
A Proofs

Proposition A.1. The gradient of the forward KL divergence with respect to the coreset u is
∇uDKL[νx∥νu] = −∇uE[νx]u [log p(ỹ | fu)] + E[νu]u [∇u log p(ỹ | fu)], (10)

where [νx]u and [νu]u are finite-dimensional distributions of the stochastic processes νx and νu,
respectively, fu := (f(uj))

m
j=1, and p(ỹ | fu) =

∏m
j=1 p(ỹj | f(uj)).

Proof. We follow the arguments in de G. Matthews et al. [10], Rudner et al. [29]. The forward KL
divergence is defined as,

DKL[νx∥νu] =
∫

log
dνx
dνu

(f)dνx(f). (18)

By the chain rule for the Radon-Nikodym derivative, we have

DKL[νx∥νu] =
∫

log
dνx
dν0

(f)dνx(f)−
∫

log
dνu
dν0

(f)dνx(f). (19)

The first term does not depend on u, so we investigate the second term. By the measure theoretic
Bayes’ rule,

dνu
dν0

(f) =
p(ỹ | f,u)
p(ỹ |u)

, (20)

where p(ỹ | f,u) :=
∏m

j=1 p(ỹj |uj , f) and,

p(ỹ|u) =
∫

p(ỹ|f,u)dν0(f). (21)

Now let ρA : (X → Rd) → (A → Rd) be a projection function that takes a function f and returns
its restriction on a set A ⊆ X . Assuming that the likelihood depends only on the finite index set u,
we can write

dνu
dν0

(f) =
d[νu]u
d[ν0]u

(ρu(f)) =
p(ỹ | fu)
p(ỹ |u)

, (22)

where [·]u denotes the finite-dimensional distribution of stochastic process evalauted at u and
ρu(f) := fu := (f(uj))

m
j=1 are corresponding function values at u. Putting this back into the above

equation, ∫
log

dνu
dν0

(f)dνx(f) =

∫
log

d[νu]u
d[ν0]u

(fu)d[νx]u(fu)

=

∫
log

p(ỹ | fu)
p(ỹ |u)

d[νx]u(fu)

= E[νx]u [log p(ỹ | fu)]− log p(ỹ |u).

(23)

Now taking the gradient w.r.t. u, we get
∇uDKL[νx∥νu] = −∇uE[νx]u [log p(ỹ | fu)] +∇u log p(ỹ |u). (24)

Note also that

∇u log p(ỹ |u) = ∇u log

∫
p(ỹ | f,u)dν0(f)

=

∫
∇up(ỹ | f,u)

p(ỹ |u)
dν0(f)

=

∫
∇u log p(ỹ | f,u)p(ỹ | f,u)

p(ỹ |u)
dν0(f)

=

∫
∇u log p(ỹ | f,u)dνu

dν0
(f)dν0(f)

=

∫
∇u log p(ỹ | f,u)dνu(f)

=

∫
∇u log p(ỹ | fu)d[νu]u(f) = E[νu]u [∇u log p(ỹ | fu)].

(25)

As a result, we conclude that
∇uDKL[νx∥νu] = −∇uE[νx]u [log p(ỹ | fu)] + E[νu]u [∇u log p(ỹ | fu)]. (26)

13

B Inducing points in Stochastic Variational Gaussian Processes

Stochastic Variational Gaussian Processes [SVGP; 12, 13] were introduced as a solution to address
the significant computational complexity, characterized by a cubic computational complexity of
O(n3) and memory cost of O(n2), associated with performing inference using Gaussian Processes.
In this context, n represents the total number of training data points. SVGP effectively leverages a
concept called inducing points, which serves to reduce the computational complexity to O(m3) and
memory requirements to O(m2) during inference, while still providing a reliable approximation of
the posterior distribution of the entire training dataset. Notably, m denotes the number of inducing
points, which is typically much smaller than the total number of training data points i.e. m ≪ n. The
above description clearly shows that the inducing points have a similar purpose to FBPC. However,
there are some differences in their learning objectives. In the context of SVGP, the process of
optimizing the inducing points denoted as Z = {z1, . . . , zm} involves maximizing the ELBO in
order to make a variational Gaussian distribution q(ftr, fz) well approximate the posterior distribution
p(ftr, fz|ytr). This variational distribution is composed of two parts: 1) p(ftr|fz), which represents the
Gaussian posterior distribution, and 2) q(fz), which is the Gaussian variational distribution. During
this optimization, we focus on training the inducing points Z as well as the mean and variance of the
variational distribution q(fz). The goal of this optimization is to create a good approximation of the
posterior distribution p(yte|xte, Dtr) during the inference process, all while keeping the computational
cost low. On the other hand, as outlined in Section 3.2, the formulation of FBPC involves directly
minimizing the divergence between function space posterior, specifically DKL[νx∥νu]. To sum up,
while they do share some similarities in that they introduce a set of learnable pseudo data points, they
are fundamentally different in their learning objectives. SVGP is interested in approximating the full
data posterior through the inducing points, while ours aims to make the pseudocoreset posterior as
close as possible to the full data posterior.

