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APPENDIX

In section A, we establish technical lemmas based on the assumptions considered in the paper.
These lemmas characterize important properties of problem 1. Notably, Lemma 1 is instrumental in
understanding the properties associated with problem 1. Moving on to section B, we present a series
of lemmas essential for deriving the rate results of the proposed algorithm. Among them, Lemma 2
quantifies the error between the approximated direction Fk and ∇ℓ(xk). This quantification plays
a crucial role in establishing the one-step improvement lemma (see Lemma 7). Next, we provide
the proofs of Theorem 1 and Corollary 1 in sections C and D, respectively, that support the results
presented in the paper for the convex scenario. Finally, in sections E and F we provide the proofs for
Theorem 2 along with Corollary 2 for the nonconvex scenario.

A SUPPORTING LEMMAS

In this section, we provide detailed explanations and proofs for the lemmas supporting the main
results of the paper.

A.1 PROOF OF LEMMA 1

(I) Recall that y∗(x) is the minimizer of the lower-level problem whose objective function is strongly
convex, therefore,

µg ∥y∗(x)− y∗(x̄)∥2 ≤ ⟨∇yg(x,y
∗(x))−∇yg(x,y

∗(x̄)),y∗(x)− y∗(x̄)⟩
= ⟨∇yg(x̄,y

∗(x̄))−∇yg(x,y
∗(x̄)),y∗(x)− y∗(x̄)⟩

Note that∇yg(x,y
∗(x)) = ∇yg(x̄,y

∗(x̄)) = 0. Using the Cauchy-Schwartz inequality we have

µg ∥y∗(x)− y∗(x̄)∥2 ≤ ∥∇yg(x̄,y
∗(x̄))−∇yg(x,y

∗(x̄))∥∥y∗(x)− y∗(x̄)∥
≤ Cg

yx∥x− x̄∥∥y∗(x)− y∗(x̄)∥

where the last inequality is obtained by using the Assumption 2. Therefore, we conclude that
µg ∥y∗(x)− y∗(x̄)∥ ≤ Cg

yx∥x− x̄∥ which leads to the desired result in part (I).

(II) We first show that the function x 7→ ∇yf(x,y
∗(x)) is Lipschitz continuous. To see this, note

that for any x, x̄ ∈ X , we have

∥∇yf(x,y
∗(x))−∇yf(x̄,y

∗(x̄))∥ ≤ Lf
yx∥x− x̄∥+ Lf

yy∥y∗(x)− y∗(x̄)∥

≤
(
Lf
yx +

Lf
yyC

g
yx

µg

)
∥x− x̄∥,

where in the last inequality we used Lemma 1-(I). Since X is bounded, we also have ∥x− x̄∥ ≤ DX .
Therefore, letting x̄ = x∗ in the above inequality and using the triangle inequality, we have

∥∇yf(x,y
∗(x))∥ ≤

(
Lf
yx +

Lf
yyC

g
yx

µg

)
DX + ∥∇yf(x

∗,y∗(x∗))∥.

Thus, we complete the proof by letting Cf
y =

(
Lf
yx +

Lf
yyC

g
yx

µg

)
DX + ∥∇yf(x

∗,y∗(x∗))∥.

Before proceeding to show the result of part (III) of Lemma 1, we first establish an auxiliary lemma
stated next.

Lemma 3. Under the premises of Lemma 1, we have that for any x, x̄ ∈ X , ∥v(x)− v(x̄)∥ ≤
Cv ∥x− x̄∥ for some Cv ≥ 0.
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Proof. We start the proof by recalling that v(x) = ∇2
yyg(x,y

∗(x))−1∇yf(x,y
∗(x)). Next, adding

and subtracting∇2
yyg(x,y

∗(x))∇yf(x̄,y
∗(x̄)) followed by a triangle inequality leads to,

∥v(x)− v(x̄)∥
= ∥[∇2

yyg(x,y
∗(x))]−1∇yf(x,y

∗(x))− [∇2
yyg(x̄,y

∗(x̄))]−1∇yf(x̄,y
∗(x̄))∥

≤ ∥[∇2
yyg(x,y

∗(x))]−1
(
∇yf(x,y

∗(x))−∇yf(x̄,y
∗(x̄))

)
∥+ ∥

(
[∇2

yyg(x,y
∗(x))]−1

− [∇2
yyg(x̄,y

∗(x̄))]−1
)
∇yf(x̄,y

∗(x̄))∥

≤ 1

µg

(
Lf
yx∥x− x̄∥+ Lf

yy∥y∗(x)− y∗(x̄)∥
)
+ Cf

y ∥[∇2
yyg(x,y

∗(x))]−1 − [∇2
yyg(x̄,y

∗(x̄))]−1∥,

(13)
where in the last inequality we used Assumptions 1 and 2-(iii) along with the premises of Lemma 1-
(II). Moreover, for any invertible matrices H1 and H2, we have that

