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Abstract

We study the problems of sequential nonparametric two-sample and independence1

testing. Sequential tests process data online and allow using observed data to2

decide whether to stop and reject the null hypothesis or to collect more data, while3

maintaining type I error control. We build upon the principle of (nonparametric)4

testing by betting, where a gambler places bets on future observations and their5

wealth measures evidence against the null hypothesis. While recently developed6

kernel-based betting strategies often work well on simple distributions, selecting a7

suitable kernel for high-dimensional or structured data, such as images, is often8

nontrivial. To address this drawback, we design prediction-based betting strategies9

that rely on the following fact: if a sequentially updated predictor starts to consis-10

tently determine (a) which distribution an instance is drawn from, or (b) whether an11

instance is drawn from the joint distribution or the product of the marginal distribu-12

tions (the latter produced by external randomization), it provides evidence against13

the two-sample or independence nulls respectively. We empirically demonstrate the14

superiority of our tests over kernel-based approaches under structured settings. Our15

tests can be applied beyond the case of independent and identically distributed data,16

remaining valid and powerful even when the data distribution drifts over time.17

1 Introduction18

We consider two closely-related problems of nonparametric two-sample and independence testing. In19

the former, given observations from two distributions P and Q, the goal is to test the null hypothesis20

that the distributions are the same: H0 : P = Q, against the alternative that they are not: H1 : P ̸= Q.21

In the latter, given observations from some joint distribution PXY , the goal is to test the null hypothesis22

that the random variables are independent: H0 : PXY = PX×PY , against the alternative that they are23

not: H1 : PXY ̸= PX ×PY . Kernel tests, such as kernel-MMD [Gretton et al., 2012] for two-sample24

and HSIC [Gretton et al., 2005] for independence testing, are amongst the most popular methods for25

solving these tasks which work well on data from simple distributions. However, their performance is26

sensitive to the choice of a kernel and respective parameters, like bandwidth, and applying such tests27

requires additional effort. Further, selecting kernels for structured data, like images, is a nontrivial28

task. Lastly, kernel tests suffer from decaying power in high dimensions [Ramdas et al., 2015].29

Predictive two-sample and independence tests (2STs and ITs respectively) aim to address such30

limitations of kernelized approaches. The idea of using classifiers for two-sample testing dates back31

to Friedman [2004] who proposed using the output scores as a dimension reduction method. More32

recent works focused on the direct evaluation of a learned model for testing. In an initial arXiv33

2016 preprint, Kim et al. [2021] proposed and analyzed predictive 2STs based on sample-splitting,34

namely testing whether the accuracy of a model trained on the first split of data and estimated35

on the second split is significantly better than chance. The authors established the consistency of36
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asymptotic and exact tests in high-dimensional settings and provided rates for the case of Gaussian37

distributions. Inspired by this work, Lopez-Paz and Oquab [2017] soon after demonstrated that38

empirically predictive 2STs often outperform state-of-the-art 2STs, such as kernel-MMD. Recently,39

Hediger et al. [2022] proposed a related test that utilizes out-of-bag predictions for bagging-based40

classifiers, such as random forests. To incorporate measures of model confidence, many authors41

have also explored using test statistics that are based on the output scores instead of the binary class42

predictions [Kim et al., 2019, Liu et al., 2020, Cheng and Cloninger, 2022, Kübler et al., 2022].43

The focus of the above works is on batch tests which are calibrated to have a fixed false positive rate44

(say, 5%) if the sample size is specified in advance. In contrast, we focus on the setting of sequentially45

released data. Our tests allow on-the-fly decision-making: an analyst can use observed data to decide46

whether to stop and reject the null or to collect more data, without inflating the false alarm rate.47

Problem Setup. First, we define the problems of sequential two-sample and independence testing.48

Definition 1 (Sequential two-sample testing). Suppose that we observe a stream of i.i.d. observations49

((Zt,Wt))t≥1, where Wt ∼ Rademacher(1/2), the distribution of Zt | Wt = +1 is denoted P , and50

that of Zt | Wt = −1 is denoted Q. The goal is to design a sequential test for51

H0 : P = Q, (1a)
H1 : P ̸= Q. (1b)

Definition 2 (Sequential independence testing). Suppose that we observe that a stream of observations:52

((Xt, Yt))t≥1, where (Xt, Yt) ∼ PXY for t ≥ 1. The goal is to design a sequential test for53

H0 : (Xt, Yt) ∼ PXY and PXY = PX × PY , (2a)
H1 : (Xt, Yt) ∼ PXY and PXY ̸= PX × PY . (2b)

We operate in the framework of “power-one tests” [Darling and Robbins, 1968] and define a level-α54

sequential test as a mapping Φ : ∪∞
t=1Zt → {0, 1} that satisfies: PH0

(∃t ≥ 1 : Φ(Z1, . . . , Zt) =55

1) ≤ α. We refer to such notion of type I error control as time-uniform. Here, 0 stands for “do not56

reject the null yet” and 1 stands for “reject the null and stop”. Defining the stopping time as the first57

time that the test outputs 1: τ := inf{t ≥ 1 : Φ(Z1, . . . , Zt) = 1}, a sequential test must satisfy58

PH0
(τ < ∞) ≤ α. (3)

We aim to design consistent tests which are guaranteed to stop if the alternative happens to be true:59

PH1
(τ < ∞) = 1. (4)

Our construction follows the principle of testing by betting [Shafer, 2021]. The most closely related60

work is that of “nonparametric 2ST by betting” of Shekhar and Ramdas [2021], which later inspired61

several follow-up works, including sequential (marginal) kernelized independence tests of Podkopaev62

et al. [2023], and the sequential conditional independence tests under the model-X assumption63

of Grünwald et al. [2023] and Shaer et al. [2023]. We extend the line of work of Shekhar and Ramdas64

[2021] and of Podkopaev et al. [2023], studying predictive approaches in detail.65

Sequential predictive 2STs have been studied by Lhéritier and Cazals [2018, 2019], but in practice,66

those tests were found to be inferior to the ones developed by Shekhar and Ramdas [2021]. Recently,67

Pandeva et al. [2022] proposed a related test that handles the case of the unknown class proportions68

using ideas from [Wasserman et al., 2020]. As we shall see, our tests are closely related to [Lhéritier69

and Cazals, 2018, 2019, Pandeva et al., 2022], but are consistent under much milder assumptions.70

Sequential Nonparametric Two-Sample and Independence Testing by Betting. Suppose that71

one observes a sequence of random variables (Zt)t≥1, where Zt ∈ Z . The principle of testing by72

betting [Shafer and Vovk, 2019, Shafer, 2021] can be described as follows. A player starts the game73

with initial capital K0 = 1. At round t, she selects a payoff function ft : Z → [−1,∞) that satisfies74

EZ∼PZ
[ft(Z) | Ft−1] = 0 for all PZ ∈ H0, where Ft−1 = σ(Z1, . . . , Zt−1), and bets a fraction of75

her wealth λtKt−1 for an Ft−1-measurable λt ∈ [0, 1]. Once Zt is revealed, her wealth is updated as76

Kt = Kt−1 + λtKt−1ft(Zt) = Kt−1 (1 + λtft(Zt)) . (5)

The wealth of a player measures evidence against the null hypothesis, and if a player can make money77

in such game, we reject the null. For testing H0 at level α ∈ (0, 1), we use the stopping rule:78

τ = inf {t ≥ 1 : Kt ≥ 1/α} . (6)
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The validity of the test follows from Ville’s inequality [Ville, 1939], a time-uniform generalization of79

Markov’s inequality, since (Kt)t≥0 is a nonnegative martingale under any PZ ∈ H0. To ensure high80

power, one has to choose (ft)t≥1 and (λt)t≥1 to guarantee the growth of the wealth if the alternative81

is true. In the context of two-sample and independence testing, Shekhar and Ramdas [2021] and82

Podkopaev et al. [2023] recently proposed effective betting strategies based on kernelized measures83

of statistical distance and dependence respectively which admit a variational representation. In a84

nutshell, datapoints observed prior to a given round are used to estimate the witness function — one85

that best highlights the discrepancy between P and Q for two-sample (or between PXY and PX ×PY86

for independence) testing — and a bet is formed as an estimator of a chosen measure of distance (or87

dependence). In contrast, our bets are based on evaluating the performance of a sequentially learned88

predictor that distinguishes between instances from distributions of interest.89

Remark 1. In practical settings, an analyst may not be able to continue collecting data forever and may90

adaptively stop the experiment before the wealth exceeds 1/α. In such case, one may use a different91

threshold for rejecting the null at a stopping time τ , namely U/α, where U is a (stochastically larger92

than) uniform random variable on [0, 1] drawn independently from (Ft)t≥0. This choice strictly93

improves the power of the test without violating the validity; see [Ramdas and Manole, 2023].94