C Experimetal Details

The code for our experiments will be available soon.

C.1 Expert trajectory

For expert trajectory, we trained the network with the entire dataset and saved their snapshot parame-
ters at every epoch, following the setup described in [7]. For training, we used an SGD optimizer
with a learning rate of 0.01. We saved 100 training trajectories, with each trajectory consisting of 50
epochs.

C.2 Hyperparmeter setting

Training In our training procedure, we have some hyperparameters. Firstly, we sampled the MAP
solution of x, denoted as θx, from the later part of the expert trajectories. The decision of how many
samples from the later part to utilize was treated as a hyperparameter for each experimental setting.
We chose to use samples from T epoch onwards as the MAP solution samples. When obtaining the
MAP solution θu, there are also several hyperparameters involved, the optimizer and convergence
criteria for training the MAP solution from random parameters. We used an Adam optimizer with a
learning rate of 0.001 to train the model until the training loss reached a threshold of γ or below.

Next, to approximate our Gaussian variational function posterior, we employed the empirical co-
variance of the function samples. During the process of drawing function samples, we performed
an additional training steps. This step involved specifying the optimizer and the number of steps
used. We used an SGD optimizer with learning rates of λx and λu for a total of 30 steps during the
additional training step for drawing function samples for x and u, respectively.

Lastly, we used the training iteration N , a learning rate of α for pseudocoresets, and set the batch
size for pseudocoresets to B. The hyperparameters used in our paper are summarized in Table 4.

14

Evaluation To implement the SGHMC algorithm, as discussed in [9] and following the recommen-
dations of [9], we employed the SGD with momentum along with an auxiliary noise term.{

∆θ = v

∆v = −η∇Ũ(x)− αv +N (0, 2d).
(27)

we set η = 0.03, α = 0.1, and d = 0.01/m, where m represents the coreset size. We perform 1000
epochs of SGHMC and collect samples every 100 epochs.

D Additional Experiments

D.1 Cross-architecture generalization

In order to assess the cross-architecture generalization performance of FBPC, we trained pseudo-
corests of sizes {1, 10, 50} using the ConvNet architecture and tested them on various architectures
trained from scratch. In addition to the ConvNet architecture used during training, we also evaluated
the performance on sophisticated architectures such as ResNet18, ResNet34, VGG, and AlexNet.
The results are presented in Table 5. As evident from Table 5, FBPC demonstrates considerable
performance even on architectures different from those used during training, highlighting its strong
cross-architecture generalization capabilities.

D.2 Training FBPC on larger neural networks

To evaluate the scalability of our method to large networks, we trained FBPC with the ResNet18
architecture. Training coreset with larger networks, such as ResNet18, has proven to be challenging
and has been explored in only a few previous works [38]. This is primarily due to the lack of scalable
training methods and the tendency for overfitting when training large networks. As a result, even
when evaluating ResNet after training on a smaller network like ConvNet, the performance tends to
suffer. Furthermore, it has been reported that coreset training directly on ResNet initially yields lower
performance compared to training on ConvNet [40, 35].

Our experiments also revealed a similar trend in our findings as shown in the first column of Table 6.
Although FBPC exhibits excellent scalability, making it easy to train on ResNet18 and larger networks,
its performance was observed to be lower compared to ConvNet. On the other hand, the second
column, ResNet18 + ConvNet, refers to training both ResNet18 and ConvNet simultaneously using the
FBPC-multi training approach. In this case, surprisingly, the test performance of ResNet18 actually
improved when trained in conjunction with ConvNet using the FBPC-multi training approach. In
this case, the ConvNet accuracy was recorded at 60.03, which did not significantly compromise the
ConvNet’s performance while enhancing the performance of ResNet18. This suggests that training
ConvNet acted as a regularizer, preventing overfitting in ResNet18 and enabling it to achieve better
performance.

Table 4: Hyperparameter for each experiment setting.
ipc T γ λx λu N α B

CIFAR10
1 1 0.01 0.05 0.01 1000 100 10
10 2 0.1 0.05 0.01 1000 1000 100
50 10 0.2 0.05 0.01 1000 1000 500

CIFAR100
1 2 0.1 0.1 0.1 5000 1000 100
10 40 0.1 0.1 0.1 5000 1000 1000
50 20 0.2 0.01 0.01 300 1000 5000

Tiny-ImageNet
1 2 0.1 0.1 3 5000 1000 100
10 40 1 0.1 3 500 1000 100
50 40 1 0.1 3 500 1000 100

15

Table 5: Averaged test accuracy and negative log-likelihoods for each architecture of the pseudocore-
set trained using the ConvNet architecture with CIFAR10 dataset.