∥H−1
2 −H−1

1 ∥ = ∥H
−1
1

(
H1 −H2

)
H−1

2 ∥ ≤ ∥H
−1
1 ∥∥H

−1
2 ∥∥H1 −H2∥. (14)

Therefore, using the result of Lemma 1-(I) and (14) we can further bound inequality (13) as follows,
∥v(x)− v(x̄)∥

≤ 1

µg

(
Lf
yx∥x− x̄∥+ Lf

yyLy∥x− x̄∥
)
+ Cf

y ∥[∇2
yyg(x,y

∗(x))]−1 − [∇2
yyg(x̄,y

∗(x̄))]−1∥

≤ 1

µg

(
Lf
yx + Lf

yyLy

)
∥x− x̄∥+

Cf
y

µ2
g

Lg
yy

(
∥x− x̄∥+ ∥y∗(x)− y∗(x̄)∥

)
=

(Lf
yx + Lf

yyLy

µg
+

Cf
yL

g
yy

µ2
g

(1 + Ly)
)
∥x− x̄∥.

The result follows by letting Cv =
Lf

yx+Lf
yyLy

µg
+

Cf
yLg

yy

µ2
g

(1 + Ly).

(III) We start proving this part using the definition of ∇ℓ(x) stated in (7a). Utilizing the triangle
inequality we obtain
∥∇ℓ(x)−∇ℓ(x̄)∥

= ∥∇xf(x,y
∗(x))−∇2

yxg(x,y
∗(x))v(x)−

(
∇xf(x̄,y

∗(x̄))−∇2
yxg(x̄,y

∗(x̄))v(x̄)
)
∥

≤ ∥∇xf(x,y
∗(x))−∇xf(x̄,y

∗(x̄))∥+ ∥
[
∇2

yxg(x̄,y
∗(x̄))v(x̄)−∇2

yxg(x̄,y
∗(x̄))v(x)

]
+
[
∇2

yxg(x̄,y
∗(x̄))v(x)−∇2

yxg(x,y
∗(x))v(x)

]
∥ (15)

where the second term of the RHS follows from adding and subtracting the term∇2
yxg(x̄,y

∗(x̄))v(x).
Next, from Assumptions 1-(i) and 2-(v) together with the triangle inequality application we conclude
that

∥∇ℓ(x)−∇ℓ(x̄)∥ ≤ Lf
xx∥x− x̄∥+ Lf

xy∥y∗(x)− y∗(x̄)∥ + Cg
yx∥v(x̄)− v(x)∥

+
Cf

y

µg
∥∇2

yxg(x̄,y
∗(x̄))−∇2

yxg(x,y
∗(x))∥ (16)

It should be that in the last inequality, we use the fact that ∥v(x)∥ =

∥[∇2
yyg(x,y

∗(x))]−1∇yf(x,y
∗(x))∥ ≤ Cf

y

µg
. Combining the result of Lemma 1 part (I)

and (II) with the Assumption 2-(iv) leads to
∥∇ℓ(x)−∇ℓ(x̄)∥ ≤ Lf

xx∥x− x̄∥+ Lf
xyLy∥x− x̄∥+ Cg

yxCv∥x− x̄∥

+
Cf

y

µg
Lg
yx

(
∥x− x̄∥+ ∥y∗(x)− y∗(x̄)∥

)
≤ Lf

xx∥x− x̄∥+ Lf
xyLy∥x− x̄∥+ Cg

yxCv∥x− x̄∥

+
Cf

y

µg
Lg
yx

(
∥x− x̄∥+ Ly∥x− x̄∥

)
≤

(
Lf
xx + Lf

xyLy + Cg
yxCv +

Cf
y

µg
Lg
yx(1 + Ly)

)
∥x− x̄∥ (17)
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The desired result can be obtained by letting Lℓ = Lf
xx + Lf

xyLy +Cg
yxCv +

Cf
y

µg
Lg
yx(1 +Ly).

B REQUIRED LEMMAS FOR THEOREMS 1 AND 2

Before we proceed to the proofs of Theorems 1 and 2, we present the following technical lemmas
which quantify the error between the approximated solution yk and y∗(xk), as well as between wk+1

and v(xk).
Lemma 4. Suppose Assumption 2 holds. Let {(xk,yk)}k≥0 be the sequence generated by Algorithm
1, such that α = 2/(µg + Lg). Then, for any k ≥ 0

∥yk − y∗(xk)∥ ≤ βk∥y0 − y∗(x0)∥+ LyDX

k−1∑
i=0

γiβ
k−i, (18)

where β ≜ (Lg − µg)/(Lg + µg).

