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ABSTRACT

Data selection is of great significance in pretraining large language models, given
the variation in quality within the large-scale available training corpora. To
achieve this, researchers are currently investigating the use of data influence to
measure the importance of data instances, i.e., a high influence score indicates that
incorporating this instance to the training set is likely to enhance the model per-
formance. Consequently, they select the top-k instances with the highest scores.
However, this approach has several limitations. (1) Calculating the accurate in-
fluence of all available data is time-consuming. (2) The selected data instances
are not diverse enough, which may hinder the pretrained model’s ability to gener-
alize effectively to various downstream tasks. In this paper, we introduce Quad,
a data selection approach that considers both quality and diversity by using data
influence to achieve state-of-the-art pretraining results. To compute the influence
(i.e., the quality) more accurately and efficiently, we incorporate the attention
layers to capture more semantic details, which can be accelerated through the
Kronecker product. For the diversity, Quad clusters the dataset into similar data
instances within each cluster and diverse instances across different clusters. For
each cluster, if we opt to select data from it, we take some samples to evaluate
the influence to prevent processing all instances. Overall, we favor clusters with
highly influential instances (ensuring high quality) or clusters that have been se-
lected less frequently (ensuring diversity), thereby well balancing between qual-
ity and diversity. Experiments on Slimpajama and FineWeb over 7B large lan-
guage models demonstrate that Quad significantly outperforms other data se-
lection methods with a low FLOPs consumption. Further analysis also validates
the effectiveness of our influence calculation. Our code and data are available at
(https://anonymous.4open.science/r/Quad/).

1 INTRODUCTION

Recently, large language models (LLMs) have significantly advanced the field of artificial intelli-
gence (Zhao et al., 2023; Hadi et al., 2023; Minaee et al., 2024). Due to the unprecedented number
of parameters (model size) and the pre-training on huge amount of training data, LLMs are gener-
alizable a broad spectrum of downstream tasks. However, in practice, the computation resources
limit both the model size and the volume of data used in pre-training. In this situation, judiciously
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(a) Influence scores of data instances (b) Influence scores in different clusters

Figure 1: Distribution of influence scores of some sampled data instances.

selecting train datasets is critical for producing highly performance LLMs (Brown, 2020; Du et al.,
2022; Gururangan et al., 2020; Zhang et al., 2024a; Hoffmann et al., 2022; Raffel et al., 2020). In
particular, the quality of the training datasets vary dramatically, while the LLaMA-3.1 report (Dubey
et al., 2024) shows that the use of high quality data in later training stages can greatly improve model
performance.

Typical straightforward data selection approaches include rule-based data filtering to clean the
data (Raffel et al., 2020; Rae et al., 2021), querying high-performance models (e.g., GPT-4) (Wet-
tig et al., 2024; Sachdeva et al., 2024), surrogate models (Lin et al., 2024; Shao et al., 2024), etc.
Although these methods have achieved success on some datasets and models, they rely on simple
heuristics to select training data. Without explicitly measuring the impact of the selected data on the
model, these methods tend to produce sub-optimal pretraining results. To address this issue, some
researchers (Xia et al., 2024; Chai et al., 2023; Yu et al., 2024) start evaluating each data instance by
assigning it a score that reflects its impact on the model. Frequently used scoring methods include
the influence function (Xia et al., 2024; Liu et al., 2021), early loss (Albalak et al., 2023; Deng
et al.), and perplexity (Chen et al., 2024). Among these methods, the influence function consistently
delivers state-of-the-art results by effectively approximating the impact of adding each instance to
the training set. A higher score signifies a higher priority for selecting a data instance, and hence the
top-k (or gumble top-k) instances with the highest scores are chosen (Xie et al., 2023; Wettig et al.,
2024; Yu et al., 2024).

However, the above methodologies have the following limitations.

Prohibitive Computation Cost. First, accurately calculating the influence score of one data in-
stance is expensive, because it involves the computation of the Hessian matrix. However, in the
LLM pre-training, the number of the candidate data instances is extremely large. It is thus pro-
hibitively expensive to compute the scores for all of the candidates.

Lack of Diversity. Second, assume that all influence scores have been calculated, as shown in
Figure 1a. We can see that the top-k instances (e.g., some high-score instances in C1) tend to
be closely distributed in the feature space because the influence computation is closely related to
the data features. That is, the training instances selected in this way are lack of diversity (e.g.,
other instances in C3 with high influence are also worth selecting), while as confirmed by some
studies (Abbas et al., 2023; Tirumala et al., 2023), diversifying training samples mitigates overfitting,
thereby enhancing the generalizability of the model. Therefore, an effective data training selection
method should take both the influence scores and the diversity into consideration.

We thus propose Quad, a scalabe and effective data selection approach, which successfully ad-
dressing above challenges, achieves state-of-the-art pretraining results. Initially, Quad organizes
the given dataset into clusters where the data instances within each cluster are similar, and those in
different clusters exhibit diversity. Hence, we can sample a data subset from a cluster to estimate
the accurate average influence of the cluster, so as to represent the cluster quality (e.g. domain
relevance) w.r.t the model performance.

Next, leveraging the property of the attention-based Transformer architecture which is widely
adopted by the LLMs, we design a novel method to accurately compute the influence of an instance
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on LLM pre-training. More specifically, rather than solely relying on the MLP layers to compute the
influence (Koh & Liang, 2017; Yu et al., 2024; Grosse et al., 2023; Engstrom et al., 2024), we incor-
porate the attention layers such that the influence computation considers more semantic information.
In addition, given that calculating the Hessian matrix is time-consuming, particularly for attention
layers with complex interactions, we incorporate the Kronecker product to approximate the Hessian
matrix, thereby greatly expediting the computation. This successfully addresses the computation
cost challenge.

To improve diversity, we apply the Multi-Arm Bandit (MAB) technique, where each cluster is re-
garded as an arm of the MAB. Upon selecting an arm, we draw samples from the cluster to calculate
influence scores. Subsequently, Quad iteratively samples from clusters, taking into account both
the influence score and data diversity, e.g., whether the cluster has already been sampled. Moreover,
because this sampling strategy effectively avoids calculating the influence of all instances, it further
speeds up the data selection process.

We summarize our main contributions as follows:

• To balance the quality and diversity, we incorporate an iterative MAB solution to first
cluster the data instances and select data instances from these clusters.

• We propose a novel method to compute the influence function in attention-based Trans-
former architecture, so as to precisely measure the data quality in LLM pre-training.

• Experiments on the widely-used dataset Slimpajama, FineWeb and 16 popular downstream
tasks demonstrate that Quad significantly outperforms state-of-art data selection methods
by 1.39% in zero-shot accuracy (train and test on 1.3B and 7B models respectively), also
with low computation resources consumption.