ConvNet ResNet18 ResNet34 VGG AlexNet

1 Acc (↑) 35.71±0.90 27.7±0.96 22.46±0.12 26.33±0.88 21.05±0.43

NLL (↓) 3.44±0.07 2.87±0.13 3.06±0.02 5.38±0.74 3.13±0.60

10 Acc (↑) 62.53±0.34 47.51±1.73 35.48±1.22 47.87±1.18 32.27±0.78

NLL (↓) 1.31±0.01 1.82±0.02 2.41±0.01 3.72±0.09 2.96±0.04

50 Acc (↑) 71.20±0.36 62.02±1.55 47.97±3.37 58.24±1.63 52.42±1.30

NLL (↓) 1.03±0.00 1.41±0.05 2.10±0.10 3.03±0.26 2.08±0.07

Table 6: Test performance of FBPC (CIFAR10, ipc 10) on ResNet18. FBPC is trained with ResNet18
and ResNet18 + ConvNet (multiple architecture training).

ResNet18 ResNet18 + ConvNet

Acc (↑) 50.00 54.90
NLL (↓) 1.75 1.56

D.3 Computational cost

To compare how scalable our approach is compared to posterior matching in the weight space, we
measured GPU memory usage corresponding to the number of parameters. As shown in Table 7 and
Table 8, the memory usage for weight space BPC significantly increases as the number of parameters
grows, while FBPC operates very efficiently. Additionally, the coreset ipc increases memory usage
proportionally to its size. In terms of memory considerations, FBPC excels. However, as shown
in Table 9, in terms of time, our method requires slightly more time because more SGD steps are
needed to acquire the empirical covariance. However, when using FBPC-isotropic, these steps can be
reduced, trading off a slight decrease in performance for time savings.

D.4 Differentiable siamese augmentation

Table 10 shows the result for BPC-fKL and FBPC without using DSA [37] and without any augmen-
tation during training. Interestingly, for the ipc 1 case in BPC-fKL, performance improved when
DSA was not applied. However, in all other cases, it is evident that not using DSA leads to an average
performance drop of approximately 4.7%. Moreover, even when training BPC without augmentation,
we observe that function space BPC outperforms weight space BPC.

D.5 Visualization

In this section, we provide visualizations of the pseudocoreset examples for each dataset.

Figure 3: Example images of FBPC for CIFAR10 with ipc 1.

16

Table 7: GPU memory usage (GB) for training CIFAR10 FBPC with ipc 10.
LeNet ConvNet ResNet18

parameters 6.2× 104 3.2× 105 1.1× 107

FBPC 0.02 0.32 2.56
BPC-fKL 0.11 3.17 12.18

Table 8: GPU memory usage (GB) for training CIFAR10 FBPC according to the ipc.
1 10 50

FBPC 0.04 0.32 1.59
BPC-fKL 0.41 3.17 15.59

Table 9: Wall-clock time (sec) for 1 step update for training CIFAR10 pseudocoreset according to
the ipc.

1 10 50

BPC-fKL 1.04±0.10 1.37±0.13 2.59±0.86

FBPC 1.5±0.15 3.29±0.51 8.38±0.48

Table 10: BPC Performances with and without DSA.
1 10 50

BPC-fKL (no DSA) 37.26±1.65 50.48±1.39 60.75±0.26

FBPC (no DSA) 33.69±2.73 55.07±1.30 66.03±0.21

FBPC (DSA) 35.45±0.31 62.33±0.34 71.23±0.17

(a) Examples images of FBPC for CIFAR10 with ipc
10. 1 image per class.

(b) Examples images of FBPC for CIFAR10 with ipc
50. 10 images per class.

Figure 4: Examples images of FBPCs for CIFAR10 dataset.

17

(a) Examples images of FBPC for CIFAR100 with
ipc 1. 1 image per class.

(b) Examples images of FBPC for CIFAR100 with
ipc 10. 1 image per class.

Figure 5: Examples images of FBPCs for CIFAR100 dataset.

Figure 6: Example images of FBPC for Tiny-ImageNet with ipc 1. 1 image per class.

Figure 7: Example images of FBPC for Tiny-ImageNet with ipc 10. 1 image per class.

18

	Proofs
	Inducing points in Stochastic Variational Gaussian Processes
	Experimetal Details
	Expert trajectory
	Hyperparmeter setting

	Additional Experiments
	Cross-architecture generalization
	Training FBPC on larger neural networks
	Computational cost
	Differentiable siamese augmentation
	Visualization