Proof. We begin the proof by characterizing the one-step progress of the lower-level iterate sequence
{yk}k. Indeed, at iteration k we aim to approximate y∗(xk+1) = argminy g(xk+1,y). According
to the update of yk+1 we observe that

∥yk+1 − y∗(xk+1)∥2 = ∥yk − y∗(xk+1)− α∇yg(xk+1,yk)∥2

= ∥yk − y∗(xk+1)∥2 − 2α⟨∇yg(xk+1,yk),yk − y∗(xk+1)⟩
+ α2∥∇yg(xk+1,yk)∥2. (19)

Moreover, from Assumption 2 and following Theorem 2.1.12 in (Nesterov, 2018), we have that

⟨∇yg(xk+1,yk),yk − y∗(xk+1)⟩ ≥
µgLg

µg + Lg
∥yk − y∗(xk+1)∥2 +

1

µg + Lg
∥∇yg(xk+1,yk)∥2

(20)

The inequality in (19) together with (20) imply that

∥yk+1 − y∗(xk+1)∥2 ≤ ∥yk − y∗(xk+1)∥2 −
2αµgLg

µg + Lg
∥yk − y∗(xk+1)∥2

+
(
α2 − 2α

µg + Lg

)
∥∇yg(xk+1,yk)∥2. (21)

Setting the step-size α = 2
µg+Lg

in (21) leads to

∥yk+1 − y∗(xk+1)∥2 ≤
(µg − Lg

µg + Lg

)2

∥yk − y∗(xk+1)∥2 (22)

Next, recall that β = (Lg − µg)/(Lg + µg). Using the triangle inequality and Part (I) of Lemma 1
we conclude that

∥yk+1 − y∗(xk+1)∥ ≤ β∥yk − y∗(xk+1)∥

≤ β
[
∥yk − y∗(xk)∥+ ∥y∗(xk)− y∗(xk+1)∥

]
≤ β

[
∥yk − y∗(xk)∥+ Ly∥xk − xk+1∥

]
. (23)

Moreover, from the update of xk+1 in Algorithm 1 and boundedness of X we have that
∥xk+1 − xk∥ ≤ γkDX . Therefore, using this inequality within (23) leads to

∥yk+1 − y∗(xk+1)∥ ≤ β ∥yk − y∗(xk)∥+ βγkLyDX .

Finally, the desired result can be deduced from the above inequality recursively.

Previously, in Lemma 4 we quantified how close the approximation yk is from the optimal solution
y∗(xk) of the inner problem. Now, in the following Lemma, we will find an upper bound for the
error of approximating v(xk) via wk+1.
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Lemma 5. Let {(xk,wk)}k≥0 be the sequence generated by Algorithm 1, such that γk = γ. Define

ρk ≜ (1− ηkµg) and C1 ≜ Lg
yy

Cf
y

µg
+ Lf

yy . Under Assumptions 1 and 2 we have that for any k ≥ 0,

∥wk+1 − v(xk)∥ ≤ ρk∥wk − v(xk−1)∥+ ρkCvγDX + ηkC1

(
βkDy

0 + Lyγ
β

1− β
DX

)
. (24)

Proof. From the optimality condition of (8) one can easily verify that v(xk) = v(xk) −
ηk
(
∇2

yyg(xk,y
∗(xk))v(xk)−∇yf(xk,y

∗(xk))
)
. Now using definition of wk+1 we can write

∥wk+1 − v(xk)∥ =
∥∥∥(wk − ηk(∇2

yyg(xk,yk)wk −∇yf(xk,yk))
)
−

(
v(xk)

− ηk
(
∇2

yyg(xk,y
∗(xk))v(xk)−∇yf(xk,y

∗(xk))
))∥∥∥

=
∥∥∥(I − ηk∇2

yyg(xk,yk)
)
(wk − v(xk))− ηk

(
∇2

yyg(xk,yk)

−∇2
yyg(xk,y

∗(xk))
)
v(xk) + ηk

(
∇yf(xk,y

∗(xk))−∇yf(xk,yk)
)∥∥∥,

(25)

where the last equality is obtained by adding and subtracting the term (I − ηk∇2
yyg(xk,yk))v(xk).