Contributions. We develop sequential predictive two-sample (Section 2) and independence (Sec-95

tion 3) tests. We establish sufficient conditions for consistency of our tests and relate those to96

evaluation metrics of the underlying models. We conduct an extensive empirical study on synthetic97

and real data, justifying the superiority of our tests over the kernelized ones on structured data.98

2 Classification-based Two-Sample Testing99

Let G : Z → [−1, 1] denote a class of predictors used to distinguish between instances from P100

(labeled as +1) and Q (labeled as −1)1. We assume that: (a) if g ∈ G, then −g ∈ G, (b) if g ∈ G101

and s ∈ [0, 1], then sg ∈ G, and (c) predictions are based on sign[g(·)], and if g(z) = 0, then z102

is assigned to the positive class. Two natural evaluation metrics of a predictor g ∈ G include the103

misclassification and the squared risks:104

Rm(g) := P (W · sign [g (Z)] < 0) , Rs(g) := E
[
(g(Z)−W )2

]
, (7)

which give rise to the following measures of distance between P and Q, namely105

dm(P,Q) := sup
g∈G

(
1
2 −Rm(g)

)
, ds(P,Q) := sup

g∈G
(1−Rs(g)) . (8)

It is easy to check that dm(P,Q) ∈ [0, 1/2] and dm(P,Q) ∈ [0, 1]. The upper bounds hold due to the106

non-negativity of the risks and the lower bounds follow by considering g : g(z) = 0,∀z ∈ Z . Note107

that the misclassification risk is invariant to rescaling (Rm(sg) = Rm(g), ∀s ∈ (0, 1]), whereas the108

squared risk is not, and rescaling any g to optimize the squared risk provides better contrast between109

P and Q. In the next result, whose proof is deferred to Appendix D.3, we present an important110

relationship between the squared risk of a rescaled predictor and its expected margin: E [W · g(Z)].111

Proposition 1. Fix an arbitrary predictor g ∈ G. The following claims hold:112

1. For the misclassification risk, we have that:113

sup
s∈[0,1]

(
1
2 −Rm(sg)

)
=
(
1
2 −Rm(g)

)
∨ 0 =

(
1
2 · E [W · sign [g(Z)]]

)
∨ 0. (9)

2. For the squared risk, we have that:114

sup
s∈[0,1]

(1−Rs(sg)) ≥ (E [W · g(Z)] ∨ 0) ·
(
E [W · g(Z)]

E [g2(Z)]
∧ 1

)
(10)

Further, ds(P,Q) > 0 if and only if there exists g ∈ G such that E [W · g(Z)] > 0.115

Consider an arbitrary predictor g ∈ G. Note that under the null H0 in (1a), the misclassification risk116

Rm(g) does not depend on g, being equal to 1/2, whereas the squared risk Rs(g) does. In contrast,117

the lower bound (10) no longer depends on g under the null H0, being equal to 0.118

1Similar argument can be applied to general scoring-based classifiers: g : Z → R, e.g., SVMs, by considering
G̃ = {g̃ : g̃(z) = tanh(s · g(z)), g ∈ G, s > 0}, where the constant s > 0 corrects the scale of the scores.
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Oracle Test. It is a known fact that the minimizer of either the misclassification or the squared risk is119

gBayes(z) = 2η(z)− 1, where η(z) = P (W = +1 | Z = z). Since gBayes may not belong to G, we120

consider g⋆ ∈ G, which minimizes either the misclassification or the squared risk over predictors in G,121

and omit superscripts for brevity. To design payoff functions, we follow Proposition 1 and consider122

fm
⋆ (Zt,Wt) = Wt · sign [g⋆(Zt)] ∈ {−1, 1}, (11a)
f s
⋆(Zt,Wt) = Wt · g⋆(Zt) ∈ [−1, 1]. (11b)

Let the oracle wealth processes based on misclassification and squared risks (Km,⋆
t )t≥0 and (Ks,⋆

t )t≥0123

be defined by using the payoff functions (11a) and (11b) respectively, along with a predictable124

sequence of betting fractions (λt)t≥1 selected via online Newton step (ONS) strategy [Hazan et al.,125

2007] (Algorithm 1), which has been studied in the context of coin-betting by Cutkosky and Orabona126

[2018]. If a constant betting fraction is used throughout: λt = λ, ∀t, then127

E
[
1
t logK

i,⋆
t

]
= E

[
log(1 + λf i

⋆(Z,W ))
]
, i ∈ {m, s} . (12)

To illustrate the tightness of our results, we consider the optimal constant betting fractions which128

maximize the log-wealth (12) and are constrained to lie in [−0.5, 0.5], like ONS bets:129

λi
⋆ = argmax

λ∈[−0.5,0.5]

E
[
log(1 + λf i

⋆(Z,W ))
]
, i ∈ {m, s} . (13)

Algorithm 1 Online Newton step (ONS) strategy for selecting betting fractions

Input: sequence of payoffs (ft)t≥1, λONS
1 = 0, a0 = 1.

for t = 1, 2, . . . do
Observe ft ∈ [−1, 1];
Set zt := ft/(1− λONS

t );
Set at := at−1 + z2t ;
Set λONS

t+1 := 1
2 ∧

(
0 ∨

(
λONS
t − 2

2−log 3 · zt
at

))
;

We have the following result for the oracle tests, whose proof is deferred to Appendix D.3.130

Theorem 1. The following claims hold:131

1. Suppose that H0 in (1a) is true. Then the oracle sequential test based on either (Km,⋆
t )t≥0132

or (Ks,⋆
t )t≥0 ever stops with probability at most α: PH0 (τ < ∞) ≤ α.133

2. Suppose that H1 in (1b) is true. Then:134

(a) The growth rate of the oracle wealth process (Km,⋆
t )t≥0 satisfies:135

lim inf
t→∞

(
1
t logK

m,⋆
t

) a.s.
≥
(
1
2 −Rm (g⋆)

)2
. (14)

If Rm (g⋆) < 1/2, then the test based on (Km,⋆
t )t≥0 is consistent: PH1

(τ < ∞) = 1.136

Further, the optimal growth rate achieved by λm
⋆ in (13) satisfies:137

E [log(1 + λm
⋆ f

m
⋆ (Z,W ))] ≤

(
16
3 ·
(
1
2 −Rm(g⋆)

)2 ∧ ( 12 −Rm(g⋆)
))

. (15)

(b) The growth rate of the oracle wealth process (Ks,⋆
t )t≥0 satisfies:138

lim inf
t→∞

(
1
t logK

s,⋆
t

) a.s.
≥ 1

4 · E [W · g⋆(Z)] . (16)

If E [W · g⋆(Z)] > 0, then the test based on (Ks,⋆
t )t≥0 is consistent: PH1

(τ < ∞) =139

1. Further, the optimal growth rate achieved by λs
⋆ in (13) satisfies:140

E [log(1 + λs
⋆f

s
⋆(Z,W ))] ≤ 1

2 · E [W · g⋆(Z)] . (17)

Theorem 1 precisely characterizes the properties of the oracle wealth processes and relates those to141

interpretable metrics of predictive performance. Further, the proof of Theorem 1 highlights a direct142
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impact of the variance of the payoffs on the wealth growth rate, and hence the power of the resulting143

sequential tests (as the null is rejected once the wealth exceeds 1/α).144

The second moment of the payoffs based on the misclassification risk (11a) is equal to one, resulting145

in a slow growth: the bound (14) is proportional to squared deviation of the misclassification risk146

from one half. The bound (15) shows that the growth rate with the ONS strategy matches, up to147

constants, that of the oracle betting fraction. Note that the second term in (15) characterizes the148

growth rate if Rm(g⋆) < 5/16 (low Bayes risk). In this regime, the growth rate of our test is at least149

(3/16) · (1/2−Rm(g⋆)) which is close to the optimal rate. The second moment of the payoffs based150

on the squared risk is more insightful. First, we present a result for the case when the oracle predictor151

g⋆ in (11b) is replaced by an arbitrary g ∈ G. The proof is deferred to Appendix D.3.152

Corollary 1. Consider an arbitrary g ∈ G with nonnegative expected margin: E [W · g(Z)] ≥ 0.153

Then the growth rate of the corresponding wealth process (Ks
t)t≥0 satisfies:154

lim inf
t→∞

(
1
t logKs

t

) a.s.
≥ 1

4

(
sup

s∈[0,1]

