
Under review as a conference paper at ICLR 2021

A MISSING BACKGROUND

A.1 VARIATIONAL AUTO-ENCODER

A variational auto-encoder (VAE) (Kingma & Welling, 2014) is a generative model that aims to learn
the data distribution p(X) given a set of observations {xi}

N
i=1. While directly optimizing p(X) is

intractable, we can optimize its variational lower-bound:

log p(X) � Ez⇠q(z)[log p(X|z)]�DKL(q(z)||p(z)) (12)

where q(Z) is the variational distribution and p(Z) is the prior. In VAE, q(Z) is q(Z|X) so that
it is an auto-encoder. Optimizing Equation 12 using gradient descent requires back-propagate the
gradient through a sample operator. Fortunately, if the latent variable is a multivariate Gaussian
distribution, we can use re-parametrization trick. We refer to (Kingma & Welling, 2019) for more
mathematical derivations.

B IMPLEMENTATION DETAILS

Policy network Our policy network is a 3-layer feed-forward neural network. The size of each
hidden layer is 512. We apply RELU activation (Agarap, 2018) after each hidden layer. Following
(Haarnoja et al., 2018a), the output is a Gaussian distribution with diagonal covariance matrix. We
apply tanh to enforce the action bounds. The log-likelihood after applying the tanh function has
a simple closed form solution. We refer to (Haarnoja et al., 2018a) Appendix C for more details.

Q network Following (Haarnoja et al., 2018a; Fujimoto et al., 2018a; Wu et al., 2019), we train
two independent Q network {Q 1 , Q 2} to penalize uncertainty over the future states. We maintain
a target Q network {Q 0

1
, Q 0

2
} with the same architecture and update the target weights using a

weighted sum of the current Q network and the target Q network. When computing the target Q
values, we simply take the minimum value of the two Q networks:

Q 0(s0, a0) = min
j=1,2

Q 0
j
(s0, a0) (13)

Each Q network is a 3-layer feed-forward neural network. The size of each hidden layer is 256. We
apply RELU activation (Agarap, 2018) after each hidden layer.

Behavior policy network Following the previous work (Fujimoto et al., 2018b; Kumar et al.,
2019), we learn a conditional variational auto-encoder (Kingma & Welling, 2014) as our behavior
policy network. The encoder takes a pair of states and actions, and outputs a Gaussian latent variable
Z. The decoder takes sampled latent code z and states, and outputs a mixture of Gaussian distribu-
tions. Both the architecture of the encoder and the decoder is a 3-layer feed-forward neural network.
The size of each hidden layer is 512. The activation is relu (Agarap, 2018). To avoid epistemic
uncertainty, we train B ensembles of behavior policy networks. At test time, we randomly select
one model to perform the calculations. We found B = 3 is sufficient for all the experiments. We
pre-train the the behavior policy network with 300 epochs. We use cross validation with split ratio
0.1. The batch size is 256.

↵ network The ↵ network takes in a state and outputs the Lagrange multiplier for the state. The
architecture of the ↵ network is a 3-layer feed-forward neural network with relu (Agarap, 2018)
activation. The size of each hidden layer is 256. We use softplus activation after the output to
ensure that all the values are positive.

11

Under review as a conference paper at ICLR 2021

Table 2: Default hyper-parameters
Hyper-parameter Value

Optimizer Adam (Kingma & Ba, 2015)
Policy learning rate 5e-6

Q network learning rate 3e-4
↵ learning rate 1e-5

Policy update batch size 1000
↵ batch size 1000

Q network update batch size 10000
Target update rate ⌧ 5e-3
Discount factor � 0.99

Initial � 10
� learning rate 1e-3

Steps per epoch T 1000
Number of epochs to pre-train 100

Table 3: Task-specific hyper-parameters
Task name KL divergence threshold ✏KL maximum entropy H0

halfcheetah-rand 9 -3
walker2d-rand 3 0
hopper-rand 6 -6

halfcheetah-med 1.5 -12
walker2d-med 6 -12
hopper-med 3 -6

halfcheetah-med-exp 6 -12
walker2d-med-exp 6 -12
hopper-med-exp 3 -6

halfcheetah-mixed 8 -12
walker2d-mixed 12 -12
hopper-mixed 6 -6

12

	Introduction
	Background
	Improving Behavior Regularized Offline Reinforcement Learning
	Regularization Method
	Analytical KL divergence upper bound

	State Dependent Lagrange Multiplier
	Other Practical Enhancements

	Related Work
	Experiments
	Comparative Results
	Ablation Study

	Conclusion
	Missing Background
	Variational Auto-encoder

	Implementation Details