Next, using Assumptions 1 and 2 along with the application of the triangle inequality we obtain
∥wk+1 − v(xk)∥ ≤ (1− ηkµg)∥wk − v(xk)∥+ ηkL

g
yy∥yk − y∗(xk)∥∥v(xk)∥

+ ηkL
f
yy∥yk − y∗(xk)∥. (26)

Note that ∥v(xk)∥ = ∥[∇2
yyg(x,y

∗(x))]−1∇yf(x,y
∗(x))∥ ≤ Cf

y

µg
. Now, by adding and subtracting

v(xk−1) to the term ∥wk − v(xk)∥ followed by triangle inequality application we can conclude that
∥wk+1 − v(xk)∥ ≤ (1− ηkµg)∥wk − v(xk−1)∥+ (1− ηkµg)∥v(xk−1)− v(xk)∥

+ ηk

(
Lg
yy

Cf
y

µg
+ Lf

yy

)
∥yk − y∗(xk)∥. (27)

Therefore, using the result of Lemma 4, we can further bound inequality (27) as follows
∥wk+1 − v(xk)∥ ≤ (1− ηkµg)∥wk − v(xk−1)∥+ (1− ηkµg)Cv∥xk−1 − xk∥

+ ηkC1∥yk − y∗(xk)∥

≤ ρk∥wk − v(xk−1)∥+ ρkCvγDX + ηkC1

(
βkDy

0 + Lyγ
β

1− β
DX

)
(28)

where the last inequality follows from the boundedness assumption of set X , recalling that Dy
0 =

∥y0 − y∗(x0)∥, and the fact that
∑k−1

i=0 βk−i ≤ β
1−β .

Lemma 6. Let {(xk,wk)}k≥0 be the sequence generated by Algorithm 1 with step-size ηk = η <
1−β
µg

where β is defined in Lemma 4. Suppose that Assumption 2 holds and v(x−1) = v(x0), then
for any K ≥ 1,

∥wK − v(xK−1)∥ ≤ ρK∥w0 − v(x0)∥+
γρCvDX

1− ρ
+

ηC1D
y
0ρ

K+1

ρ− β
+

γηβC1LyDX

(1− ρ)(1− β)
, (29)

where ρ ≜ 1− ηµg .

Proof. Applying the result of Lemma 5 recursively for k = 0 to K − 1, one can conclude that

∥wK − v(xK−1)∥ ≤ ρK∥w0 − v(x0)∥+CvγDX

K∑
i=1

ρi + ηC1

K∑
i=0

(
βiDy

0 + γLyDX
β

1− β

)
ρK−i

≤ ρK∥w0 − v(x0)∥+
ρ

1− ρ
CvγDX + ηC1D

y
0

( K∑
i=0

βiρK−i
)

+
γηβC1LyDX

1− β

K∑
i=0

ρK−i, (30)
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where the last inequality is obtained by noting that
∑K

i=1 ρ
i ≤ ρ

1−ρ . Finally, the choice η < 1−β
µg

implies that β < ρ, hence,
∑K

i=0(
β
ρ )

i ≤ ρ
ρ−β which leads to the desired result.

B.1 PROOF OF LEMMA 2

We begin the proof by considering the definition of∇ℓ(xk) and Fk followed by a triangle inequality
to obtain

∥∇ℓ(xk)− Fk∥ ≤ ∥∇xf(xk,y
∗(xk))−∇xf(xk,yk)∥

+ ∥∇2
yxg(xk,yk)wk+1 −∇2

yxg(xk,y
∗(xk))v(xk)∥ (31)

Combining Assumption 1-(i) together with adding and subtracting∇2
yxg(xk,yk)v(xk) to the second

term of RHS lead to

∥∇ℓ(xk)− Fk∥ ≤ Lf
xy∥yk − y∗(xk)∥+ ∥∇2

yxg(xk,yk)
(
wk+1 − v(xk)

)
+
(
∇2

yxg(xk,yk)

−∇2
yxg(xk,y

∗(xk))
)
v(xk)∥

≤ Lf
xy∥yk − y∗(xk)∥+ Cg

yx∥wk+1 − v(xk)∥+ Lg
yx

Cf
y

µg
∥yk − y∗(xk)∥ (32)

where the last inequality is obtained using Assumption 2 and the triangle inequality. Next, utilizing
Lemma 4 and 6 we can further provide upper-bounds for the term in RHS of (32) as follows

∥∇ℓ(xk)− Fk∥ ≤ C2

(
βkDy

0 +
γβLyDX

1− β

)
+ Cg

yx

(
ρk+1∥w0 − v(x0)∥+

γρCvDX

1− ρ

+
ηC1D

y
0ρ

k+2

ρ− β
+

γηβC1LyDX

(1− ρ)(1− β)

)
.

B.2 IMPROVEMENT IN ONE STEP

In the following, we characterize the improvement of the objective function ℓ(x) after taking one
step of Algorithm 1.
Lemma 7. Let {xk}Kk=0 be the sequence generated by Algorithm 1. Suppose Assumptions 1 and 2
hold and γk = γ, then for any k ≥ 0 we have

ℓ(xk+1) ≤ ℓ(xk)− γG(xk) + γC2β
kDy

0DX +
γ2C2D

2
XLyβ

1− β
+ Cg

yx

[
γDXρk+1∥w0 − v(x0)∥

+
γ2D2

XρCv

1− ρ
+

γDXDy
0C1ηρ

k+2

ρ− β
+

γ2D2
XLyC1βη

(1− β)(1− ρ)