2 RELATED WORK

Rule-based Methods. Initially, researchers often relied on intuition to design hand-crafted heuris-
tics (Soldaini et al., 2024) and (Penedo et al., 2023), aiming to improve data quality. Deduplication
is another typical approach for selecting pretraining data, such as (Penedo et al., 2023) and SemD-
edup (Abbas et al., 2023) which use keyword-based and semantic deduplication, respectively. Ad-
ditionally, certain approaches employ n-gram similarity (Gao et al., 2020; Xie et al., 2023) to assist
in choosing corpora that is semantically aligned with the validation set data (Chai et al., 2022). Al-
though these methods effectively filter out noise and redundant data from web sources, they rely on
simple heuristics and cannot be well generalized.

LLM As a Selector. Although large models such as GPT-4 can effectively assess data quality
due to their semantic comprehension capacity, the metrics utilized to rate data (e.g., writing style,
educational value etc.) heavily rely on human intuition (Wettig et al., 2024; Penedo et al., 2024;
Zhang et al., 2024b; Gunasekar et al., 2023; Peng et al., 2025). This often leads to a mismatch
between the selected data and the data desired by the model.

Surrogate Models. DeepSeekMath (Shao et al., 2024) proposes an active learning strategy to train
a web data classifier. Similarly, in MATES (Yu et al., 2024), a surrogate model was developed to
estimate the influence scores of the data instances. RHO-1 (Lin et al., 2024) used a surrogate model
trained with high-quality data to perform token-level data filtering. However, these surrogate models
are not trained over large-scale data, and thus their generalization ability is limited.

Perplexity serves as a metric for selecting high-probability data in a language model. In (Chen
et al., 2024; Marion et al., 2023; Muennighoff et al., 2024; Wenzek et al., 2019), perplexity (PPL)
is utilized to filter data. As also discussed in Qurating (Wettig et al., 2024), we observe that this
method often incorporates a significant amount of simple and redundant data, because they are easy
for the model to predict.

Influence Function (Grosse et al., 2023; Choe et al., 2024) demonstrates that influence function
can reveal the impact of training data on the performance of large models. Consequently, LESS (Xia
et al., 2024) and MATES (Yu et al., 2024) utilize influence functions for selecting data during the
SFT and pretraining phases, respectively. For large models, computing influence functions is com-
putationally expensive. (Grosse et al., 2023). Hence, given the large amount of data handled during
pretraining, directly using LESS (Xia et al., 2024) for data selection at this stage poses considerable
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difficulties. To overcome this, MATES (Yu et al., 2024) employs a proxy model to approximate the
influence score across the full dataset. However, the limited capacity of this small proxy model hin-
ders its ability to provide accurate influence scores. Furthermore, relying on the influence to select
data solely often leads to a lack of diversity in the chosen data.

3 METHODS

First, we present our problem statement in §3.1. Next, in §3.2, we explain how our method achieves
the balance between quality and diversity in selecting pretraining data. Finally, in §3.3, we introduce
how we compute the influence with attention layers more accurately and efficiently.

Figure 2: Overview of Quad

3.1 PROBLEM DEFINITION

In this paper, we study the problem of data selection from a large pool Dc of candidate data for
pre-training a large language model (LLM). Formally, given a data pool Dc and a reference dataset
Dr, the problem is to select a subset Db ⊂ Dc to pre-train an LLM M , aiming to minimize the loss
of the updated model M ′ on the reference dataset Dr. Note that our method is applicable to both
pre-training M from scratch, and continuous pre-training scenarios where M starts as a pre-trained
checkpoint.

3.2 BALANCE BETWEEN QUALITY AND DIVERSITY

As shown in Figure 1b, there are significant variations in the distribution of influence scores among
different clusters. To achieve the quality-diversity balance, it is necessary to know the precise av-
erage influence score for instances in each cluster. However, Figure 1b shows that the influence
scores for each cluster also fluctuate around the average, indicating a certain level of uncertainty.
Estimating the average with a small sample size will not be accurate enough, while taking a large
number of samples to compute the average influence is costly.

Hence, we propose to use the MAB (Vermorel & Mohri, 2005) technique that is capable of making
decisions iteratively under uncertainty. At a high level, each cluster represents an arm of the MAB,
and during each iteration, a cluster with a high average influence score tends to be selected and sam-
pled. We will then compute the influence of data instances to update the average. Moreover, clusters
that are not visited often present significant opportunities for sampling to balance the diversity.

The overall process of this approach is illustrated in Figure 2. Specifically, our method can be di-
vided into the following four steps: First, we sample the top-k clusters with the highest cluster
scores (denoted by CS) computed by MAB. Here, the cluster score is determined by both the in-
fluence score and the sample frequency. Then we calculate the influence scores for the samples in
each cluster (Section 3.3). At this point, we select high scoring samples to be added for training
and use their scores to update the cluster score for each cluster. Throughout the iterative process,
the MAB algorithm focuses on frequently sampling high-quality clusters that have high influence
scores, which also enhances the accuracy of their quality estimation (i.e., updating the average in-
fluence Ii). Simultaneously, it ensures diversity by also sampling less-visited clusters. Next, we
discuss how to compute and update the cluster score in details.
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Cluster Score (CS). The Upper Confidence Bound can effectively balance exploration (i.e., data
diversity) and exploitation (i.e., data quality), so we use it as the cluster score to evaluate each clus-
ter, as shown in Equation (1). Specifically, the cluster score is determined by the average influence

score Īi and the exploration score
√

2 ln
∑

j T (Cj)

T (Ci)
, where T (Ci) denotes the frequency of instances

sampled from cluster Ci, and
∑

j T (Cj) denotes the total times of samples taken from all clusters.

CSi = Īi + α

√
2 ln

∑
j T (Cj)

T (Ci)
(1)

Update the cluster score. During each iteration, a subset of data Bi is sampled from each cluster
with a high cluster score (CS). The sum of their influence score Ii can be used to denote the impact
of the samples from the cluster Ci on the model.

R(Ci)+ =
∑
z∈Bi

Iθ(Dr, z), T (Ci)+ = 1 (2)

where R(Cj) denotes the total reward accumulated by cluster Ci over several iterations.Then the
average influence score Īi for cluster Ci can be represented as Īi = R(Ci)

T (Ci)
. As the sample size

grows, Īi for each cluster Ci steadily approaches the exact average influence of the cluster, which
can be used to update the cluster scores for all clusters.

Data selection. During each iteration, we pick a small proportion(γ) of data instances from selected
clusters. We also require that these instances have influence scores higher than the threshold τ ,
otherwise we will not select them, which are then added into the training dataset.

Algorithm 1: Quad Algorithm
Input: Candidate data pool Dc, reference set Dr, the model θ
Output: Selected data Db

1 C = Cluster(Dc);
2 while do
3 Ctop k = top-k clusters with the highest Cluster Score(CS) ;
4 Btop k = mini-batchs sampled from Ctop k

5 for Ci in Ctop k do
6 R(Cj) +=

∑
z∈Bi

Iθ(Dr, z), T (Cj) += 1 ;
7 end
8 for Ci in C do
9 Īi =

R(Ci)
T (Ci)

;
10 if Īi > threshold then Db+ = γCi;
11 end

12 CSi = Īi + α
√

2 ln
∑

j T (Cj)

T (Ci)
;

13 end
14 return Db;

3.3 INFLUENCE CALCULATION WITH ATTENTION LAYERS

Instead of retraining the large model with each data sample z, the impact of z on the model M can
be estimated by calculating the influence function for each instance. In this section, we extend the
influence calculation to multi-head attention layers and provide acceleration techniques.

