Masked Modeling for Human Motion Recovery Under Occlusions

Supplementary Material

In this supplementary material, we provide further details
on our training and inference strategies, as well as the eval-
uation setups for WHAM [14] and GVHMR [13]. We then
present additional quantitative results on the EgoBody-Occ
dataset to factor out the influence of our random cropping
augmentation. In addition, please refer to our Project Web-
site for more video results and visual comparisons of our
method against the baselines.

A. Training Details
A.1. SMPL-X Body Model.

Our training pipeline integrates motion, image, and video
datasets, which requires a unified parametric body repre-
sentation across all data sources. We adopt the SMPL-X
model [11] as our common annotation format due to its
expressiveness in modeling full-body human meshes. For
image datasets [1, 6, 8, 10] that provide only SMPL [9] an-
notations, we convert SMPL parameters to SMPL-X using a
fast model-fitting algorithm [15].

Since our tokenizer operates directly on mesh inputs via
mesh convolution layers, we remove the two disconnected
eyeball meshes from SMPL-X to enforce a fully connected
mesh topology. This modified SMPL-X mesh is used consis-
tently for tokenization and model training.

A.2. Motion Pretraining.

The motion encoder takes masked local pose token Z and
noisy canonical trajectory Reano a8 input and reconstructs the
global motion in a canonicalized coordinate. To compute the
canonical trajectory from any given sequence, we offset each
frame by inverse rigid transformation with the orientation
and translation of the first frame.

As described in Sec. 4.2 of the main paper, we manually
perturb the canonical trajectory R0 to simulate the dis-
tribution of noisy trajectories regressed from the per-frame
image encoder. Specifically, during training we adopt a pro-
gressive perturbation strategy, where we begin with clean
trajectories for the first 30% of the training iterations. In
the next 30%, we add Gaussian noise independently to the
global orientation ® and translation ¢ of each frame, with
a standard deviation of 1° for orientation and 10,mm for
translation. In the final 40% of training, the noise level is in-
creased to 2° for orientation and 30,mm for translation. This
progressive strategy enables the model to gradually adapt to
increasing levels of noise in the global trajectory.

We find that directly training on clips of 60 frames from
AMASS leads to suboptimal performance due to the high
correlation between adjacent frames, which may cause the

model to get stuck in local minima. Experiments show that
the model often fails to produce a valid human mesh when
training on the multi-frame clips directly. Thus, we first
pretrain the model on meshes of single frame to first let the
network learn a valid pose prior over the tokens, with the
trajectory set to zero. Finetuning on this checkpoint with
multi-frame clips then successfully allows the model to learn
the temporal dynamics of human motion on top.

A.3. Image Pretraining.

During image pretraining on image datasets [1, 6, 8, 10],
we perform random rotation, flipping and photometric aug-
mentation to improve generalization. As these datasets lack
global translation ground-truth, we then perform a quick
finetuning on images of EgoBody [17] and BEDLAM [2]
datasets.

We follow the aggressive random cropping augmentation
strategy from [3] for robustness on truncated bounding boxes.
Given the projected ground-truth joints on the image, we
sample from a set of predefined cropping modes that retain
only a small subset of joints and compute a bounding box
based on them. During image pretraining, random cropping
augmentation is applied with a probability of 0.1.

A .4. Video Fine-tuning.

In the final stage of training, we fine-tune on EgoBody and
BEDLAM using video clips split into 60 frames, while keep-
ing the weights of the image encoder, including backbone,
frozen. To adapt random cropping to video data, we ensure
that the cropping mode is consistent across all frames within
a clip. Cropping is applied to a clip with 0.2 probability, and
when enabled, between 20% and 100% of the frames in that
clip are cropped.

A.5. Training loss.

As described in Sec. 4.5 of the main paper, our training
loss consists of the cross entropy loss L. for the local pose
token classification, local 3D mesh vertex loss Ly, , global
trajectory loss Ly, global 3D joint position loss £ ;,,, and
velocity loss £ ;. . 2D keypoint reprojection loss £ ,,, and
foot skating loss Lg:

L= Lce +£V3D +£traj +£J3D +Lj3D +£J2D +£fSa (1)

where L,; consists of multiple global trajectory predic-
tions from the model: the coarse trajectory R predicted from
the image encoder, the reconstructed canonical trajectory
Rcano from the motion encoder and the refined trajectory R
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from the decoder. During training, the sampling operation
from the predicted token logits is not trivially differentiable.
We adopt the Gumbel-Softmax trick [7] to enable the back-
propagation through the sampling operation, which allows
us to train the model end-to-end. Specifically, we sample
from the softmax distribution with temperature 7 cosine an-
nealed from 1.0 to 0.01 during training. The joint-related
losses Ly, Lj, L, are based on global joint positions,
which are also computed with the aforementioned trajectory
predictions, where Rcam, is rolled out with the ground-truth
orientation and translation for the first frame. Note that each
loss term is only applied when it is applicable: Reuno during
motion pretraining, R, R during image pretraining, and all
three during video fine-tuning. The loss terms on vertices
and global joints are supervised with the ground-truth by an
RMSE loss, which proves to be more stable than the L2 loss,
generating notably smoother motion. The trajectory losses
are supervised with L2 loss. The loss weights throughout the
whole training process are set to Aee = 1, Ay, = 10, Ayaj =
LApp =LA5, =20,A),, =1 As =1

B. Inference Details

During inference, we iteratively recover the tokens based on
their confidence scores, defined as the softmax probabilities
of the logits over the codebook. In our experiments, we
employ greedy sampling with top-k = 1, opting for the most
confident token predictions at each position. This choice
is motivated by our observation that sampling from the full
codebook introduces limited variation. At each iteration
of the inference, the number of tokens to be remasked is
determined by a mask scheduling function 'y(%), where ¢ is
the current iteration and 7 is the total number of iterations.
Following prior practice [5, 12], we adopt a cosine function

(%)= H%S(%) to gradually recover the local pose tokens.
Additionally, the canonicalized global trajectory R ., is also
iteratively updated. It is initialized using the coarse trajectory
R predicted by the image encoder in the first iteration, and
subsequently refined using the output trajectory R from the
previous step.