]
+

1

2
Lℓγ

2D2
X . (33)

Proof. Note that according to Lemma 1-(III), ℓ(·) has a Lipschitz continuous gradient which implies
that

ℓ(xk+1) ≤ ℓ(xk) + γ⟨∇ℓ(xk), sk − xk⟩+
1

2
Lℓγ

2∥sk − xk∥2

= ℓ(xk) + γ⟨Fk, sk − xk⟩+ γ⟨∇ℓ(xk)− Fk, sk − xk⟩+
1

2
Lℓγ

2∥sk − xk∥2, (34)

where the last inequality follows from adding and subtracting the term γ⟨Fk, sk − xk⟩ to the RHS.
Define s′k = argmaxs∈X {⟨∇ℓ(xk),xk − s⟩} and observe that G(xk) = ⟨∇ℓ(xk),xk − s′k⟩ by
Definition 1. Using the definition of sk, we can immediately observe that

⟨Fk, sk − xk⟩ = min
s∈X
⟨Fk, s− xk⟩

≤ ⟨Fk, s
′
k − xk⟩

= ⟨∇ℓ(xk), s
′
k − xk⟩+ ⟨Fk −∇ℓ(xk), s

′
k − xk⟩

= −G(xk) + ⟨Fk −∇ℓ(xk), s
′
k − xk⟩. (35)
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Next, combining (34) with (35) followed by the Cauchy-Schwartz inequality leads to

ℓ(xk+1) ≤ ℓ(xk)− γG(xk) + γ∥∇ℓ(xk)− Fk∥∥sk − s′k∥+
1

2
Lℓγ

2∥sk − xk∥2. (36)

Finally, using the result of the Lemma 2 together with the boundedness assumption of set X we
conclude the desired result.

C PROOF OF THEOREM 1

Since ℓ is convex, from the definition of G(xk) in (4) we have

G(xk) = max
s∈X
{⟨∇ℓ(xk),xk − s}⟩ ≥ ⟨∇ℓ(xk),xk − x∗⟩ ≥ ℓ(xk)− ℓ(x∗). (37)

We assume a fixed step-size in Theorem 1 and we set γk = γ. Combining the result of Lemma 7 with
(37) leads to

ℓ(xk+1) ≤ ℓ(xk)− γ(ℓ(xk)− ℓ(x∗)) + γC2β
kDy

0DX +
γ2C2D

2
XLyβ

1− β
+ Cg

yx

[
γDXρk+1∥w0 − v(x0)∥

+
γ2D2

XρCv

1− ρ
+

γDXDy
0C1ηρ

k+2

ρ− β
+

γ2D2
XLyC1βη

(1− β)(1− ρ)

]
+

1

2
Lℓγ

2D2
X . (38)

Subtracting ℓ(x∗) from both sides, we get

ℓ(xk+1)− ℓ(x∗) ≤ (1− γ)(ℓ(xk)− ℓ(x∗)) +Rk(γ), (39)

where

Rk(γ) ≜ γC2β
kDy

0DX +
γ2C2D

2
XLyβ

1− β
+ Cg

yx

[
γDXρk+1∥w0 − v(x0)∥

+
γ2D2

XρCv

1− ρ
+

γDXDy
0C1ηρ

k+2

ρ− β
+

γ2D2
XLyC1βη

(1− β)(1− ρ)

]
+

1

2
Lℓγ

2D2
X . (40)

Continuing (39) recursively leads to the desired result.

D PROOF OF COROLLARY 1

We start the proof by using the result of the Theorem 1, i.e.,

ℓ(xK)− ℓ(x∗) ≤ (1− γ)K(ℓ(x0)− ℓ(x∗)) +

K−1∑
k=0

(1− γ)K−kRk(γ). (41)

Note that
K−1∑
k=0

(1− γ)K−kRk(γ)

= C2D
y
0DX

[K−1∑
k=0

(1− γ)K−kγβk
]
+

C2D
2
XLyβ

1− β

[K−1∑
k=0

(1− γ)K−kγ2
]

+ Cg
yx

(
ρDX ∥w0 − v(x0)∥

[K−1∑
k=0

(1− γ)K−kγρk
]
+

D2
XρCv

1− ρ

[K−1∑
k=0

(1− γ)K−kγ2
]

+
DXDy

0C1ηρ
2

ρ− β

[K−1∑
k=0

(1− γ)K−kγρk
]
+

D2
XLyC1βη

(1− β)(1− ρ)

[K−1∑
k=0

(1− γ)K−kγ2
])

+
1

2
LℓD

2
X

[K−1∑
k=0

(1− γ)K−kγ2
]
.