Iθ(Dr, z) = −∇L(θ,Dr)(H + λI)−1∇L(θ, z) (3)

In the above equation, Iθ(Dr, z) denote the influence function of data z on model θ. ∇L(θ,Dr)
and ∇L(θ, z) denote the gradient of reference set Dr and data z, respectively. Since the training
of the large model does not often fully converge, resulting in a non-invertible Hessian matrix H , a
regularization term λI is introduced (Bae et al., 2022). Equation (3) is typically divided into the
following two stages to speed up the computation:
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1. Approximate the multiplication of the gradient of the validation set ∇L(θ,Dr) and the inverse
Hessian matrix H−1 using the inverse Hessian vector product (iHVP).

2. Compute the dot product between the iHVP and the gradient of each training data point ∇L(θ, z).

While this framework can accelerate the computation of the influence function, scaling it up to
large language models (LLMs) with massive parameters is still expensive. Hence, K-FAC (Martens
& Grosse, 2015; Ueno et al., 2020) can be used to accelerate the iHVP computation by using the
Kronecker product to decompose the Hessian matrix.

The K-FAC approximate the parameters of different MLP layer θ1, θ2 and θ3 as independent. That’s
because, during the gradient computation and update process, there are usually only minimal direct
dependencies between the gradients of different MLP layers. This is particularly evident during
back propagation, where the weight updates for each MLP layer are primarily influenced by the
parameters of that specific layer. Therefore, the influence function Iθ1,θ2,θ3(Dr, z) in K-FAC method
can be expressed as:

Iθ1,θ2,θ3(Dr, z) = Iθ1(Dr, z) + Iθ2(Dr, z) + Iθ3(Dr, z) (4)
In attention mechanisms, there exist complex connections between the Query, Key, and Value layers.
As the right-upper corner of Figure 3 shows, separately calculate the hessian matrix of Query, Key
and Value layers, will miss massive information. Consequently, it is essential to consider the QKV
layers as a unified layer θqkv when computing the influence function. Therefore, the influence
function Iθatt(Dr, z) can be expressed as:

Iθatt
(Dr, z) = Iθqkv

(Dr, z) + Iθo(Dr, z) (5)
Then, as the right-lower corner of Figure 3 shows, by decomposing the Hessian matrix into a

Figure 3: Kronecker Product in calculating iHVP
kronecker product of smaller matrices and computing the inverse of each smaller matrix, we can
avoid directly inverting the entire Hessian matrix, significantly reducing computational cost, and
accelerate this process:

Forward Propagation:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (6)

Backward Propagation:
Dθ = vec(DW ) = δ ⊗ x (7)

Here, ⊗ denotes the Kronecker product, and vec() represents the vectorization operation. Thus, the
gradient of θqkv can be written as:

Dθqkv =

[
vec(DWQ)
vec(DWK)
vec(DWV)

]
=

[
δq
δk
δv

]
⊗ x (8)

Let δqkv =

[
δq
δk
δv

]
. Then, the Hessian matrix Hqkv can be estimates by:

Hqkv = E(DθqkvDθqkv
T ) = E(δqkvδ

T
qkv ⊗ xqkvx

T
qkv)

≈ E(δqkvδ
T
qkv) ⊗ E(xqkvx

T
qkv) = ∆qkv ⊗ Xqkv

(9)
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Also, Ho = ∆o ⊗Xo. Thus, the iHVP of the attention layer can be estimated as follows:

H−1
attvatt =

[
H−1

qkvvqkv

H−1
o vo

]
=

[
(∆qkv ⊗Xqkv)

−1vqkv

(∆o ⊗Xo)
−1vo

]
=

[
(∆−1

qkv ⊗X−1
qkv)vqkv

(∆−1
o ⊗X−1

o )vo

]
=

[
vec(∆−1

qkvVqkvX
−1
qkv)

vec(∆−1
o VoX

−1
o )

] (10)

where vatt, vqkv , vo represent the gradient of reference set Dr on parameters θatt, θqkv , θo, respec-
tively. Thus, the influence score of attention layers can be written as: Iθatt

= −∇L(θatt, z)H
−1
attvatt.

To avoid the excessive memory usage of validation set gradients, we apply the Johnson-
Lindenstrauss Lemma Johnson (1984) to reduce the dimensionality of both the iHVP computation
results and the training data gradients ∇L(θ, z). We achieve this by projecting H−1

attvatt onto a
d-dimensional space, resulting in QTH−1

attvatt. In the Lemma, each element of Q is drawn from
RP×d, with P representing the original dimensionality and d denoting the reduced dimensionality.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Dataset Preparation. We use the entire 627B-token SlimPajama dataset (Soboleva et al., 2023) and
15000B-token FineWeb dataset (Penedo et al., 2024) as the candidate pool Dc. In the clustering
process, the BAAI/bge-large-en-v1.5 model is employed to generate embeddings for the
input data, and approximately 600 million data points from the candidate pool Dc are clustered into
10,000 groups using the k-means algorithm. We use LAMBADA (Paperno et al., 2016), Open-
webmath (Paster et al., 2023) and FLAN (Chung et al., 2024) as our reference (validation) set Dr,
which are all widely used language modeling tasks and often serves as a validation benchmark for
language model pretraining. (Yu et al., 2024; Xie et al., 2023; Hoffmann et al., 2022).

Experimental Settings. We train two transformer-based decoder-only language models, one with
1.3B parameters and the other with 7B parameters, both utilizing RoPE embeddings (Su et al.,
2023) and a maximum context window of 2048 tokens (Touvron et al., 2023). Following the setting
of MATES (Su et al., 2023), 30B tokens out of the 627B are selected for training using Quad and
compare with baselines. The learning rate is set to 5 × 10−5 for 1.3B model and 1 × 10−5 for 7B
model, the batch size is set to 4096, and the Adam optimizer is employed with hyperparameters β1 =
0.9, β2 = 0.95, ϵ = 10−8. As for Multi-Armed Badit, we set the α = 0.002 , sample proporation γ
= 0.05 and the sample threshold τ as 0.0025.

Baselines. We compare our methods with several baselines. (1) Random samples data from the
entire candidate dataset randomly. (2) Qurating uses the large language model to select data.
(3) DSIR selects data instances that are similar to the LAMBADA, Openwebmath or FLAN dataset.
(4) PPL uses perplexity-based data selection, i.e., selecting data instances with the lowest perplexity
scores. (5) MATES trains a surrogate model to evaluate the influence of each data instance on the
target model.

Evaluation Datasets. To comprehensively evaluate the capabilities of pretrained models, we con-
duct experiments on various downstream tasks covering three significant categories:

General Knowledge: ARC-C, ARC-E (Clark et al., 2018), and SciQ (Welbl et al., 2017).

