
A Preliminaries493

Definition 1 (Differential Privacy). [DKM+06, DMNS06] A randomized algorithmM achieves
(ε, δ)-DP if for all S ⊆ Range(M) and for any two database instances D,D′ ∈ D that differ only in
one tuple:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

The privacy cost is measured by the parameters (ε, δ) also referred to as the privacy budget. Smaller494

values of ε correspond to stricter privacy guarantees, and it is standard in literature to set δ � 1
n ,495

where n is the size of the database. We set the δf in our work to 1
n scaled down to the nearest496

power of 10. Complex DP algorithms can be built from the basic algorithms following two important497

properties of differential privacy: 1) Post-processing states that for any function g defined over the498

output of the mechanismM, ifM satisfies (ε, δ)-DP, so does g(M); 2) Basic composition states499

that if for each i ∈ [k], mechanismMi satisfies (εi, δi)-DP, then a mechanism sequentially applying500

M1,M2, . . . ,Mk satisfies (
∑k
i=1 εi,

∑k
i=1 δi)-DP.501

Given a function f : D → Rd, the Gaussian mechanism adds noise drawn from a normal distribution502

N (0, S2
fσ

2) to each dimension of the output, where Sf is the `2-sensitivity of f , defined as Sf =503

maxD,D′differ in a row ‖f(D)− f(D′)‖2. For ε ∈ (0, 1), if σ ≥
√

2 ln(1.25/δ)/ε, then the Gaussian504

mechanism satisfies (ε, δ)-DP.505

The Gaussian mechanism is used to privatize optimization algorithms. In contrast to non-private506

optimizers where batches are sliced from the training dataset, DP optimizers at each iteration work507

by sampling “lots” from the training with probability L/n, where L is the (expected) lot size and n is508

the total data size. A set of queries are computed over those samples. These queries include gradient509

computation, updates to batch normalization or accuracy metric calculations. As there is not any a510

priori bound on these query outputs, the sensitivity Sf is set by clipping the maximum `2 norm of the511

gradient to a user-defined parameter C. The gradient of each point is then noised and published. All512

DP optimizers follow the same framework in which they take steps on the computed noisy gradient513

as in its non-private counterpart [MAE+18]. The privacy cost of the whole training procedure is514

calculated by advanced composition techniques such as the Moments accountant [ACG+16].515

A.1 DP Optimizers516

DP-SGD: The most popular private optimizer is the differentially private stochastic gradient descent517

(DPSGD) [WM10, BST14, SCS13, ACG+16]. DPSGD takes individual steps for each point in518

the sampled lot just like in SGD. Due to these individual steps, SGD is more locally unstable and519

empirically generalizes better than other optimizers [ZFM+20]. However, SGD requires the learning520

rate to be properly tuned when changing architectures or datasets, without which SGD may show521

subpar performance.522

There are five main hyperparameters involved in DPSGD. We start with those also present in the523

non-private setting, highlighting any differences that arise due to privacy.524

• Training iterations (T ) - In the private setting, more iterations results in a larger privacy cost.525

• Lot size (L) - Lot size factors into the privacy calculation, due to amplification by subsam-526

pling [BBG18].527

• Learning rate (α) - Learning rate has an important interplay with the clipping threshold C,528

discussed in Section 4.1.529

The following hyperparameters are new in the private setting.530

• Clipping threshold (C) - To limit sensitivity, per-example gradients are clipped to have531

`2-norm bounded by C.532

• Noise scale (σ) - Scale of the noise added, as a multiple of C. A larger value gives higher533

privacy but (typically) lower accuracy.534

DPMomentum: The private counterpart of SGD-Momentum [RHW86, Qia99], which adds the535

momentum parameter to the update rule of DPSGD [GAYB17]. This optimizer adds an extra536

hyperparameter to tune as no default value for momentum is known.537
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DP-Adam: Adam [KB14] is an adaptive optimizer that combines the advantages from Ada-538

Grad [DHS11] and RMSProp [HSS12]. At the core of Adam, exponentially averaged first and539

second moment estimates of the gradients are used to take a step. Converting Adam to its differen-540

tially private counterpart DPAdam can be done trivially by replacing the standard gradients with their541

clipped and noised counterparts. Adam adds two extra hyperparameters (β1, β2) to tune in the DP542

setting. However, default values of these parameters are known in the non-private setting. We will543

tune these parameters to the private setting in Section 4.2. The adaptivity of these optimizers imply544

they need not be tuned across learning rates, hence reducing a hyperparameter to tune.545

ADADP: This DP adaptive optimizer finds the best learning rate at every alternate iteration [KH20].546

It does so by leveraging the `2 error of taking a full step and taking two half steps. If the error547

computed is greater than a threshold τ , the learning rate is updated using a closed form expression.548