18



Under review as a conference paper at ICLR 2024

Moreover, one can easily verify that
∑K−1

k=0 (1−γ)K−kγ2 ≤ γ(1−γ) and
∑K−1

k=0 (1−γ)K−kγρk ≤
γ(1−γ)
|1−γ−ρ| from which together with the above inequality we conclude that

K−1∑
k=0

(1− γ)K−kRk(γ)

≤ C2D
y
0DXγ(1− γ)

|1− γ − β|
+

C2D
2
XLyβγ(1− γ)

1− β
+ Cg

yx

(DXργ(1− γ)

|1− γ − ρ|
∥w0 − v(x0)∥

+
D2

XCvργ(1− γ)

1− ρ
+

DXDy
0C1ηρ

2γ(1− γ)

(ρ− β) |1− γ − ρ|
+

D2
XLyC1ηβγ(1− γ)

(1− β)(1− ρ)

)
+

1

2
LℓD

2
Xγ(1− γ)

= O
(

Cvρ

1− ρ
γ +

LyC1β

(1− β)(1− ρ)
γ

)
. (42)

Using the above inequality within (41) we conclude that ℓ(xK) − ℓ(x∗) ≤ (1 − γ)K(ℓ(x0) −
ℓ(x∗)) + O(Cvρ

1−ρ γ +
LyC1β

(1−β)(1−ρ)γ) where Cv = O(κ3
g), C1 = O(κ2

g), Ly = O(κg) as shown in
Lemma 3 and min{1− ρ, 1− β} = Ω( 1

κg
) as shown in Lemma 2. Next, we show that by selecting

γ = log(K)/K we have that (1 − γ)K ≤ 1/K. In fact, for any x > 0, log(x) ≥ 1 − 1
x which

implies that log( 1
1−γ ) ≥ γ = log(K)/K, hence, ( 1

1−γ )
K ≥ K. Putting the pieces together we

conclude that ℓ(xK)− ℓ(x∗) = O((1− γ)K(ℓ(x0)− ℓ(x∗)) + γκ5
g) = Õ(κ5

g/K), which leads to
an iteration complexity of Õ(κ5

gϵ
−1).

Furthermore, assuming that ∇yf(x, ·) is uniformly bounded for any x ∈ X , we conclude that
Cf

y = O(1), hence, C1 = O(κg) from which we have that ℓ(xK)− ℓ(x∗) = O((1− γ)K(ℓ(x0)−
ℓ(x∗))+ γκ4

g). Therefore, selecting γ = log(K)/K implies that ℓ(xK)− ℓ(x∗) = O(κ4
g/K) which

leads to an iteration complexity of O(κ4
gϵ

−1).

E PROOF OF THEOREM 2

Recall that from Lemma 7 we have

G(xk) ≤
ℓ(xk)− ℓ(xk+1)

γ
+C2β

kDy
0DX +

γC2D
2
XLyβ

1− β
+ Cg

yx

[
DXρk+1∥w0 − v(x0)∥

+
γD2

XρCv

1− ρ
+

DXDy
0C1ηρ

k+2

ρ− β
+

γD2
XLyC1βη

(1− β)(1− ρ)

]
+

1

2
LℓγD

2
X .

Summing both sides of the above inequality from k = 0 to K − 1, we get
K−1∑
k=0

G(xk) ≤
ℓ(x0)− ℓ(xK)

γ
+

C2D
y
0DX

1− β
+K

γC2D
2
XLyβ

1− β
+ Cg

yx

[ρDX ∥w0 − v(x0)∥
1− ρ

+K
γD2

XρCv

1− ρ
+

DXDy
0C1ηρ

2

(1− ρ)(ρ− β)
+K

γD2
XLyC1βη

(1− β)(1− ρ)

]
+

K

2
LℓγD

2
X ,

where in the above inequality we use the fact that
∑K

i=0 β
i ≤ 1

1−β . Next, dividing both sides of
the above inequality by K and denoting the smallest gap function over the iterations from k = 0 to
K − 1, i.e.,

Gk∗ ≜ min
0≤k≤K−1

G(xk) ≤
1

K

K−1∑
k=0

G(xk),

imply that

Gk∗ ≤ ℓ(x0)− ℓ(xK)

Kγ
+

γC2DXLyβ

1− β
+

γD2
XρCvC

g
yxρ

1− ρ
+

γD2
XCg

yxLyC1βη

(1− β)(1− ρ)
+

1

2
LℓγD

2
X

+
C2D

y
0DXβ

K(1− β)
+

DXCg
yxρ∥w0 − v(x0)∥
K(1− ρ)

+
DXDy

0C
g
yxC1ηρ

2

K(1− β)(1− ρ)
. (43)
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F PROOF OF COROLLARY 2

We begin the proof by using the result of the Theorem 2.