Commonsense Reasoning: HellaSwag (Zellers et al., 2019), SIQA (Sap et al., 2019), Wino-
Grande (Sakaguchi et al., 2021), Logiqa (Liu et al., 2020).

Reading Comprehension: OpenbookQA (Mihaylov et al., 2018), and BoolQ (Clark et al., 2019).

Math: GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), OCW (Lewkowycz et al.,
2022), SAT (Azerbayev et al., 2023), and MMLU STEM (Hendrycks et al., 2020)

Long-text Generation: WikiText (Merity et al., 2016), and HelloBench (Que et al., 2024).

Evaluations are conducted using the lm-evaluation-harness (Gao et al., 2023) framework and the
average accuracy (i.e., Overall Score) is reported for comparison.
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Table 1: Overall Performance

Selection Method
General

Knowledge
(3 tasks)

Commonsense
Reasoning

(4 tasks)

Reading
Comprehension

(2 tasks)
Overall FLOPs

Random 50.33 36.19 39.09 41.55 7.66

DSIR 50.37 ↑0.04 34.01 ↓2.18 38.80 ↓1.29 40.53 ↓1.02 7.66

PPL 48.71 ↓1.62 37.72 ↑1.53 38.57 ↓0.52 41.57 ↑0.02 9.51

Semdedup 50.99 ↑0.66 36.11 ↓0.08 39.44 ↑0.35 41.81 ↑0.26 8.11

Qurating 51.56 ↑1.23 35.93 ↓0.26 39.70 ↑0.61 42.01 ↑0.46 13.66

MATES 50.45 ↑0.12 36.06 ↓0.13 39.83 ↑0.74 41.93 ↑0.38 9.81

Quad(ours) 52.08 ↑1.75 37.03 ↑0.84 41.07 ↑1.98 42.94 ↑1.39 9.15

(a) MAB vs. top-k clusters (b) Influence accuracy (c) Influence correlation (d) Sample threshold τ

Figure 4: (a) shows the effectiveness of the MAB method; (b) shows the accuracy of calculating
the influence function on MLP and attention layers; (c) shows the correlation between Query, Key,
Value layers impact a lot on the accuracy of influence calculation; (d) shows the model performance
of varying sample threshold τ .

4.2 RESULTS

Overall Performance. As demonstrated in Table 1, our method surpasses all the baseline meth-
ods in downstream tasks with zero-shot evaluation. To be specific, we can observe that on General
Knowledge and Reading Comprehension tasks, Quad has the improvement of 1.75% and 1.98%
respectively compared with Random. Quad outperforms DSIR and Semdedup because they use
rule-based heuristics to select data without considering the model. Although PPL and MATES con-
sider the model, they do not perform well because the former one always selects some simple and
duplicated instances, and the surrogate model of the latter one is small and lacking of enough train-
ing data. Qurating generally performs the best among other baselines, but still worse than our
approach, and it incorporates the highest FLOPs(1e19) because of the usage of LLMs for data selec-
tion. In terms of the FLOPs, we can observe that except the methods (i.e., DSIR, SemDeDup) that
use simple heuristics, we consume minimal computation resources because we sample from clusters
without considering the entire candidate dataset like PPL, Qurating and MATES.

Effectiveness of MAB. This section evaluates the effectiveness of the MAB approach for data se-
lection in contrast to the straightforward method of choosing the top-k clusters with the highest
influence scores for model training. To be specific, we randomly select an equivalent number of
data points from the top 150, 500, and 1000 clusters. Figure 4a illustrates the trade-off between
data quality and diversity: clusters with higher influence scores do not necessarily enhance model
performance on downstream evaluation sets because of their lack of diversity. Hence, the multi-
armed bandit method can more effectively capture the trade-off between quality and diversity across
clusters, resulting in superior performance, as opposed to merely choosing the top-k clusters.

Effectiveness of Influence Calculation. This experiment studies the effectiveness of our influence
calculation method. In this section, we select the top 500 clusters with the highest scores using
three methods: (1) no-Hessian (i.e., computing the gradient similarity between training data and
reference data (Pruthi et al., 2020)) without considering the Hessian matrix; (2) MLP(i.e., calculat-
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(a) Training loss (b) Validation loss (c) Clustering algorithm (d) number of clusters

Figure 5: (a) training loss; (b) validation loss; (c) model performance on varying clustering algo-
rithm; (d) model performance on varying number of cluster

ing influence function on MLP layers) and (3) Ours (i.e., calculating influence function on both
MLP and attention layers). From each cluster, we uniformly sample data to train the large model.
As shown in Figure 4b, our solution (MLP+Attention) performs better than MLP because the
attention layer considers more semantics. no-Hessian performs the worst because it does not
precisely capture the impact of training data instances on the model without the Hessian matrix.

Also, we conduct experiments to verify the relationship between the Query, Key, Value matri-
ces, which is shown in Figure 4c. We compare Pearson correlation coefficients of three meth-
ods with a baseline that computes the attention layer’s influence score without acceleration. (1)
No-Hessian(i.e., computing the gradient similarity between training data and reference data)
without considering the Hessian matrix; (2) Independent (i.e., calculating the Hessian matri-
ces of the query, key, and value layers independently) and (3) Ours (i.e., calculating the Hessian
matrices of the query, key, and value layers as a whole).

4.3 CONTINUOUS PRETRAIN

In this experiment, we use Slimpajama (Soboleva et al., 2023) as the candidate dataset and Open-
webmath (Paster et al., 2023) as the reference set on 7B model. For downstream tasks, we use
GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), OCW (Lewkowycz et al., 2022),
SAT (Azerbayev et al., 2023), and MMLU STEM (Hendrycks et al., 2020), calculating accuracy
by averaging their scores. As shown in Figure 7d, selecting 400B random data instances performs
worse than 100B selected by Quad because the larger set has irrelevant information, degrading the
performance and Quad improves selection by identifying beneficial data for the specific domain.

4.4 FURTHER EXPERIMENT

Generalizability of Quad To demonstrate the generalizability and robustness of our method, we
include FLAN (Chung et al., 2024) (a mix of multiple NLP tasks) as reference datasets . We use
FLAN to train a transformer-based, decoder-only language model with 1.3B parameters on a new
candidate dataset, FineWeb (Penedo et al., 2024). From this dataset, 100B tokens are selected for
training using Quad alongside other baselines. As shown in the Figure 6(c), Quad exhibits superior
accuracy compared to all baselines like DSIR, Semdedup, PPL, Qurating, and MATES. Notably,
Quad shows a 0.97% accuracy improvement over Qurating, a leading baseline.

Scalablity of Quad. We increase the model size from 1.3B to 7B and choose 100B tokens from the
Slimpajama dataset. As shown in the Figure 6(a), Quad outperforms other baselines in accuracy
due to high-quality, diverse data selection. Additionally, Quad demonstrates good scalability com-
pared to state-of-the-art baselines (Qurating and MATES) by using the K-FAC technique for faster
influence computation and the MAB framework to quickly identify beneficial data instances.