(1−Rs (sg)) ∧ E [W · g(Z)])
)

(18a)

≥ 1
4 (E [W · g(Z)])

2
, (18b)

and the optimal growth rate achieved by λs
⋆ in (13) satisfies:155

E [log(1 + λs
⋆f

s(Z,W ))] ≤
(

4
3 · sup

s∈[0,1]

(1−Rs (sg))
)
∧
(
1
2 · E [W · g(Z)]

)
. (19)

Corollary 1 states that for an arbitrary g ∈ G, the growth rate is lower bounded by the minimum156

of the expected margin and the (optimized) squared risk of such predictor. While the latter term is157

always smaller for the optimal g⋆, this may not hold for an arbitrary g ∈ G. The lower bound (18b),158

which follows from Proposition 1, is always worse than that for g⋆ (the expected margin is squared).159

The upper bound (19) shows that the growth rate with the ONS strategy matches, up to constants,160

that of the optimal constant betting fraction. Before presenting a practical sequential 2ST, we provide161

two important remarks that further contextualize the current work in the literature.162

Remark 2. In practice, we learn a predictor sequentially and have to choose a learning algorithm.163

Note that (18a) suggests that direct margin maximization may hurt the power of the resulting 2ST:164

the squared risk is sensitive to miscalibrated and overconfident predictors. Kübler et al. [2022] made165

a similar conjecture in the context of batch two-sample testing. To optimize the power, the authors166

suggested minimizing the cross-entropy or the squared loss and related such approach to maximizing167

the signal-to-noise ratio, a heuristic approach that was proposed earlier by Sutherland et al. [2017]2.168

Remark 3. Suppose that gBayes ∈ G and consider the payoff function based on the squared risk (11b).169

At round t, the wealth of a player Kt−1 is multiplied by170

1 + λt ·Wt · gBayes(Zt) = (1− λt) · 1 + λt ·
(
1 +Wt · gBayes(Zt)

)
= (1− λt) · 1 + λt ·

(η(Zt))
1{Wt=1}

(1− η(Zt))
1{Wt=−1}(

1
2

)1{Wt=1} ( 1
2

)1{Wt=−1} ,
(20)

and hence, the betting fractions interpolate between the regimes of not betting and betting using a171

likelihood ratio. From this standpoint, 2STs of Lhéritier and Cazals [2018, 2019], Pandeva et al.172

[2022] set λt = 1, ∀t, and use only the second term for updating the wealth despite the fact that the173

true likelihood ratio is unknown. An argument about the consistency of such test hence requires174

imposing strong assumptions about a sequence of predictors (gt)t≥1 [Lhéritier and Cazals, 2018,175

2019]. Our test differs in a critical way: we use a sequence of betting fractions, (λt)t≥1, which adapts176

to the quality of the underlying predictors, yielding a consistent test under much weaker assumptions.177

Example 1. Consider P = N (0, 1) and Q = N (δ, 1) for 20 values of δ, equally spaced in [0, 0.5].178

For a given δ, the Bayes-optimal predictor is179

gBayes(z) =
φ(z; 0, 1)− φ(z; δ, 1)

φ(z; 0, 1) + φ(z; δ, 1)
∈ [−1, 1], (21)

where φ(z;µ, σ2) denotes the density of N (µ, σ2) evaluated at z. In Figure 1a, we compare tests180

that use (a) the Bayes-optimal predictor, (b) a predictor constructed with the plug-in estimates of181

the means and variances. While in the former case betting using a likelihood ratio (λt = 1, ∀t) is182
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(b) Nonparametric model (k-NN).

Figure 1: Comparison between our 2ST with adaptive betting fractions and the likelihood ratio test
for Example 1. While the likelihood ratio test is better if the Bayes-optimal predictor is used, our test
is superior if a predictor is learned. The results are aggregated over 500 runs for each value of δ.

indeed optimal, our test with an adaptive sequence (λt)t≥1 is superior when a predictor is learned.183

The difference becomes even more drastic in Figure 1b where a (regularized) k-NN predictor is used.184

Practical Test. Let Ac : (∪t≥1(Z × {−1,+1})t)×G → G denote a learning algorithm which maps185

a training dataset of any size and previously used classifier, to an updated predictor. For example, Ac186

may apply a single gradient descent step using the most recent observation to update a model. We187

start with D0 = ∅ and g1 ∈ G : g1(z) = 0, for any z ∈ Z . At round t, we use one of the payoffs:188

fm
t (Zt,Wt) = Wt · sign [gt(Zt)] ∈ {−1, 1}, (22a)
f s
t (Zt,Wt) = Wt · gt(Zt) ∈ [−1, 1]. (22b)

After (Zt,Wt) is used for betting, we update a training dataset: Dt = Dt−1 ∪ {(Zt,Wt)}, and189

an existing predictor: gt+1 = Ac(Dt, gt). We summarize our sequential classification-based 2ST190

(Seq-C-2ST) in Algorithm 2. While we do not need any assumptions to confirm the type I error191

control, we place some mild assumptions on the learning algorithm Ac to argue about the consistency.192

Algorithm 2 Sequential classification-based 2ST (Seq-C-2ST)

Input: level α ∈ (0, 1), data stream ((Zt,Wt))t≥1, g1(z) ≡ 0, Ac, D0 = ∅, λONS
1 = 0.

for t = 1, 2, . . . do
Evaluate the payoff f s

t (Zt,Wt) as in (22a);
Using λONS

t , update the wealth process Ks
t as per (5);

if Ks
t ≥ 1/α then
Reject H0 and stop;

else
Update the training dataset: Dt := Dt−1 ∪ {(Zt,Wt)};
Update predictor: gt+1 = Ac(Dt, gt);
Compute λONS

t+1 (Algorithm 1) using f s
t (Zt,Wt);

Assumption 1 (Rm-learnability). Suppose that H1 in (1b) is true. An algorithm Ac is such that the193

resulting sequence (gt)t≥1 satisfies: lim supt→∞
1
t

∑t
i=1 1 {Wi · sign [gi(Zi)] < 0} a.s.

< 1/2.194

Assumption 2 (Rs-learnability). Suppose that H1 in (1b) is true. An algorithm Ac is such that the195

resulting sequence (gt)t≥1 satisfies: lim supt→∞
1
t

∑t
i=1 (gi(Zi)−Wi)

2 a.s
< 1.196

In words, the above assumptions state that a sequence of predictors (gt)t≥1 is better than a chance197

predictor on average. We conclude with the following result, whose proof is deferred to Appendix D.3.198

Theorem 2. The following claims hold for Seq-C-2ST (Algorithm 2):199

1. If H0 in (1a) is true, the test ever stops with probability at most α: PH0
(τ < ∞) ≤ α.200

2Standard CLT does not apply directly when the conditioning set grows; see [Kim and Ramdas, 2020].
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2. Suppose that H1 in (1b) is true. Then:201

(a) Under Assumption 1, the test with the payoff (22a) is consistent: PH1
(τ < ∞) = 1.202

(b) Under Assumption 2, the test with the payoff (22b) is consistent: PH1
(τ < ∞) = 1.203

Real Data Experiment. To compare sequential classification-based and kernelized 2STs, we consider204

Karolinska Directed Emotional Faces dataset (KDEF) [Lundqvist et al., 1998] that contains images205

of actors and actresses expressing different emotions: afraid (AF), angry (AN), disgusted (DI), happy206

(HA), neutral (HE), sad (SA), and surprised (SU). Following earlier works [Lopez-Paz and Oquab,207

2017, Jitkrittum et al., 2016], we focus on straight profile only and assign HA, NE, SU emotions to208

the positive class (instances from P ), and AF, AN, DI emotions to the negative class (instances from209

Q); see Figure 2a. We remove corrupted images and obtain a dataset containing 802 images with six210

different emotions. The original images (562× 762 pixels) are cropped to exclude the background,211

resized to 64× 64 pixels and converted to grayscale.212
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Figure 2: (a) Examples of instances from P (top row) and Q (bottom row) for KDEF dataset. (b)
Rejection rates for our test (Seq-C-2ST) and the sequential kernelized 2ST. While both tests achieve
perfect power with enough data, our test is superior to the kernelized approach, requiring fewer
observations to do so. The results are averaged over 200 random orderings of the data.