Gk∗ ≤ ℓ(x0)− ℓ(xK)

Kγ
+

γC2DXLyβ

1− β
+

γD2
XρCvC

g
yxρ

1− ρ
+

γD2
XCg

yxLyC1βη

(1− β)(1− ρ)
+

1

2
LℓγD

2
X

+
C2D

y
0DXβ

K(1− β)
+

DXCg
yxρ∥w0 − v(x0)∥
K(1− ρ)

+
DXDy

0C
g
yxC1ηρ

2

K(1− β)(1− ρ)

= O
(

1

Kγ
+

γC2Lyβ

1− β
+

γLyC1β

(1− β)(1− ρ)

)
The desired result follows immediately from (43) and the fact that ℓ(x∗) ≤ ℓ(xK). Moreover,
similar to the proof of Corollary 1 we have that Cv = O(κ3

g), C1 = O(κ2
g), Ly = O(κg),

and min{1 − ρ, 1 − β} = Ω( 1
κg

). Hence, by choosing γ = 1/(κ2.5
g

√
K), we obtain that G∗k =

O( 1
Kγ + γκ5

g) = O(κ2.5
g /
√
K), which leads to an iteration complexity of O(κ5

gϵ
−2).

Furthermore, assuming that∇yf(x, y) is uniformly bounded, we conclude that Cf
y = O(1), hence,

C1 = O(κg) from which we have that Gk∗ = O( 1
Kγ + γκ4

g). Therefore, selecting γ = 1/(κ2
g

√
K)

implies that Gk∗ = O(κ2
g/
√
K) which leads to an iteration complexity of O(κ4

gϵ
−2).

G ADDITIONAL EXPERIMENTS

In this section, we provide more details about the experiments conducted in section 5 as well as some
additional experiments.

G.1 EXPERIMENT DETAILS

In this section, we include more details of the numerical experiments in Section 5. The MATLAB
code is also included in the supplementary material.

For completeness, we briefly review the update rules of SBFW (Akhtar et al., 2022) and TTSA (Hong
et al., 2020) for the setting considered in problem (1). In the following, we use PX (·) to denote the
Euclidean projection onto the set X .

Each iteration of SBFW has the following updates:

yk = yk−1 − δk∇yg(xk−1,yk−1),

dk = (1− ρk)(dk−1 − h(xk−1,yk−1)) + h(xk,yk),

sk = argmin
s∈X

⟨s,dk⟩,

xk+1 = (1− ηk)xk + ηksk

Based on the theoretical analysis in (Akhtar et al., 2022), ρk = 2
k1/2 , ηk = 2

(k+1)3/4
, and δk = a0

k1/2

where a0 = min
{

2
3µg

,
µg

2L2
g

}
. Moreover, h(xk,yk) is a biased estimator of the surrogate ℓ(xk)

which can be computed as follows

h(xk,yk) = ∇xf(xk,yk)−M(xk,yk)∇yf(xk,yk),

where the term M(xk,yk) is a biased estimation of [∇2
yyg(xk,yk)]

−1 with bounded variance whose
explicit form is

M(xk,yk) = ∇2
yxg(xk,yk)×

[ k

Lg
Πl

i=1

(
I − 1

Lg
∇2

yyg(xk, yk)
)]

,

and l ∈ {1, . . . , k} is an integer selected uniformly at random.
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Figure 3: The performance of IBCG (blue) vs SBFW (red) on Problem (44) when µg = 1. Plots from
left to right are trajectories of θk and f(λk, θk)− f∗.

The steps of TTSA algorithm are given by

yk+1 = yk − βhg
k,

xk+1 = PX (xk − αhf
k),

hg
k = ∇yg(xk,yk),

hf
k = ∇xf(xk,yk)−∇2

yxg(xk,yk)×
[ tmax(k)ch

Lg
Πp

i=1

(
I − ch

Lg
∇2

yyg(xk,yk)
)]
∇yf(xk,yk),

where based on the theory we define L = Lf
x +

Lf
yC

g
yx

µg
+ Cf

y

(
Lg

yx

µg
+

Lg
yyC

g
yx

µ2
g

)
, and Ly =

Cg
yx

µg
,

then set α = min
{

µ2
g

8LyLL2
g
, 1
4LyL

K−3/5
}

, β = min
{

µg

L2
g
, 2
µg

K−2/5
}

, tmax(k) =
Lg

µg
log(k + 1),

p ∈ {0, . . . , tmax(k)− 1}, and ch ∈ (0, 1].