By combining the canonical mesh decoded from pose
tokens Z and predicted global trajectory R, we obtain the
global mesh vertices V, which represent the reconstructed
motion. While it is possible to regress joint positions and
directly render this non-parametric mesh, we find that due to
its incompleteness (refer to Sec. A.1), the predicted meshes
do not seamlessly integrate with the evaluation protocol,
which requires a complete SMPL or SMPL-X mesh. In
addition, the non-parametric mesh often lacks visual quality
in regions with fine details (e.g., hands) and provides no
explicit mechanism for enforcing consistent shape across
the entire sequence. To address these issues, we employ
smplfitter [15] to fit the incomplete SMPL-X meshes to

full parametric SMPL-X meshes. This fitting process is
fast, yields low vertex error, and solves for shared shape
parameters across the sequence.

C. Evaluation Details of WHAM and GVHMR

For both methods, test-time flip augmentation is disabled for
fairness. As explained in Sec. 5.4 of the main paper, WHAM
and GVHMR output two sets of SMPL parameters: one in
the camera coordinate system, denoted as .., ®., 8, 3, and
another in a ground-aware world coordinate system, denoted
as v, Pw, 0, 3. While the local pose and shape parame-
ters 6, 3 are shared between the two, the global trajectory
components are predicted independently by the network, and
there is no single rigid transformation that aligns the two
coordinate systems consistently across the sequence.

In the original paper, the authors compute accuracy met-
rics (e.g., MPJPE) using ., ®., while motion realism met-
rics are derived from «,,, ®,,. However, we argue that it is
only fair to evaluate all metrics on a single, consistent set
of predictions. In order to compute joint position errors and
render outputs in the image plane using the world-grounded
predictions v,,, ®.,, we need to project them into the camera
space.

This projection is achieved by solving a rigid alignment
problem in the least squares sense: we estimate a constant
world-to-camera transformation across the entire sequence.
The rotation is obtained via Orthogonal Procrustes alignment
of the per-frame orientations, and the translation is computed
by minimizing the residual displacement between camera-
space and transformed world-space pelvis positions. Using
this estimated transformation, we can compute MPJPE and
other joint-based metrics in the camera coordinate frame for
the world-grounded outputs.

Judging from Fig. 3, while the camera-space predictions
v, . align well with the image observations, they exhibit
noticeable motion jitter. In contrast, the world-grounded pre-
dictions -,,, ®,, are refined to produce smoother and more
realistic trajectories. However, when projected back into the
camera space, these predictions may suffer from significant
misalignment. We refer readers to the supplementary video
for additional visual comparisons.

D. Evaluation with GT Bounding Boxes

We present additional quantitative results on the EgoBody-
Occ dataset in Tab. 1, under a modified evaluation setup for
image cropping. Specifically, we project the ground-truth
SMPL-X mesh onto the image plane and compute a bound-
ing box that fully encloses the projected joints, with a scale
factor of 1.2. This ensures that the cropped image contains
the full body of the subject, even when the subject is severely
occluded. We observe that the performance of MEGA [4],
WHAM [14] and GVHMR [13] is significantly impacted by



Method PA-MPJPE| —all MI_)gZEi oce PVE| | GMPJPE| RTE| | Accell G-accel| Jitter] Sliding|
g MEGA [4] 35.96 81.41 79.23 9721 100.33 - - - - - -
£  TokenHMR [3] 36.94 7525 72.02 98.63 93.77 - - - - - -
g PromptHMR [16] 34.85 48.50 45.23 72.17 59.78 - - - - - -
RoHM [18] 54.53 79.01 75.85 101.7 105.18 308.8 223 2.81 3.78 12.74 3.28
B  WHAM [14] -Cam 35.21 6521 62.82 8251 80.33 210.72 0.99 3.05 6.38 27.47 8.01
§ WHAM [14] -World 35.21 7843 75.86 97.06 98.58 404.32 3.40 2.99 3.09 8.70 2.50
% GVHMR [13] -Cam 35.68 59.07 55.64 8393 7329 430.33 1.24 2.51 8.60 41.80 8.29
§ GVHMR [13]-World 35.68 61.02 5743 87.06 75.20 478.55 2.25 2.72 3.23 11.35 1.68
Ours 26.88 39.59 3791 51.72 51.05 117.48 0.54 2.17 1.98 2.30 243

Table 1. Quantitative evaluation results on EgoBody-occ, evaluated with ground-truth bounding box. The best / second best results are
in boldface, and underlined, respectively.

the bounding box, which tend to predict unrealisticly small
human figures proportional to the bounding box size on the
image plane. This implies the depth estimation in the camera
space is overestimated, leading to a large error in the global
space metrics. Our method mitigates this issue by adopting
the random cropping augmentation in TokenHMR [3], which
enhances robustness to truncated bounding boxes.

While the inability to handle variable bounding boxes is
a valid limitation of these methods, we further demonstrate
that our approach outperforms the baselines even when pro-
vided with correctly positioned and scaled bounding boxes.
This is enabled by our masked modeling framework and
effective cross-modality learning. The results support our
claim that MoRo remains robust under occlusion, generating
more accurate and plausible motion in comparison to the
baselines, after ruling out the factor of random cropping
augmentation.
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