As suggested by the authors, for all our experiments using ADADP, we use the threshold τ =
√

d
2T ,549

where d is the model dimension and T is the total number of iterations.550

B Dataset details551

Table 2: Datasets used in experiment

Dataset Type #Samples #Dims #Classes
MNIST Image 70000 784 10
Gisette Image 6000 5000 2
Adult Structured 45222 202 2
ENRON Structured 5172 5512 2

C Parameter grid for DPSGD and DPAdam comparison552

Table 3: Parameter grid for comparing DPSGD and DPAdam

Optimizer Parameter Values

DPSGD α
0.001, 0.002, 0.005, 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1

C 0.1, 0.2, 0.5, 1

DPMomentum
α

0.001, 0.002, 0.005, 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1

C 0.1, 0.2, 0.5, 1
m 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99

DPAdam C 0.1, 0.2, 0.5, 1

D Proof of Theorem553

Theorem 4. Let f be a convex and β-smooth function, and let x∗ = arg min
x∈S

f(x). Let x0 be554

an arbitrary point in S, and xt+1 = ΠS(xt − α(gt + zt)), where gt = min(1, C
‖∇f(x)‖2 )∇f(x)555

and zt ∼ N (0, σ2C2) is the noise due to privacy. After T iterations, the optimal learning rate is556

αopt = R
CT
√
1+σ2

, where E[f( 1
T

∑T
i xt)− f(x∗)] ≤ RC

√
1+σ2
√
T

and R = E[‖x0 − x∗‖].557
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Proof.

E[‖xt+1 − x∗‖2
∣∣∣ xt] = E[‖xt − α(gt + zt)− x∗‖2

∣∣∣ xt]
= E[‖xt − x∗‖2 − 2α(gt + zt)(xt − x∗) + α2‖(gt + zt)‖2

∣∣∣ xt]
= ‖xt − x∗‖2 − 2αE[(gt + zt)

∣∣∣ xt]T (xt − x∗) + α2 E[‖(gt + zt)‖2
∣∣∣ xt]

≤ ‖xt − x∗‖2 − 2α[f(xt)− f(x∗)] + α2 E[‖(gt + zt)‖2
∣∣∣ xt]

The inequality is due to convexity of the loss function and E[(gt + zt)] = gt due to 0-mean noise.558

Taking expectation on both sides and reordering,559

2α[f(xt)− f(x∗)] ≤ E[‖xt+1 − x∗‖2]− E[‖xt − x∗‖2] + α2 E[‖(gt + zt)‖2

≤ E[‖xt+1 − x∗‖2]− E[‖xt − x∗‖2] + α2(C2 + C2σ2)

Summing for T steps and dividing both sides by 2αT ,560

E[f(
1

T

T∑
i

xt)− f(x∗)] ≤ R2

2αT
+
αC2(1 + σ2)

2
(1)

Taking derivative and finding best value of α,561

αopt =
R

C
√

1 + σ2T

Plugging αopt to Eq. 1,562

E[f(
1

T

T∑
i

xt)− f(x∗)] ≤ RC
√

1 + σ2

√
T

563

E LT Algorithm564

565

Algorithm 1 Hard stopping private selection algorithm for (ε, δ)-DP input algorithms
Require: γ ≤ 1, δ2 > 0, and sampling access to Q(D)

1: Initialize the list S = ∅
2: Initialize Υ = 1

γ log 1
δ2

3: for j ∈ [1,Υ] do
4: Draw (x, q) ∼ Q(D)
5: S ← S ∪ (x, q)
6: Flip a γ-biased coin, output highest scored candidate from S and halt;
7: end for
8: Output highest scored candidate from S

F LT vs MA with varying candidate size566

Continuing from Section 3.1, in this section we show an additional experiment in which we compare567

the LT (Liu and Talwar) and MA (Moments Accountant) algorithms with varying number of hyper-568

parameter candidates. In Figure 6, we run the LT and MA algorithms for T = 10000 with σ = 4569

and L = 250 with varying candidate size and compare the final privacy costs. The γ value for the570

LT algorithm is set to 1/k, where the k is the number of candidates. It can be seen that the privacy571

cost of LT (blue) remains almost constant for with increasing number of candidates. Figure 6 also572

demonstrates the exact number of candidates when the cost of MA (orange) remains below the LT573

cost. This insight is valuable in practice to a practitioner to decide the which algorithm to choose for574

hyperparameter tuning with respect to the number of candidates.575
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(a) (b)

Figure 6: Comparing LT vs MA with varying number of candidates at setting σ = 4, L = 250,
T = 10000. MA can compose upto 14 and 26 candidates for the same cost of LT for dataset sizes 5k
(left) and 60k (right) respectively.