G.2 TOY EXAMPLE

Here we consider a variation of coreset problem in a two-dimensional space to illustrate the numerical
stability of our proposed method. Given a point x0 ∈ R2, the goal is to find the closest point to x0

such that under a linear map it lies within the convex hull of given points {x1, x2, x3, x4} ⊂ R2. Let
A ∈ R2×2 represents the linear map, X ≜ [x1, x2, x3, x4] ∈ R2×4, and ∆4 ≜ {λ ∈ R4|⟨λ, 1⟩ =
1, λ ≥ 0} be the standard simplex set. This problem can be formulated as the following bilevel
optimization problem

min
λ∈∆4

1

2
∥θ(λ)− x0∥2 s.t. θ(λ) ∈ argmin

θ∈R2

1

2
∥Aθ −Xλ∥2. (44)

We set the target x0 = (2, 2) and choose starting points as θ0 = (0, 0) and λ0 = 14/4. We
implemented our proposed method and compared it with SBFW (Akhtar et al., 2022). It should
be noted that in the SBFW method, they used a biased estimation for [∇2

yyg(λ, θ)]
−1 = (A⊤A)−1

whose bias is upper bounded by 2
µg

(see (Ghadimi & Wang, 2018, Lemma 3.2)). Figure 3 illustrates
the iteration trajectories of both methods for µg = 1 and K = 102. The step-sizes for both methods
are selected as suggested by their theoretical analysis. We observe that our method converges to the
optimal solution while SBFW fails to converge. This situation for SBFW exacerbates for smaller
values of µg .

Figure 4 illustrates the iteration trajectories of both methods for µg = 0.1 and K = 103 in which we
also included SBFW method whose Hessian inverse matrix is explicitly provided in the algorithm.
The step-sizes for both methods are selected as suggested by their theoretical analysis. Despite
incorporating the Hessian inverse matrix in the SBFW method, the algorithm’s effectiveness is com-
promised by excessively conservative step-sizes, as dictated by the theoretical result. Consequently,
the algorithm fails to converge to the optimal point effectively. Regarding this issue, we tune their
step-sizes, i.e., scale the parameter δ and η in their method by a factor of 5 and 0.1, respectively. By
tuning the parameters we can see in Figure 5 that the SBFW with Hessian inverse matrix algorithm
has a better performance and converges to the optimal solution. In fact, using the Hessian inverse as
well as tuning the step-sizes their method converges to the optimal solution while our method always
shows a consistent and robust behavior.
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Figure 4: The performance of IBCG (blue) vs SBFW (red) and SBFW with Hessian inverse (green)
on Problem (44) when µg = 0.1. Plots from left to right are trajectories of θk and f(λk, θk)− f∗.

Figure 5: The performance of IBCG (blue) vs SBFW (red) and SBFW with Hessian inverse (green)
on Problem (44) when µg = 0.1 and the SBFW parameters are tuned. Plots from left to right are
trajectories of θk and f(λk, θk)− f∗.

G.3 MATRIX COMPLETION WITH DENOISING

G.3.1 SYNTHETIC DATASET

Dataset Generation. We create an observation matrix M = X̂ + E. In this setting X̂ = WWT

where W ∈ Rn×r containing normally distributed independent entries, and E = n̂(L + LT ) is a
noise matrix where L ∈ Rn×n containing normally distributed independent entries and n̂ ∈ (0, 1) is
the noise factor. During the simulation process, we set n = 250, r = 10, and α = ∥X̂∥∗.

Initialization. All the methods start from the same initial point x0 and y0 which are generated
randomly. We terminate the algorithms either when the maximum number of iterations Kmax = 104

or the maximum time limit Tmax = 2× 102 seconds are achieved.

Implementation Details. For our method IBCG, we choose the step-sizes as γ = 1
4
√
K

to avoid

instability due to large initial step-sizes, and set α = 2/(µg + Lg) and η = 0.9× 1−β
µg

. We tuned the
step-size ηk in the SBFW method by multiplying it by a factor of 0.8, and for the TTSA method, we
tuned their step-size β by multiplying it by a factor of 0.25.

G.3.2 REAL DATASET

In order to emphasize the importance of projection-free bilevel algorithms in practical applications,
we conducted further experiments using a larger dataset known as MovieLens 1M. This dataset
consists of 1 million ratings provided by 6000 individuals for a total of 4000 movies. In Figure 6
the inferior performance of TTSA algorithm in actual computation time, especially when dealing
with large datasets becomes more evident. The observed difference can be attributed to the utilization
of the projection operation in contrast to the projection-free algorithms. TTSA requires performing
projections over nuclear norm at each iteration which is computationally expensive due to the
computation of full singular value decomposition. In contrast, projection-free algorithms IBCG
and SBFW solve a linear minimization at each iteration, which only requires the computation of
singular vectors corresponding to the largest singular value. On the other hand, considering the slow
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Figure 6: The performance of IBCG (blue) vs SBFW (red) and TTSA (yellow) on Problem (2) for
real dataset. Plots from left to right are trajectories of normalized error (ē), ∥∇gy(xk, yk)∥, and
f(xk, yk) over time.

convergence rate of SBFW, when the size of the dataset increases, the improved performance of our
proposed method becomes more evident compared to SBFW.
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