For Seq-C-2ST, we use a small CNN as an underlying model and defer details about the architecture213

and training to Appendix E.1. As a reference kernel-based 2ST, we use the sequential MMD test214

of Shekhar and Ramdas [2021] and adapt it to the setting where at each round either an observation215

from P or that from Q is revealed; see Appendix E.1 for details. In Figure 2b, we illustrate that while216

both tests achieve perfect power after processing sufficiently many observations, our Seq-C-2ST217

requires fewer observations to do so.218

3 Classification-based Independence Testing219

Sequential Classification-based Independence Test (Seq-C-IT). Under the setting of Definition 2,220

a single point from PXY is revealed at each round. Following [Podkopaev et al., 2023], we bet on221

two points from PXY (labeled as +1) and utilize external randomization to produce instances from222

PX × PY (labeled as −1). Let AIT
c : (∪t≥1((X × Y)× {−1,+1})t) × G → G denote a learning223

algorithm which maps a training dataset of any size and previously used classifier, to an updated224

predictor. We start with D0 = ∅ and g1 : g1(x, y) = 0, ∀(x, y) ∈ X × Y . We use derandomized225

versions of the payoffs (22), e.g., instead of (22b), we use226

f s
t ((X2t−1, Y2t−1), (X2t, Y2t)) =

1
4 (gt(X2t−1, Y2t−1) + gt(X2t, Y2t))

− 1
4 (gt(X2t−1, Y2t) + gt(X2t, Y2t−1)) .

(23)

After (X2t−1, Y2t−1), (X2t, Y2t) have been used for betting, we update a training dataset:227

Dt = Dt−1 ∪ {((X2t−1, Y2t−1),+1), ((X2t, Y2t),+1), ((X2t−1, Y2t),−1), ((X2t, Y2t−1),−1)} ,
and an existing predictor: gt+1 = AIT

c (Dt, gt). Seq-C-IT inherits the time-uniform type I error228

control and the consistency guarantees of Theorem 2, and we omit details for brevity.229
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Synthetic Experiments. In our evaluation, we first consider synthetic datasets where the complexity230

of the independence testing setup is characterized by a single univariate parameter. We set the231

monitoring horizon to T = 5000 points from PXY , and for each parameter value, we aggregate the232

results over 200 runs. In particular, we use the following synthetic settings:233

1. Spherical model. Let (Ut)t≥1 be a sequence of random vectors on a unit sphere in Rd:234

Ut
iid∼ Unif(Sd), and let u(i) denote the i-th coordinate of u. For t ≥ 1, we take235

(Xt, Yt) = ((Ut)(1), (Ut)(2)).

We consider d ∈ {3, . . . , 10}, where larger d defines a harder setup.236

2. Hard-to-detect-dependence (HTDD) model. We sample ((Xt, Yt))t≥1 from237

p(x, y) = 1
4π2 (1 + sin(wx) sin(wy)) · 1

{
(x, y) ∈ [−π, π]2

}
. (24)

We consider w ∈ {0, . . . , 6}, where H0 is true (random variables are independent) if and238

only if w = 0. For w > 0, Corr (X,Y ) ≈ 1/w2, and the setup is harder for larger w.239

For the comparison, we use two predictive models to construct Seq-C-ITs:240

1. Let Nt(z) := N (z,Dt−1, kt) define the set of kt closest points in Dt−1 to a query point241

z := (x, y). We consider a regularized k-NN predictor: ĝt(z) = 1
kt+1

∑
(Z,W )∈Nt(z)

W.242

We select the number of neighbors using the square-root rule: kt =
√

|Dt−1| =
√
4(t− 1).243

2. We use a multilayer perceptron (MLP) with three hidden layers and 128, 64 and 32 neurons244

respectively and the parameters learned using an incremental training scheme.245

We use the HSIC-based sequential kernelized independence test (SKIT) [Podkopaev et al., 2023]246

as a reference test and defer details, such as MLP training scheme and SKIT hyperparameters, to247

Appendix E.1. In Figure 3, we observe that SKIT outperforms Seq-C-ITs under the spherical model248

(with no localized dependence structure), whereas, under the structured HTDD model, Seq-C-ITs, is249

superior. Further, inspecting Figure 3b at w = 0 confirms that all tests control the type I error. We refer250

the reader to Appendix E.2 for additional experiments on synthetic data with localized dependence251

where Seq-C-ITs are superior. In Appendix E.2, we also provide the results for the average stopping252

times of our tests: we empirically confirm that our tests are adaptive to the complexity of a problem253

at hand: they stop earlier on easy tasks and later on harder ones.254
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(a) Spherical model.
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(b) HTDD model.

Figure 3: Power of different sequential independence tests on synthetic data from Section 3. Under
the spherical model (no localized dependence), SKIT is better than Seq-C-ITs. Under the (structured)
HTDD model, SKIT is inferior to sequential predictive independence tests.

Real Data Experiment. We compare two independence tests on MNIST image dataset [LeCun et al.,255

1998]. To simulate the null setting, we sample pairs of random images from the entire dataset, and to256

simulate the alternative, we sample pairs of random images depicting the same digit (Figure 4a). For257

Seq-C-IT, we use MLP with the same architecture as for simulations on synthetic data. For SKIT, we258

use the median heuristic with 20 points from PXY to compute kernel hyperparameters. In Figure 4b,259

we show that while both tests control the type I error under H0, SKIT is inferior to Seq-C-IT under260

H1, requiring twice as much data to achieve perfect power.261
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Figure 4: (a) Instances from the PXY (top row) and PX × PY (bottom row) for MNIST dataset. (b)
While both independence tests control the type I error under H0, Seq-C-IT outperforms SKIT under
H1, rejecting the null much sooner. The results are aggregated over 200 runs.

4 Conclusion262

While kernel methods are state-of-the-art for nonparametric two-sample and independence testing,263

their performance often deteriorates on complex data, e.g., high-dimensional data with localized264

dependence. In such settings, prediction-based tests are often much more effective. In this work,265

we developed sequential predictive two-sample and independence tests following the principle of266

testing by betting. Our tests control the type I error despite continuously monitoring the data and are267

consistent under weak and tractable assumptions. Further, our tests provably adapt to the complexity268

of a problem at hand: they stop earlier on easy tasks and later on harder ones. An additional269

advantage of our tests is that an analyst may modify the design choices, e.g., model architecture,270

on-the-fly. Through experiments on synthetic and real data, we confirm that our tests are competitive271

to kernel-based ones overall and outperform those under structured settings.272

We refer the reader to the Appendix for additional results that were not included in the main paper:273

1. In Appendix A, we complement classification-based ITs with a regression-based approach.274

Regression-based ITs represent an alternative to the classification-based approach in settings275

where a data stream ((Xt, Yt))t≥1 may be processed directly as feature-response pairs.276

2. In Section 2, we considered the case of balanced classes, meaning that at each round, an277

instance from either P or Q is observed with equal chance. In Appendix B, we extend the278

methodology to a more general case of two-sample testing with unknown class proportions.279

3. Batch two-sample and independence tests rely on either a cutoff computed using the asymp-280

totic null distribution of a chosen test statistic (when it is tractable) or a permutation p-value,281

and if the distribution drifts, both approaches fail to provide the type I error control. In282

contrast, Seq-C-2ST and Seq-C-IT remain valid beyond the i.i.d. setting by construction283

(analogous to tests developed by Shekhar and Ramdas [2021], Podkopaev et al. [2023]), and284

we refer the reader to Appendix C for more details.285
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358

Appendix359

360

A Regression-based Independence Testing361

Regression-based independence tests represent an alternative to classification-based approaches362

in settings where a data stream ((Xt, Yt))t≥1 may be processed directly as feature-response pairs.363

Suppose that one selects a functional class G : X → Y for performing such prediction task, and364

let ℓ denote a loss function that evaluates the quality of predictions. For example, if (Yt)t≥1 is a365

sequence of univariate random variables, one can use the squared loss: ℓ(g(x), y) = (g(x)− y)2, or366

the absolute loss: ℓ(g(x), y) = |g(x)− y|.367

Such tests rely on the following idea: if the alternative H1 in (2b) is true and a sequence of sequentially368

updated predictors (gt)t≥1 has nontrivial predictive power, then the losses on random instances drawn369

from the joint distribution PXY are expected to be less on average than the losses on random instances370

from PX × PY . For the t-th pair of points from PXY , we can label the losses of gt on all possible371

(X,Y )-pairs as372

L2t−1 = ℓ (gt(X2t−1), Y2t−1) , L2t = ℓ (gt(X2t), Y2t) ,

L′
2t−1 = ℓ (gt(X2t−1), Y2t) , L′

2t = ℓ (gt(X2t), Y2t−1) .
(25)