Effciency of Quad. To highlight the importance of data selection, we compare Quad and direct
training with clean data on 7B modes for downstream tasks. As shown in the Figure 7c, Quad-
7-100B surpasses Clean-7B-100B because Quad selects data beneficial for the current training
process, unlike the latter’s random selection from SlimPajama. At the same time, Quad-7B-100B
offers performance comparable to Clean-7B-400B, reducing computation by 75%.

4.5 ABLATION STUDY

Sampling Threshold of Influence (τ ). Figure 4d illustrates that setting the threshold too high or
low will both degrade the model performance. This is because the selected data instances tend to
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Figure 6: (a) 7B model use LAMBADA as reference set; (b) 7B model use Openwebmath as refer-
ence set; (c) 1.3B model use FLAN as reference set

(a) Influence threshold τ (b) Exploration weight α (c) Effciency of Quad (d) Continuous pretrain

Figure 7: (a) model performance with different influence threshold τ ; (b) model performance with
different α; (c) the effciency of Quad; (d) continuous pretrain

exist in few clusters with high influence scores, resulting in poor diversity. In contrast, when the
threshold is set too low, the sampled instances will be from many clusters with low influence scores,
which also degrades the model performance. Considering that the model’s performance is highly
sensitive to the influence threshold, a quick selecting method is proposed in Appendix F.

Number of Clusters We use the Elbow (Syakur et al., 2018) method to identify the optimal cluster
number(k = 10000) of the Slimpajama dataset. In Figure 5c, We plot the effect of different cluster
numbers, which shows the model consistently performs well with around 10000 clusters. Too few
clusters (i.e., k = 1000) cause high variance and poor representation, while too many clusters (i.e.,
k = 500000) result in redundancy and hinder diverse exploration, degrading performance.

Clustering Algorithm Moreover, we evaluate the performance of several typical clustering methods
including GMM (Figueiredo & Jain, 2002), DBSCAN (Ester et al., 1996), and MeanShift (Cheng,
1995). The details of selecting optimal clustering parameters can be found in the Appendix D. As
illustrates in Figure 5d, Quad is robust to clustering algorithms on downstream tasks.
α for Quality-Diversity Balance. Our approach employs α to balance the diversity and quality
in the MAB framework. As shown in figure 7b, when α is small, the MAB framework prioritizes
high-influence clusters and risks local optima due to reduced diversity. Conversely, when α is large,
it overemphasizes diversity at the expense of quality, limiting model performance gains.

5 CONCLUSION & LIMITATIONS

This paper presents Quad, a method to balance diversity and quality in pretraining data selection.
Quad employs influence functions to identify beneficial data by clustering and selecting represen-
tative subsets. Each cluster is treated as an arm in an MAB framework due to uncertain influence
scores, allowing sampling from quality clusters to estimate influence scores accurately while main-
taining diversity. We also adapt the influence function for attention layers and enhance calculation
efficiency for better data impact assessment. As an exploratory research work, the ability of Quad to
generalize to larger model sizes needs to be further explored, which is a challenging and significant
issue for the method to be used in practice.
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A DETIALED RESULT

Table 2: Performance Comparison

Selection Method General Knowledge Commonsense Reasoning Reading Comprehension Overall

arc-e arc-c sciq avg logiqa hellaswag siqa winogrande avg openbookqa boolq avg

Random 50.27 20.31 80.40 50.33 21.20 34.11 38.49 50.99 36.20 17.60 60.58 39.09 41.55
Semdedup 51.35 20.73 80.90 50.99 19.05 34.56 39.30 51.54 36.11 18.80 60.09 39.45 41.81
MATES 50.00 21.25 80.10 50.45 21.66 33.90 38.69 52.17 36.61 19.00 60.67 39.84 41.94
PPL 45.41 20.82 79.90 48.71 20.43 35.92 39.92 54.62 37.72 18.80 58.35 38.58 41.57
DSIR 49.28 20.14 81.70 50.37 21.20 30.89 35.98 47.99 34.02 16.20 61.41 38.81 40.53
Qurating 52.10 23.29 79.80 51.56 20.43 33.57 39.05 50.67 35.93 18.00 61.41 39.71 42.04
Quad(ours) 52.27 21.76 82.20 52.08 22.89 34.41 38.74 52.09 37.03 20.00 62.14 41.07 42.94

topk-cluster
top-150 48.61 20.90 79.00 49.50 23.66 34.51 39.00 51.78 37.24 19.20 61.74 40.47 42.04
top-500 51.05 21.25 79.70 50.67 22.73 34.40 39.20 52.41 37.19 18.80 62.76 40.78 42.48
top-1000 49.96 20.99 80.40 50.45 21.97 34.00 38.74 50.2 36.23 18.20 60.61 39.41 41.67

Table 3: Ablation Study of Threshold τ

Threshold General Knowledge Commonsense Reasoning Reading Comprehension Overall

arc-e arc-c sciq avg logiqa hellaswag siqa winogrande avg openbookqa boolq avg

0.0015 51.26 21.16 80.20 50.87 21.51 33.92 39.00 51.07 36.38 19.60 61.74 40.67 42.16
0.0020 52.23 22.27 80.70 51.73 22.89 34.77 38.33 50.20 36.55 19.20 61.50 40.35 42.45
0.0025 52.27 21.76 82.20 52.08 22.89 34.41 38.74 52.09 37.03 20.00 62.14 41.07 42.94
0.0030 50.25 19.62 80.80 50.22 22.27 33.96 38.96 53.28 37.12 20.60 59.20 39.90 42.10

Table 4: Effectiveness of Influence Calculation

Method General Knowledge Commonsense Reasoning Reading Comprehension Overall

arc-e arc-c sciq avg logiqa hellaswag siqa winogrande avg openbookqa boolq avg

Random 50.27 20.31 80.40 50.33 21.20 34.11 38.49 50.99 36.20 17.60 60.58 39.09 41.55
No-Hessian 49.03 20.99 80.50 50.20 22.58 33.40 38.89 52.41 36.82 19.20 61.50 40.35 42.06
MLP 50.63 21.50 78.90 50.34 22.89 33.32 38.74 52.57 36.88 19.60 61.77 40.69 42.21
Ours 51.05 21.25 79.70 50.67 22.73 34.40 39.20 52.41 37.19 18.80 62.76 40.78 42.48

Table 5: Model Architecture

Hyperparameter Value

Vocabulary Size 32,000
MLP Ratio 8/3
Hidden Dimension Size 2048
Number of Layers 24
Number of Attention Heads 16
Number of KV Attention Heads 16
RoPE Base 10,000
Maximum Context Window Length 1024
Number of Parameters 1,345,423,360(1.3B)

B EFFECTIVE SOLUTION OF SUITABLE SAMPLE RATIO

For this hyperparameter, we explore the extreme cases in the 100B scenario.