G Pruning hyperparameter grid for SGD576

Figure 7 demonstrates a heat map plot of the candidate hyperparameter pairs for DPSGD. Each point577

on this heatmap is assigned a score (totalling 2400) that reflects how many times that (α,C) pair has578

performed the best among all the candidates, and we score across all iterations (at a granularity of579

every 100 iterations) of training.580

We justify this as a fair metric of ‘goodness’, for candidates as one could in practice stop training at any581

iteration. Furthermore this metric is quite critical of quality, in that it only awards a hyperparameter582

set a point, if it appeared as the best candidate at one of the intervals. Hence we deem this to be a583

generous pruning of the search space, which will imbue the best possible advantage to DPSGD with584

regards to a pruned hyperparameter search space.585

Figure 7: Pruning for DPSGD. Each (α,C) point on the heatmap shows how many times it has
performed best among all candidates
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H Implementation Details586

The code for our paper is written in Python3.6 using the PyTorch library. The implementation of all587

private optimizers are done using the Pyvacy library2. We run our code on ComputeCanada servers.588

Each allocation of the server includes 2 CPU cores, 8 GB RAM and 1 GPU from the list – P100,589

V100, K80. We report results from all our experiments after averaging over 3 runs. The code is590

attached with our supplementary material submission.591

All datasets used in our experiments are publicly available. We split all datasets into 80% training592

and 20% validation sets. For our experiments, we assume that all our datasets start in its preprocessed593

state, i.e. the numerical features are scaled to the range [0,1], as is standard practice in machine594

learning. However when considering an end-to-end private algorithm, this preprocessing itself may595

need to be performed in a privacy-preserving fashion. In this work, we do not account for privacy in596

this step. Note that for our work this only effects the ENRON and Adult datasets, where scaling the597

values does require computing the maximum possible values of features in a differentially-private598

fashion, whereas the max values for image datasets (Gisette and MNIST) are known a priori due to599

max pixel value and does not involve any privacy cost.600

I Additional experiment results for Section 5 and Section 6601

In Figures 8 and 9, we display our results for the same experiments described in Section 5, with602

σ = 2, and σ = 8 respectively. Similarly Figure 10 and 11 displays our results of the experiments603

detailed in Section 6 with σ = 2, and σ = 8.604

J Omitted Pseudocode for DPAdamWOSM605

Algorithm 2 Optimization using DPAdamWOSM

Require: Training set A : {x1, ..., xn}, Loss function L(θ), Parameters: Lot size L, Learning rate α,
Gradient norm bound C, Noise scale σ, Total number of iterations T , Exponential decay rate β1

1: Initialize model with θ0 randomly
2: Initialize first moment vector m0 = 0

3: Set learning rate to ESS α = 10−3

(σC/L)+10−8 ;
4: for t ∈ [1, T ] do
5: Sample a random subset Lt ⊆ A, by independently including each element of A with

probability L/n
6: Compute gradient ∀xi ∈ Lt

gt(xi) = ∇θL(θt, xi)

7: Clip each gradient in `2 norm to C ḡt(xi) = gt(xi)/max(1, ‖gt(xi)‖2
C )

8: Add noise g̃t = 1
|L| (
∑
i ḡt(xi) +N (0, σ2C2I))

9: Exponentially average the first moment
mt = β1 ·mt−1 + (1− β1) · g̃t

10: Perform bias correction
m̂t = mt

1−βt
1

11: Update model θt = θt−1 − α · m̂t

12: end for
13: Compute privacy cost using Moments Accountant.

Broader Impacts606

Our work points out a false sense of security afforded by prior work in the space of differentially607

private machine learning, as true privacy losses are much larger than what is typically reported in608

papers. That said, regardless, differential privacy is a very difficult topic to properly deploy and609

genuinely provide its theoretical guarantees, rather than just a mirage of privacy. These issues can610

2https://github.com/ChrisWaites/pyvacy
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be avoided via training and/or consultation with data privacy experts, although this may be more611

challenging for smaller, resource-constrained organizations.612

Figure 8: Comparing the testing accuracy curves of DPAdam and DPSGD models across hyperpa-
rameter tuning grid from Table 3 with σ = 2.

Figure 9: Comparing the testing accuracy curves of DPAdam and DPSGD models across hyperpa-
rameter tuning grid from Table 3 with σ = 8.
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Figure 10: Comparing the testing accuracy curves of DPAdam, ADADP and DPAdamWOSM models
across hyperparameter tuning grid from Table 3 with σ = 2. The limits for the y-axes are adjusted
based on the dataset while maintaining a 15% range for all.

Figure 11: Comparing the testing accuracy curves of DPAdam, ADADP and DPAdamWOSM models
across hyperparameter tuning grid from Table 3 with σ = 8. The limits for the y-axes are adjusted
based on the dataset while maintaining a 15% range for all.
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