One can view this problem as sequential two-sample testing under distribution drift (due to incremental373

learning of (gt)t≥1). Hence, one may use either Seq-C-2ST from Section 2 or sequential kernelized374

2ST of Shekhar and Ramdas [2021] on the resulting sequence of the losses on observations from375

PXY and PX × PY . In what follows, we analyze a direct approach where testing is performed by376

comparing the losses on instances drawn from the two distributions. A critical difference with a377

construction of Seq-C-2ST is that to design a valid betting strategy one has to ensure that the payoff378

functions are lower bounded by negative one.379

A.1 Proxy Regression-based Independence Test380

To avoid cases when some expected values are not well-defined, we assume for simplicity that X is a381

bounded subset of Rd for som d ≥ 1: X =
{
x ∈ Rd : ∥x∥2 ≤ B1

}
for some B1 > 0. Similarly, we382

assume that Y is a bounded subset of R: Y = {y ∈ R : |y| ≤ B2} for some B2 > 0. We note that383

the construction of the regression-based IT will not require explicit knowledge of constants B1 and384

B2. First, we consider a setting where an instance either from the joint distribution or an instance385

from the product of the marginal distributions is observed at each round.386

Definition 3 (Proxy Setting). Suppose that we observe a stream of i.i.d. observations387

((Xt, Yt,Wt))t≥1, where Wt ∼ Rademacher(1/2), the distribution of (Xt, Yt) | Wt = +1 is388

PX × PY , and that of (Xt, Yt) | Wt = −1 is PXY . The goal is to design a test for the following pair389

of hypotheses:390

H0 : PXY = PX × PY , (26a)
H1 : PXY ̸= PX × PY . (26b)

Oracle Proxy Sequential Regression-based IT. To construct an oracle test, we assume having391

access to the oracle predictor g⋆ : X → Y , e.g., the minimizer of the squared risk is g⋆(x) =392

E [Y | X = x]. Formalizing the above intuition, we use E [Wℓ(g⋆(X), Y )] as a natural way for393

measuring dependence between X and Y . To enforce boundedness of the payoff functions, we use394

ideas of the tests for symmetry from [Ramdas et al., 2020, Shekhar and Ramdas, 2021, Podkopaev395

et al., 2023, Shaer et al., 2023], namely we use a composition with an odd function:396

f r
⋆(Xt, Yt,Wt) = tanh (s⋆ ·Wt · ℓ(g⋆(Xt), Yt)) ∈ [−1, 1], (27)

where s⋆ > 0 is an appropriately selected scaling factor3. Since under H0 in (26a), s⋆ · Wt ·397

ℓ(g⋆(Xt), Yt) is a random variable that is symmetric around zero, it follows that E[f r
⋆(Xt, Yt,Wt)] =398

3We note that rescaling is important for arguing about consistency and not the type I error control.

12



0, and, using the argument analogous to the proof of Theorem 1, we can easily deduce that a399

sequential IT based on f r
⋆ controls the type I error control. The scaling factor s⋆ is selected in a way400

that guarantees that, if H1 in (26b) is true and if E [Wℓ(g⋆(X), Y )] > 0, then E [f r
⋆(X,Y,W )] > 0,401

which is a sufficient condition for consistency of the oracle test. In particular, we show that it suffices402

to consider:403

s⋆ =

√
2µ⋆

ν⋆
, (28a)

where µ⋆ = E [Wℓ(g⋆(X), Y )] , (28b)

ν⋆ = E
[
(1 +W ) (ℓ(g⋆(X), Y ))

3
]
. (28c)

Without loss of generality, we assume that ν⋆ is bounded away from zero (which is a very mild404

assumption since ν⋆ essentially corresponds to a cubic risk of g⋆ on data drawn from the product of the405

marginal distributions PX×PY ). Let the oracle regression-based wealth process
(
Kr,⋆

t

)
t≥0

be defined406

by using the payoff function (27) with a scaling factor defined in (28a), along with a predictable407

sequence of betting fractions (λt)t≥1 selected via the ONS strategy (Algorithm 1). We have the408

following result about the oracle regression-based IT, whose proof is deferred to Appendix D.4.409

Theorem 3. The following claims hold for the oracle sequential regression-based IT based on410 (
Kr,⋆

t

)
t≥0

:411

1. Suppose that H0 in (26a) is true. Then the test ever stops with probability at most α:412

PH1 (τ < ∞) ≤ α.413

2. Suppose that H1 in (26b) is true. Further, suppose that: E [Wℓ(g⋆(X), Y )] > 0. Then the414

test is consistent: PH1
(τ < ∞) = 1.415

Practical Proxy Sequential Regression-based IT. To construct a practical test, we use a sequence416

of predictors (gt)t≥1 that are updated sequentially as more data are observed. We write Ar :417

(∪t≥1(X × Y)t)× G → G to denote a chosen regressor learning algorithm which maps a training418

dataset of any size and previously used predictor, to an updated predictor. We start with D0 = ∅ and419

some initial guess g1 ∈ G. At round t, we use the payoff function:420

f r
t (Xt, Yt,Wt) = tanh (st ·Wt · ℓ(gt(Xt), Yt)) . (29)

where a sequence of predictable scaling factors (st)t≥1 is defined as follows: we set s0 = 0 and421

define:422

st =

√
2µt

νt
, (30a)

where µt =

(
1

t− 1

t−1∑
i=1

Wi · ℓ(gi(Xi), Yi)

)
∨ 0, (30b)

νt =
1

t− 1

t−1∑
i=1

(1 +Wi) · (ℓ(gi(Xi), Yi))
3
. (30c)

After (Xt, Yt,Wt) has been used for betting, we update a training dataset: Dt = Dt−1 ∪423

{(Xt, Yt,Wt)}, and an existing predictor: gt+1 = Ar(Dt, gt). We summarize this practical se-424

quential 2ST in Algorithm 3.425

For simplicity, we consider a class of functions G := {gθ : X → Y, θ ∈ Θ} for some parameter set426

Θ which we assume to be a subset of a metric space. In this case, a sequence of predictors (gt)t≥1427

is associated with the corresponding sequence of parameters (θt)t≥1: for t ≥ 1, gt(·) = g(·; θt) for428

some θt ∈ Θ. To argue about the consistency of the resulting test, we make two assumptions.429

Assumption 3 (Smoothness). We assume that:430

• Predictors in G are L1-Lipschitz smooth:431

sup
x∈X

|g(x; θ)− g(x; θ′)| ≤ L1 ∥θ − θ′∥ , ∀θ, θ′ ∈ Θ. (31)
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Algorithm 3 Proxy Sequential Regression-based IT

Input: significance level α ∈ (0, 1), data stream ((Xt, Yt,Wt))t≥1, g1(z) ≡ 0, Ar, D0 = ∅,
λONS
1 = 0, s1 = 0.

for t = 1, 2, . . . do
Evaluate the payoff f r

t (Xt, Yt,Wt) as in (29);
Using λONS

t , update the wealth process Kr
t as in (5);

if Kr
t ≥ 1/α then
Reject H0 and stop;

else
Update the training dataset: Dt := Dt−1 ∪ {(Xt, Yt)};
Update predictor: gt+1 = Ar(Dt, gt);
Compute st+1 as in (30a);
Compute λONS

t+1 (Algorithm 1) using f r
t (Xt, Yt,Wt);

• The loss function ℓ is L2-Lipschitz smooth:432

sup
x∈X
y∈Y

|ℓ(g(x; θ), y)− ℓ(g(x; θ′), y)| ≤ L2 sup
x∈X

|g(x; θ)− g(x; θ′)| , ∀θ, θ′ ∈ Θ. (32)

In words, Assumption (31) states that the outputs of predictors, whose parameters are close, will433

also be close. Assumption (32) states that that the losses of two predictors, whose outputs are close,434

will also be close. For example, if G is a class of linear predictors: gθ(x) = θ⊤x, x ∈ X , then435

Assumption 3 will be trivially satisfied for the squared and the absolute losses if X and Y are bounded.436

Note that we do not need an explicit knowledge of L1 or L2 for designing a test. Second, we make a437

learnability assumption about algorithm Ar.438

Assumption 4 (Learnability). Suppose that H1 in (26b) is true. We assume that the regressor439

learning algorithm Ar is such that for the resulting sequence of parameters (θt)t≥1, it holds that440

θt
a.s.→ θ⋆, where θ⋆ is a random variable taking values in Θ and E [Wℓ(g(X; θ⋆), Y ) | θ⋆]

a.s.
> 0,441

where (X,Y,W ) ⊥⊥ θ⋆.442

We conclude with the following result for the practical proxy sequential regression-based IT, whose443

proof is deferred to Appendix D.4.444

Theorem 4. The following claims hold for the proxy sequential regression-based IT (Algorithm 3):445