[Extreme cases.] The extreme cases of γ are very small and large sampling ratios. As shown in the
table below, a very small sampling ratio (i.e., γ = 0.1%) leads to low model accuracy (2.77% lower
than the accuracy of the most appropriate sampling ratio, i.e., 5%) due to the inaccurate estimates
of influence scores. We can observe that a large sampling ratio (i.e., γ = 20%) does not improve
the model performance much because a relatively accurate influence estimation is sufficient, but
incorporates high computational costs.
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[Metric and Criteria.] At a high level, we compute the most appropriate sampling ratio by sampling
several clusters. For each sampled cluster, we compute the influence scores of its data instances and
calculate the true average score. Then, we use the difference between the estimated score and the
true score as the metric to select the best sampling ratio τ . The high-level idea is to compute the
true average influence scores of several sampled clusters and then identify the appropriate sampling
ratio to accurately approximate the average.

[Specific hypermarameter selection strategy.] Specifically, after clustering the data instances in the
candidate dataset, we randomly sample several clusters. Initially, we sample 1% data instances from
the cluster and compute the average score. if the difference is within 10%, we set this proportion
(1%) as the suitable sampling ratio for that cluster. Otherwise, we increase the ratio by 1%, to 2%
, compute a new average, and repeat this process until the difference is within 10%. Finally, we
average the suitable ratios from the sampled clusters to find the overall appropriate sampling ratio.

In this way, although we sample once, there would be a fairly accurate estimation of the average
influence score. Since we are likely to sample multiple times, the estimation will be even more
accurate. Besides, as data instances within each cluster exhibit similarity, by sampling a small
fraction, we can have an estimation that is precise enough to select high-quality data for good model
performance, thereby keeping computational costs low.

In our experiments, based on the Slimpajama dataset, we have determined that the optimal ratio
is about 5%, as indicated in the paper. Here, we add another ablation study to demonstrate the
effectiveness of this strategy. Specifically, we increase the sampling ratio from 1%, run the Quad
algorithm respectively, and report the model accuracy of training with the selected data using the
sampling ratio. We can observe from the below table that with the ratio increasing from 1%, the
model accuracy increases because the influence estimation is more accurate. When the ratio exceeds
5%, the accuracy remains stable because that ratio is large enough to have an accurate estimation.
Hence, it is not necessary to keep increasing the ratio, which will consume more computational
costs.

Table 6: Ablation Study of Sampling Ratio

Sampling Ratio 0.1% 1 % 2 % 3 % 4 % 5 % 6 % 7 % 8 % 9 % 10 % 20 %
Accuracy 44.97 46.11 46.92 47.36 47.63 47.88 47.93 47.96 47.97 47.97 47.97 47.99

C STATISTICAL SIGNIFICANCE TESTS

We run the experiment six times and report the statistics significance tests. The results are as follows:

Table 7: Statistic Significance of Model Performance

Exp-1 Exp-2 Exp-3 Exp-4 Exp-5 Exp-6 Avg ± std
Random 41.52% 41.32% 41.68% 41.72% 41.57% 41.55% 41.56%±0.13%

DSIR 40.59% 40.47% 40.72% 40.29% 40.37% 40.53% 40.49%±0.14%
PPL 41.35% 41.72% 41.55% 41.60% 41.61% 41.57% 41.57%±0.11%

Semdedup 41.60% 41.94% 41.87% 42.04% 41.91% 41.81% 41.86%±0.14%
Qurating 42.03% 41.89% 41.81% 42.21% 42.13% 42.01% 42.01%±0.13%
MATES 42.10% 41.76% 42.20% 41.70% 41.81% 41.93% 41.92%±0.18%

Quad(ours) 43.11% 42.91% 43.03% 43.02% 42.87% 42.94% 42.98%±0.08%

Based on the above results, we perform a significance test utilizing t-tests. We make the following
two hypothesis. (1) Null hypothesis (H0): The average accuracy of Quad does not exceed the av-
erage of baselines; and (2) Alternative hypothesis (H1): The average performance of Quad exceeds
that of the baselines. We set the confidence level as 99%, with a significance level of α = 0.01. The
p-value represents the probability of observing the test statistic under the assumption that H0 is true.
A small p-value indicates a lower likelihood of observing the current result if H0 holds.

For each baseline, we can observe p < α, and thus we reject H0 and accept H1, indicating that
the average performance of Quad is greater than that of baselines. Since the confidence level of
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Table 8: T Test of Different Selection Methods versus Quad

t test Random DSIR PPL Semdedup Qurating MATES
p-value 7e-10 5e-12 2e-10 1e-08 4e-08 2e-07

t-test surpasses 99%, we can conclude that the superiority of Quad compared to other baselines is
statistically significant.

D ABLATION STUDY OF CLUSTERING NUMBERS AND ALGORITHMS

In this part, we conduct experiments to explore extreme cases of selecting 100B data.

[Extreme cases.] As shown in the table below, a very small number of clusters (i.e., k = 100) leads
to poor accuracy (2.77% lower than the accuracy of the best cluster number) due to the high variance
of influence scores in each cluster. Thus, the sampled instances cannot well represent the cluster.
Similarly, when the cluster number is too high (i.e., k = 1, 000, 000), there will be many clusters
that are in fact contain similar data instances, and thus it is relatively hard to explore diverse clusters,
thereby leading to the performance degradation (1.37% lower than the accuracy of the best cluster
number).

[Metric and Criteria.] We use the metric Within-Cluster Sum of Squares (WCSS) to select the best
cluster number using the well-known Elbow [1] algorithm. WCSS is the sum of squared distances
between each data instance and its cluster center, i.e., WCSS=

∑k
i=1

∑
x∈Ci

∥x − µi∥. At a high
level, the criteria should be that within each cluster, data instances are close to each other, based on
which it is better for different cluster centers to be far away from each other. Based on the criteria, the
Elbow algorithm leverages the WCSS as a measurement to iteratively select an appropriate cluster
number, as follows.

[Specific hypermarameter selection strategy.] To be specific, Elbow begins with a small k, and with
k increasing, WCSS first decreases rapidly and then slows down. Then, we identify the “elbow
point” where the decreasing rate becomes slow as the best k. Thus, within each cluster, data points
are sufficiently close to one another. Furthermore, given that k remains modest, different cluster
centers tend to maintain a distance from each other. From the following table we can observe that
the model consistently performs well when the cluster number is close to 10,000.

Table 9: Ablation Study of Cluster Numbers

Cluster Numbers 100 1,000 5,000 10,000 20,000 50,000 100,000 1,000,000
Accuracy 45.11 % 46.93% 47.21% 47.88% 47.73% 47.73% 47.06% 46.51%

Clustering algorithms. In terms of the clustering algorithms, we also added experiments to show
that Quad is not sensitive to clustering algorithms mainly because different algorithms have their
own strategies to select appropriate parameters, which follows the criteria mentioned above. Under
the criteria, in general, Quad can perform well by considering both the quality and diversity.