1. Suppose that H0 in (26a) is true. Then the test ever stops with probability at most α:446

PH0
(τ < ∞) ≤ α.447

2. Suppose that H1 in (26b) is true. Further, suppose that Assumptions 3 and 4 are satisfied.448

Then the test is consistent: PH1
(τ < ∞) = 1.449

Sequential Regression-based Independence Test (Seq-R-IT). Next, we instantiate this test450

for the sequential independence testing setting (as per Definition 2) where we observe sequence451

((Xt, Yt))t≥1, where (Xt, Yt)
iid∼ PXY , t ≥ 1. Analogous to Section 3, we bet on the outcome of452

two observations drawn from the joint distribution PXY . To proceed, we derandomize the payoff453

function (29) and consider454

f r
t ((X2t−1, Y2t−1), (X2t, Y2t)) =

1

4
(tanh (st · ℓ (gt(X2t−1), Y2t)) + tanh (st · ℓ (gt(X2t), Y2t−1)))

− 1

4
(tanh (st · ℓ (gt(X2t), Y2t))− tanh (st · ℓ (gt(X2t−1), Y2t−1))) .

(33)
After betting on the outcome of the t-th pair of observations from PXY , we update a training dataset:455

Dt = Dt−1 ∪ {(X2t−1, Y2t−1), (X2t, Y2t)} ,

and a predictive model: ĝt+1 = Ar(Dt, ĝt).456
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A.2 Synthetic Experiments457

To evaluate the performance of Seq-R-IT, we consider the Gaussian linear model. Let (Xt)t≥1 and458

(εt)t≥1 denote two independent sequences of i.i.d. standard Gaussian random variables. For t ≥ 1,459

we take460

(Xt, Yt) = (Xt, Xtβ + εt),

where β ̸= 0 implies nonzero linear correlation (hence dependence). We consider 20 values of β461

equally spaced in [0, 1/2]. For the comparison, we use:462

1. Seq-R-IT with ridge regression. We use ridge regression as an underlying model: ĝt(x) =463

β
(t)
0 + xβ

(t)
1 , where464

(β
(t)
0 , β

(t)
1 ) = argmin

β0,β1

2(t−1)∑
i=1

(Yi −Xiβ1 − β0)
2
+ λβ2

1 .

2. Seq-C-IT with QDA. Note that PXY = N (µ,Σ+) and PX × PY = N (µ,Σ−), where465

µ =

(
0
0

)
, Σ+ =

(
1 β
β 1 + β2

)
, Σ− =

(
1 0
0 1 + β2

)
.

For this problem, an oracle predictor which minimizes the misclassification risk is466

g⋆(x, y) =
φ((x, y);µ+,Σ+)− φ((x, y);µ−,Σ−)

φ((x, y);µ−,Σ−) + φ((x, y);µ+,Σ+)
∈ [−1, 1], (34)

where φ((x, y);µ,Σ) denotes the density of the Gaussian distribution N (µ,Σ) evaluated at467

(x, y). Recall that Dt−1 = {(Zi,+1)}i≤2(t−1) ∪ {(Z ′
i,−1)}i≤2(t−1) denotes the training468

dataset that is available at round t for training a predictor ĝt : X × Y → [−1, 1]. We469

deploy Seq-C-IT with an estimator ĝt of (34), obtained by using plug-in estimates of470

µ+,Σ+, µ−,Σ−, computed from Dt−1:471

µ̂+
t =

1

2(t− 1)

∑
Z∈D+

t−1

Z, Σ̂+
t =

 1

2(t− 1)

∑
Z∈D+

t−1

ZZ⊤

− (µ̂+
t )(µ̂

+
t )

⊤,

and µ̂−
t , Σ̂−

t are computed similarly from D−
t .472

In addition, we also include HSIC-based SKIT to the comparison and defer the details regarding473

kernel hyperparameters to Appendix E.1. We set the monitoring horizon to T = 5000 points from474

PXY and aggregate the results over 200 sequences of observations for each value of β. We illustrate475

the result in Figure 5: while Seq-R-IT has high power for large values of β, we observe its inferior476

performance against Seq-C-IT (and SKIT) under the harder settings. Improving regression-based477

betting strategies, e.g., designing better scaling factors that still yield a provably consistent test, is an478

open question for future research.479

B Two-sample Testing with Unbalanced Classes480

In Section 2, we developed a sequential 2ST under the assumption at each round, an instance from481

either P or Q is revealed with equal probability. Such assumption was reasonable for designing482

Seq-C-IT, where external randomization produced two instances from PXY and PX × PY at each483

round. Next, we generalize our sequential 2ST to a more general setting of unbalanced classes.484

Definition 4 (Sequential two-sample testing with unbalanced classes). Let π ∈ (0, 1). Suppose485

that we observe a stream of i.i.d. observations ((Zt,Wt))t≥1, where Wt ∼ Rademacher(π), the486

distribution of Zt | Wt = +1 is denoted P , and that of Zt | Wt = −1 is denoted Q. We set the goal487

of designing a sequential test for the following pair of hypotheses:488

H0 : P = Q, (35a)
H1 : P ̸= Q. (35b)
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Figure 5: Comparison between Seq-R-IT, Seq-C-IT and HSIC-based SKIT under the Gaussian linear
model. Inspecting Figure 5a at β = 0 confirms that all tests control the type I error. Non-surprisingly,
kernel-based SKIT performs better than predictive tests under this model (no localized dependence).
We also observe that Seq-C-IT performs better than Seq-R-IT.

For what follows, we will focus on the payoff based on the squared risk due to its relationship to the489

likelihood-ratio-based test (Remark 3). In particular, after correcting the likelihood under the null490

in (20) to account for a general positive class proportion π, we can deduce that (see Appendix D.5):491

(1−λt) ·1+λt ·
(ηt(Zt))

1{Wt=1}
(1− ηt(Zt))

1{Wt=0}

(π)
1{Wt=1}

(1− π)
1{Wt=0} = 1+λt ·

Wt (gt(Zt)− (2π − 1))

1 +Wt(2π − 1)
, (36)

where ηt(z) = (gt(z) + 1)/2, and hence, a natural payoff function for the case with unbalanced492

classes is493

fu
t (Zt,Wt) =

Wt (gt(Zt)− (2π − 1))

1 +Wt(2π − 1)
. (37)

Note that the payoff for the balanced case (22b) is recovered by setting π = 1/2. It is easy to check494

that (see Appendix D.5): (a) fu
t (z, w) ≥ −1 for any (z, w) ∈ Z × {−1, 1}, and (b) if H0 in (35a) is495

true, then EH0 [f
u
t (Zt,Wt) | Ft−1] = 0, where Ft−1 = σ({(Zi,Wi)}i≤t−1). This in turn implies496

that a wealth process that relies on the payoff function fu
t in (37) is a nonnegative martingale, and497

hence, the corresponding sequential 2ST is valid. However, the positive class proportion π, needed to498

use the payoff function (37), is generally unknown beforehand. First, let us consider the case when499

λt = 1, t ≥ 1. In this case, the wealth of a gambler that uses the payoff function (37) after round t is500

Kt =

∏t
i=1 (ηi(Zi))

1{Wi=1}
(1− ηi(Zi))

1{Wi=0}∏t
i=1 π

1{Wi=1} (1− π)
1{Wi=0} . (38)

Note that:501

π̂t :=
1

t

t∑
i=1

1 {Wt = 1} = argmax
π∈[0,1]

(
t∏

i=1

π1{Wi=1} (1− π)
1{Wi=0}

)
,

is the MLE for π computed from {Wi}i≤t. In particular, if we consider a process (K̃t)t≥0, where502

K̃t :=

∏t
i=1 (ηi(Zi))

1{Wi=1}
(1− ηi(Zi))

1{Wi=0}∏t
i=1 (π̂t)

1{Wi=1}
(1− π̂t)

1{Wi=0} , t ≥ 1,

it follows that K̃t ≤ Kt, ∀t ≥ 1, meaning that (K̃t)t≥0 is a process that is upper bounded by a503

nonnegative martingale with initial value one. This in turn implies that a test based on (K̃t)t≥0 is a504

valid level-α sequential 2ST for the case of unknown class proportions. This idea underlies the running505

MLE sequential likelihood ratio test of Wasserman et al. [2020] and has been recently considered in506

the context of two-sample testing by Pandeva et al. [2022]. In case of nontrivial betting fractions:507

(λt)t≥1, representation of the wealth process (38) no longer holds, and to proceed, we modify the rules508

of the game and use minibatching. A bet is placed on every b (say, 5 or 10) observations, meaning509
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that for a given minibatch size b ≥ 1, at round t we bet on {(Zb(t−1)+i,Wb(t−1)+i)}i∈{1,...,b}. The510

MLE of π computed from the t-th minibatch is511

π̂t =
1

b

bt∑
i=b(t−1)+1

1 {Wi = +1} .

We consider a payoff function of the following form:512

fu
t

({
(Zb(t−1)+i,Wb(t−1)+i)

}
i∈{1,...,b}

)
=

bt∏
i=b(t−1)+1

(
1 +Wigt(Zi)

1 +Wi(2π̂t − 1)

)
− 1. (39)

In words, the above payoff essentially compares the performance of a predictor gt, trained on513

{(Zi,Wi)}i≤b(t−1) and evaluated on the t-th minibatch, to that of a trivial baseline predictor to514

form a bet. In particular, setting b = 1 yields a valid, yet a powerless test. Indeed, we have515

π̂t = 1 {Wt = 1} = (Wt + 1)/2. In this case, the payoff (39) reduces to516

Wt (gt(Zt)− (2π̂t − 1))

1 +Wt(2π̂t − 1)
=

Wtgt(Zt)− 1

2

a.s.∈ [−1, 0],

implying that the wealth can not grow even if the null is false. Define a wealth processes (Ku
t )t≥0517

based on the payoff functions (39) along with a predictable sequence of betting fractions (λt)t≥1518

selected via ONS strategy (Algorithm 1). Let Ft = σ({(Zi,Wi)}i≤bt) for t ≥ 1, with F0 denoting a519

trivial sigma-algebra. We conclude with the following result, whose proof is deferred to Appendix D.5.520

Theorem 5. Suppose that H0 in (35a) is true. Then (Ku
t )t≥0 is a nonnegative supermartingale521

adapted to (Ft)t≥0. Hence, the sequential 2ST based on (Ku
t )t≥0 satisfies: PH0

(τ < ∞) ≤ α.522

C Testing under Distribution Drift523

First, we define the problem of two-sample testing when at each round instances from both distribu-524

tions are observed.525

Definition 5 (Sequential two-sample testing). Suppose that we observe that a stream of observations:526

((Xt, Yt))t≥1, where (Xt, Yt)
iid∼ PX × PY for t ≥ 1. The goal is to design a sequential test for527

H0 : (Xt, Yt)
iid∼ PX × PY and PX = PY , (40a)

H1 : (Xt, Yt)
iid∼ PX × PY and PX ̸= PY . (40b)

Under the two-sample testing setting (Definition 5), we label observations from PY as positive (+1)528

and observations from PX as negative (−1). We write A2ST
c : (∪t≥1(X × {−1,+1})t)× G → G to529

denote a chosen learning algorithm which maps a training dataset of any size and previously used530

predictor, to an updated predictor. We start with D0 = ∅ and g1 : g1(x) = 0, ∀x ∈ X . At round t,531

we bet using derandomized versions of the payoffs (22), namely532

fm
t (Xt, Yt) =

1
2 (sign [gt(Yt)]− sign [gt(Xt)]) , (41a)

f s
t (Xt, Yt) =

1
2 (gt(Yt)− gt(Xt)) . (41b)

After (Xt, Yt) has been used for betting, we update a training dataset and an existing predictor:533

Dt = Dt−1 ∪ {(Yt,+1), (Xt,−1)} , gt+1 = A2ST
c (Dt, gt).

Testing under Distribution Drift. Batch two-sample and independence tests generally rely on534

either a cutoff computed using the asymptotic null distribution of a chosen test statistic (if tractable)535

or a permutation p-value. Both approaches require imposing i.i.d. (or exchangeability, for the latter536

option) assumption about the data distribution, and if the distribution drifts, both approaches fail to537

guarantee the type I error control. In contrast, Seq-C-2ST and Seq-C-IT remain valid beyond the538

i.i.d. setting by construction (analogous to tests developed in [Shekhar and Ramdas, 2021, Podkopaev539

et al., 2023]). First, we define the problems of sequential two-sample and independence testing under540

distribution drift.541
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Definition 6 (Sequential two-sample testing under distribution drift). Suppose that we observe that a542

stream of independent observations: ((Xt, Yt))t≥1, where (Xt, Yt) ∼ P
(t)
X × P

(t)
Y , t ≥ 1. The goal543

is to design a sequential test for the following pair of hypotheses:544

H0 : P
(t)
X = P

(t)
Y , ∀t, (42a)

H1 : ∃t′ : P (t′)
X ̸= P

(t′)
Y . (42b)

Definition 7 (Sequential independence testing under distribution drift). Suppose that we observe that545

a stream of independent observations from the joint distribution which drifts over time: ((Xt, Yt))t≥1,546

where (Xt, Yt) ∼ P
(t)
XY . The goal is to design a sequential test for the following pair of hypotheses:547

H0 : P
(t)
XY = P

(t)
X × P

(t)
Y , ∀t, (43a)

H1 : ∃t′ : P (t′)
XY ̸= P

(t′)
X × P

(t′)
Y . (43b)

The superscripts highlight that, in contrast to the standard i.i.d. setting (Definitions 5 and 2), the548

underlying distributions may drift over time. For independence testing, we need to impose an549

additional assumption that enables reasoning about the type I error control of Seq-C-IT.550

Assumption 5. Consider the setting of independence testing under distribution drift (Definition 7).551

We assume that for each t ≥ 1, it holds that either P (t−1)
X = P

(t)
X or P (t−1)

Y = P
(t)
Y , meaning that at552

each step either the distribution of X changes or that of Y changes, but not both simultaneously4.553

We have the following result about the type I error control of our tests under distribution drift.554

Corollary 2. The following claims hold:555

1. Suppose that H0 in (42a) is true. Then Seq-C-2ST satisfies: PH0
(τ < ∞) ≤ α.556

2. Suppose that H0 in (43a) is true. Further, suppose that Assumption 5 is satisfied. Then557

Seq-C-IT satisfies: PH0
(τ < ∞) ≤ α.558

The above result follows from the fact the payoff functions underlying Seq-C-2ST (41) and Seq-C-559

IT (23) are valid under the more general null hypotheses (42a) and (43a) respectively. The rest of560

the proof of Corollary 2 follows the same steps as that of Theorem 2, and we omit the details. We561

conclude with an example which shows that Assumption 5 is necessary for the type I error control.562

Example 2. Consider the following case when the null H0 in (43a) is true, but Assumption 5 is not563

satisfied. We show that Seq-C-IT fails to control type I error (at any prespecified level α ∈ (0, 1)), and564

for simplicity, focus on the payoff function based on the squared risk (23). Suppose that we observe a565

sequence of observations: ((Xt, Yt))t≥1, where (Xt, Yt) = (t+Wt, t+Vt) and Wt, Vt
iid∼ Bern(1/2).566

It suffices to show that there exists a sequence of predictors (gt)t≥1, for which567

lim inf
t→∞

1

t

t∑
i=1

f s
t ((X2t−1, Y2t−1), (X2t, Y2t))

a.s.
> 0. (44)

If (44) holds, then using the same argument as in the proof of Theorem 2, one can then deduce that568

P (τ < ∞) = 1. Consider the following sequence of predictors (gt)t≥1:569

gt(x, y) =
((
x−

(
2t− 1

2

)) (
y −

(
2t− 1

2

))
∧ 1
)
∨ −1.

We have:570

gt(X2t, Y2t) =
((
W2t +

1
2

) (
V2t +

1
2

)
∧ 1
)
∨ −1,

gt(X2t−1, Y2t−1) =
(
W2t−1 − 1

2

) (
V2t−1 − 1

2

)
,

gt(X2t, Y2t−1) =
(
W2t +

1
2

) (
V2t−1 − 1

2

)
,

gt(X2t−1, Y2t) =
(
W2t−1 − 1

2

) (
V2t +

1
2

)
.