Specifically, we evaluate the performance of several typical clustering methods including
GMM (Figueiredo & Jain, 2002), DBSCAN (Ester et al., 1996) and MeanShift (Cheng, 1995).
Considering that the clustering results are affected by the parameters of clustering algorithms, we
use different methods to select proper parameters. For GMM, we can use the AIC score (Aho et al.,
2014) to determine the appropriate number of components. For DBSCAN, there are 2 key param-
eters: (1) eps(the radius of a neighborhood w.r.t. some data points) and (2) minPts (a data point
is considered as a core point if at least minPts data points are within eps of it). They can be set
using the method in (Schubert et al., 2017). Mean-Shift is a centroid-based method that updates the
centroids to be the mean of the points within a given region. The size of the region is controlled
by bandwidth, which can be set by the estimation of the bandwidth. In this set of experiments, the
experimental settings of pretraining 1.3B model are consistent with those reported in our paper. The
above result shows that Quad is not sensitive to the clustering algorithms.
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Table 10: Ablation Study of Clustering Methods

Clustering Methods K-MEANS DBSCAN GMM MeanShift
Accuracy 47.88 % 47.79 % 47.69 % 47.71 %

E FLOPS CALCULATION

FLOPs is the number of floating point operations performed by GPUs. Many state-of-the-art meth-
ods [1,2,3] use it to measure the consumption of GPU computing resources. In our experiments,
FLOPs is collected directly in the data selection process using the Python code:
import torch
import torch.nn as nn
from torch.profiler import profile, ProfilerActivity

model = nn.Linear(1024, 512).cuda()
input data = torch.randn(128, 1024).cuda()
with profile(activities=[ProfilerActivity.CPU,
ProfilerActivity.CUDA],

with flops=True) as prof:
model(input data)

print (prof.key averages().table(sort by="flops", row limit=10))

F EFFECTIVE SOLUTION OF INFLUENCE THRESHOLD

Recap that the sampling threshold of influence (τ ) is utilized to determine whether data instances
sampled from each cluster should be fed into LLMs for training. For this hyperparameter, we also
explore the extreme cases in the 100B scenario.

[Extreme cases.] If τ is very large (e.g., 2.92e-3, close to the smallest influence score in the candidate
dataset), only data instances with high influence scores are selected. This typically results in reduced
diversity among instances, which in turn can negatively impact the model performance. If τ is small
enough (e.g., 1.76e-3, close to the largest influence score in the candidate dataset), many low-quality
data instances with low influence scores are selected. This also hurts the model performance.

Table 11: Ablation Study of Influence Threshold

Influence threshold(τ ) Bucket Accuracy
2.92e-3 1-th 46.87%
2.60e-3 3-th 47.30%
2.47e-3 4-th 47.88%
2.38e-3 5-th 47.65%
2.17e-3 6-th 47.19%
1.76e-3 10-th 45.26%

[Metric and Criteria.] We use the model performance on the validation (reference) set as the evalua-
tion metric. The criteria is that we sample some data instances from the candidate dataset. Based on
the samples, we try different thresholds, evaluate on the validation test and select the best threshold.

[Specific hypermarameter selection strategy.] The strategy of selecting an appropriate τ consists
of the following steps. (1) Considering the efficiency issue, we sample about 20% data instances
to form a new candidate dataset from the original one to tune the parameter. (2) We cluster over
the candidate dataset, sample some instances from each cluster and compute their influence scores,
which are utilized to capture the distribution of influence scores. (3) We rank these scores in de-
scending order and assign them to 20 buckets, so as to derive 20 thresholds, among which we select
the best one. For example, the first threshold corresponds to the highest influence score among the
top 5% instances (the first bucket). The last threshold is the lowest influence score among all in-
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stances of buckets. (4) Finally, we select data instances via the Quad algorithm using the above
thresholds, evaluate on the validation set, and select the best one.

G SCALABILITY OF QUAD

In this response, we first discuss the advantage of using Quad to select data instances. We then run
experiments to validate the argument.

Overall, we agree with the reviewer that data cleaning is likely to enhance the model performance.
However, the obtained data after cleaning is still large-scale, which is prohibitively expensive to
train, but not always necessary. This is because a subset of judiciously selected data can achieve
competitive or even superior model performance compared with training with all clean data. The
reasons are two-fold. First, Quad is a model-aware data selection method, which uses the data
influence to measure the impact of each data instance on the current training process, but coarse-
grained data cleaning methods are not customized to the target tasks. Therefore, given a user-
specific task, simply using all available data to train may not the optimal choice. Second, Quad
also considers the diversity for data selection, and thus the selected small part of data instances that
effective for the current pretraining process.

Overall, the model-aware data selection is of great significance because (1) it is customized to the
reference set, which can much improve the model performance with a small number of data in-
stances; and (2) the model can be trained over these selected small amounts of data, thus greatly
improving the training efficiency.

Next, we run two new experiments to validate this.

First, we would like to clarify that the SlimPajama dataset used in our experiment has already un-
dergone multiple rounds of coarse-grained data cleaning processes Soboleva et al. (2023), including
short documents filtering, deduplication, minhash generation, etc. Therefore, to demonstrate the
significance of the data selection method, we compare the performance of Quad and directly train-
ing with clean data with different data sizes with 1.3B and 7B models, evaluating on the long-text
generation tasks mentioned in the last response. As shown in the below table, we can observe that
Quad-1.3B-100B outperforms Clean-1.3B-100B because Quad judiciously selects data that ben-
efits the current training process while the latter one just selects 100B data randomly from the clean
SlimPajama dataset without considering the current model state. Because of the similar reason,
Quad-1.3B-100B achieves comparable model performance with Clean-1.3B-400B, which saves
75% of computation costs. We can also observe that training on 7B model has a similar result.

Table 12: Model Performance and Flops with Different Method and Training Tokens

Methods Accuracy FLOPs
Clean-1.3B-100B 44.41 % 58.1
Clean-1.3B-400B 47.66% 232.5
Quad-1.3B-100B 47.88 % 72.3
Clean-7B-100B 49.73% 263.1
Clean-7B-400B 53.11% 1063.7
Quad-7B-100B 53.19% 307.6

Secondly, we add another dataset Openwebmath (Paster et al., 2023) as our new reference dataset. It
is based on the Slimpajama dataset, which aims at selecting data to improve the mathematical skill
of the model, i.e., a specific domain. We use GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al.,
2021), OCW (Lewkowycz et al., 2022), SAT (Azerbayev et al., 2023), MMLU STEM (Hendrycks
et al., 2020) as the downstream tasks and the final accuracy is computed the average score of these
downstream tasks. As shown in Table 12, we can observe that random selection of 400B data
instances does not perform better than selecting 100B by Quad on downstream mathematical eval-
uation datasets. This is because the 400B data instances contain a significant amount of information
irrelevant to mathematics, which degrades the model performance, while Quad is a model-aware
method that accurately identifies the data that benefits the specific domain(i.e., the math domain).
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Table 13: Model Performance in Math Evaluation

Methods Accuracy
Clean-7B-100B 33.20 %
Clean-7B-400B 35.01 %
Quad-7B-100B 36.76 %

Moreover, we train a 7B model and evaluate all methods on the SlimPajama dataset (Soboleva et al.,
2023), using LAMBADA as the reference dataset. In this experiment, 100B tokens out of 627B are
selected for training using Quad. As shown in the table below, Quad still demonstrates superior
model performance on 7B model compared to all baselines, such as the DSIR, Semdedup, PPL,
Qurating and MATES.

Table 14: Model Performance with a Larger Model Size

Methods Accuracy FLOPs
Random-100B 49.73% 263.1
Random-400B 53.11% 1063.7
DSIR-100B 49.97% 263.1
PPL-100B 51.18% 325.3

Semdedup-100B 51.97% 275.7
Qurating-100B 52.18% 375.6
MATES-100B 51.97% 313.3
Quad-100B 53.19% 307.6

Note that our CS function is to balance the exploration (i.e., diversity) and exploitation (i.e., quality)
inspired by the upper confidence bound score (Auer, 2002), which is a typical solution of MAB.
However, certainly our approach can use other CS functions. Here we discuss two intuitive alter-
natives, i.e., the exploitation-only and exploration-only methods to demonstrate the superiority of
us. The former one samples some data instances from each cluster, computes their influence scores
and selects instances from clusters with high influence scores. The latter one just randomly samples
from different clusters without considering the data quality. As shown in the table below, we can
observe that for both 1B and 7B models, our method outperforms the two baselines because we
consider both the data quality and diversity to select data instances.

H CS FUNCTION

Note that our CS function is to balance the exploration (i.e., diversity) and exploitation (i.e., quality)
inspired by the upper confidence bound score (Auer, 2002), which is a typical solution of MAB.
However, certainly our approach can use other CS functions. Here we discuss two intuitive alter-
natives, i.e., the exploitation-only and exploration-only methods to demonstrate the superiority of
us. The former one samples some data instances from each cluster, computes their influence scores
and selects instances from clusters with high influence scores. The latter one just randomly samples
from different clusters without considering the data quality. As shown in the table below, we can
observe that for both 1B and 7B models, our method outperforms the two baselines because we
consider both the data quality and diversity to select data instances.

Table 15: Model Performance with Different Size and Sampling Method

Model Quad Score exploitation-only exploration-only
1B 42.94 % 42.36% 41.60 %
7B 53.19 % 52.56 % 49.33%
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I GENERALIZABILITY

To show the generalizability and robustness of our method, we add FLAN (Chung et al., 2024) (the
mixture of multiple NLP tasks) and Openwebmath (Paster et al., 2023) (a math-related dataset) as
reference datasets, associated with 7 new downstream tasks. We also add one candidate dataset and
a 7B downstream model.

Specifically, we first use FLAN as a new reference dataset to train a 1.3B model on a new candidate
dataset (i.e., FineWeb (Penedo et al., 2024), approximately 15000B tokens). In this experiment,
100B tokens out of 15000B tokens are selected for training using Quad and other baselines. As
shown in the table below, Quad still demonstrates superior accuracy compared to all baselines,
such as the DSIR, Semdedup, PPL, Qurating and MATES. For example, we can observe that Quad
has an improvement of 0.97% on model accuracy compared with the Qurating, which is a state-of-
the-art baseline. In addition, we add two downstream tasks (i.e., WikiText (Merity et al., 2016),
HelloBench (Que et al., 2024) , and for WikiText, the lower the score, the better the model per-
formance) about long-text generation tasks. As shown in the table below, on the candidate dataset
Slimpajama, for the 7B model, we can observe that Quad still outperforms other baselines because
we simultaneously consider the quality and diversity in data selection.

Table 16: Model Performance with Reference Set FLAN

Methods Random DSIR Semdedup PPL Qurating MATES Quad
Accuracy 44.41% 44.47% 45.38% 45.92% 47.03 % 46.96 % 47.88%

Table 17: Model Performance on Long-Text Generation Tasks

Random Qurating MATES Quad
WikiText 16.73 15.36 15.51 14.81

HelloBench 3.81 5.37 4.39 6.33

Moreover, we also add the Openwebmath dataset as another new reference dataset to train a 7B
model on the Slimpajama dataset, which aims at selecting data to improve the mathematical skill of
the model. Correspondingly, we also includeGSM8K (Cobbe et al., 2021), MATH (Hendrycks et al.,
2021), OCW (Lewkowycz et al., 2022), SAT (Azerbayev et al., 2023), MMLU STEM (Hendrycks
et al., 2020) as new downstream tasks to evaluate the model’s mathematical capabilities, with the
final accuracy calculated as the average score across these tasks. As shown in the table below, Quad
still demonstrates superior model performance compared to all baselines.

Table 18: Model Average Performance on 5 Math Tasks

Methods Random DSIR Semdedup PPL Qurating MATES Quad
Accuracy 33.20% 33.05% 33.70% 34.79% 35.31% 35.20% 36.71%

This experiment shows that our method can generalize well to various types of reference datasets
and downstream tasks.

J RELIABILITY OF OUR EXPERIMENTAL RESULT

For our baselines Qurating & MATES, the performance improvement comparing with the best base-
line in their papers are 1.9% and 0.6% respectively. In our work, Quad surpasses the best baseline
(i.e., Qurating) by 0.93%, so the improvement is not marginal. Specifically, although MATES also
selects data considering the current training process, it does not perform well because the surrogate
model is not accurate enough due to lacking of enough training data. Qurating generally per-
forms the best among other baselines, but still worse than our approach because it does not consider
the varience of model state during the training process, and it incorporates the highest FLOPs (1e19)
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because of the usage of LLMs for data selection. In terms of the FLOPs, we can observe that we con-
sume minimal computational resources because our MAB solution samples from clusters without
iterating the entire candidate dataset like Qurating and MATES.

For DSIR, we would like to clarify that in the literature, i.e., the papers of our baselines, DSIR also
performs worse than random selection. This is consistent with our results. For example, in Qurating,
random selection achieves a 2% higher accuracy than DSIR. In MATES, DSIR also does not perform
better than random selection. The reason is that DSIR selects data instances whose n-gram features
are similar to the instances in the validation set, which cannot capture the data semantics and the
downstream model performance, leading to a poor generalization ability. In addition, purely relying
on the similarity of the strings to select data will incorporate many duplicated instances, which may
even hurt the model performance.

To better demonstrate the benefits of our method Quad, we enlarge the model size from 1.3B to
7B, using LAMBADA as the reference dataset to select 100B tokens from Slimpajama dataset . As
demonstrated in the following table, Quad outperforms other baselines in terms of accuracy and has
good scalability (achieving low FLOPs).

Table 19: Model Performance with Larger Model Size

Methods Random DSIR Qurating MATES Quad
Accuracy 49.73% 49.97% 52.18% 51.97% 53.19%

For the training loss, we find that Quad converges successfully at a rate similar to the random
selection. It is notable that for the validation loss, Quad converges faster than random selection
because we can discover data instances that are beneficial for the current training process.
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