Simple calculation shows that:571

E [gt(X2t, Y2t)] = 11/16, E [gt(X2t−1, Y2t−1)] = E [gt(X2t, Y2t−1)] = E [gt(X2t−1, Y2t)] = 0

and hence, for all t ≥ 1, it holds that E [f s
t ((X2t−1, Y2t−1), (X2t, Y2t))] = 11/64 > 0. This in turn572

implies (44), and hence, we conclude that Seq-C-IT fails to control the type I error.573

4Technically, a slightly weaker condition suffices — at odd t, the distribution can change arbitrarily, but at
even t, either the distribution of X changes or that of Y changes but not both; however, this weaker condition is
slightly less intuitive than the stated condition.
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D Proofs574

D.1 Auxiliary Results575

Proposition 2 (Ville’s inequality [Ville, 1939]). Suppose that (Mt)t≥0 is a nonnegative supermartin-576

gale process adapted to a filtration (Ft)t≥0. Then, for any a > 0 it holds that:577

P (∃t ≥ 1 : Mt ≥ a) ≤ E [M0]

a
.

D.2 Supporting Lemmas578

Lemma 6. Consider sequential two-sample testing setting (Definition 1). Suppose that a predictor579

g ∈ G satisfies E [f(Z,W )] > 0, where f(z, w) := wg(z).580

(a) Consider the wealth process (Kt)t≥0 based on f along with the ONS strategy for selecting581

betting fractions (Algorithm 1). Then we have the following lower bound on the growth rate582

of the wealth process:583

lim inf
t→∞

logKt

t

a.s.
≥ 1

4

(
(E [f(Z,W )])

2

E [f2(Z,W )]
∧ E [f(Z,W )]

)
. (45)

(b) For λ⋆ = argmaxλ∈[−0.5,0.5] E [log(1 + λf(Z,W ))], it holds that:584

E [log(1 + λ⋆f(Z,W ))] ≤ 4

3
· (E [f(Z,W )])

2

E
[
(f(Z,W ))

2
] ∧ E [f(Z,W )]

2
. (46)

Analogous result holds when the payoff function f(z, w) := w · sign [g(z)] is used instead.585

Proof. (a) Under the ONS betting strategy, for any sequence of outcomes (ft)t≥1, ft ∈ [−1, 1],586

it holds that (see the proof of Theorem 1 in [Cutkosky and Orabona, 2018]):587

logKt(λ0)− logKt = O

(
log

(
t∑

i=1

f2
i

))
, (47)

where Kt(λ0) is the wealth of any constant betting strategy λ0 ∈ [−1/2, 1/2] and Kt is the588

wealth corresponding to the ONS betting strategy. Hence, it follows that589

logKt

t
≥ logKt(λ0)

t
− C · log t

t
, (48)

for some absolute constant C > 0. Next, consider590

λ0 =
1

2

((∑t
i=1 fi∑t
i=1 f

2
i

∧ 1

)
∨ 0

)
.

We obtain:591

logKt(λ0)

t
=

1

t

t∑
i=1

log(1 + λ0fi)

(a)

≥ 1

t

t∑
i=1

(λ0fi − λ2
0f

2
i )

=

(
1
t

∑t
i=1 fi

4
∨ 0

)
·
(

1
t

∑t
i=1 fi

1
t

∑t
i=1 f

2
i

∧ 1

)
,

(49)
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where in (a) we used that log(1 + x) ≥ x − x2 for x ∈ [−1/2, 1/2]. From (48), it then592

follows that:593

lim inf
t→∞

logKt

t

a.s.
≥
(
E [f(Z,W )]

4
∨ 0

)
·
(

E [f(Z,W )]

E [f2(Z,W )]
∧ 1

)
=

1

4

(
(E [f(Z,W )])

2

E [f2(Z,W )]
∧ E [f(Z,W )]

)
,

which completes the proof of the first assertion of the lemma.594

(b) Since log(1 + x) ≤ x− 3x2/8 for any x ∈ [−0.5, 0.5], we know that:595

E [log (1 + λ⋆f(Z,W ))] ≤ E
[
λ⋆f(Z,W )− 3

8
(λ⋆f(Z,W ))

2

]
≤ max

λ∈[−0.5,0.5]

(
λ · E [f(Z,W )]− 3λ2

8
· E
[
(f(Z,W ))

2
])

.

The optimizer of the above is596

λ̃ =
4E [f(Z,W )]

3E
[
(f(Z,W ))

2
] ∧ 1

2
.

Hence, as long as E [f(Z,W )] ≤ (3/8) · E
[
(f(Z,W ))

2
]
, we have:597

E [log (1 + λ⋆f(Z,W ))] ≤ 2

3

(E [f(Z,W )])
2

E
[
(f(Z,W ))

2
] . (50)

If however, E [f(Z,W )] > (3/8) · E
[
(f(Z,W ))

2
]
, then we know that:598

E [log (1 + λ⋆f(Z,W ))] ≤ E [f(Z,W )]

2
.

To bring it to a convenient form, we multiply the upper bound in (50) by two and get the599

bound (46), which completes the proof of the second assertion of the lemma.600

601

D.3 Proofs for Section 2602

Proposition 1. Fix an arbitrary predictor g ∈ G. The following claims hold:603

1. For the misclassification risk, we have that:604

sup
s∈[0,1]

(
1
2 −Rm(sg)

)
=
(
1
2 −Rm(g)

)
∨ 0 =

(
1
2 · E [W · sign [g(Z)]]

)
∨ 0. (9)

2. For the squared risk, we have that:605

sup
s∈[0,1]

(1−Rs(sg)) ≥ (E [W · g(Z)] ∨ 0) ·
(
E [W · g(Z)]

E [g2(Z)]
∧ 1

)
(10)

Further, ds(P,Q) > 0 if and only if there exists g ∈ G such that E [W · g(Z)] > 0.606

Proof. 1. The first equality in (9) follows from two facts: (a) for any g ∈ G and any s ∈ (0, 1],607

it holds that Rm(sg) = Rm(g), (b) Rm(0) = 1/2. The second equality easily follows from608

the following fact: sign [x] /2 = 1/2− 1 {x < 0}.609

2. Consider an arbitrary predictor g ∈ G. Let us consider all possible scenarios:610
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(a) If E [W · g(Z)] ≤ 0, then the RHS of (10) is zero. For the LHS of (10), we have that:611

sup
s∈[0,1]

(1−Rs(sg)) ≥ 1−Rs(0) = 0,

so the bound (10) holds.612

(b) Next, assume that E [W · g(Z)] > 0, then it is easy to derive that:613

s⋆ := argmax
s∈[0,1]

(1−Rs(sg)) =
E [W · g(Z)]

E [g2(Z)]
∧ 1. (51)

A simple calculation shows that:614

1−Rs(s⋆g) ≥ E [W · g(Z)] ·
(
E [W · g(Z)]

E [g2(Z)]
∧ 1

)
,

and hence, we conclude that the bound (10) holds.615

To establish the second part of the statement, note that ds(P,Q) > 0 iff there is a predictor616

g ∈ G such that Rs(g) < 1. For the squared risk, we have:617

1−Rs(g) = 2E [W · g(Z)]− E
[
g2(Z)

]
, (52)

and hence, Rs(g) < 1 trivially implies that E [W · g(Z)] > 0. The converse implication618

trivially follows from (10). Hence, the result follows.619

620

Theorem 1. The following claims hold:621

1. Suppose that H0 in (1a) is true. Then the oracle sequential test based on either (Km,⋆
t )t≥0622

or (Ks,⋆
t )t≥0 ever stops with probability at most α: PH0

(τ < ∞) ≤ α.623

2. Suppose that H1 in (1b) is true. Then:624

(a) The growth rate of the oracle wealth process (Km,⋆
t )t≥0 satisfies:625

lim inf
t→∞

(
1
t logK

m,⋆
t

) a.s.
≥
(
1
2 −Rm (g⋆)

)2
. (14)

If Rm (g⋆) < 1/2, then the test based on (Km,⋆
t )t≥0 is consistent: PH1

(τ < ∞) = 1.626

Further, the optimal growth rate achieved by λm
⋆ in (13) satisfies:627

E [log(1 + λm
⋆ f

m
⋆ (Z,W ))] ≤

(
16
3 ·
(
1
2 −Rm(g⋆)

)2 ∧ ( 12 −Rm(g⋆)
))

. (15)

(b) The growth rate of the oracle wealth process (Ks,⋆
t )t≥0 satisfies:628

lim inf
t→∞

(
1
t logK

s,⋆
t

) a.s.
≥ 1

4 · E [W · g⋆(Z)] . (16)

If E [W · g⋆(Z)] > 0, then the test based on (Ks,⋆
t )t≥0 is consistent: PH1

(τ < ∞) =629

1. Further, the optimal growth rate achieved by λs
⋆ in (13) satisfies:630

E [log(1 + λs
⋆f

s
⋆(Z,W ))] ≤ 1

2 · E [W · g⋆(Z)] . (17)

Proof. 1. We trivially have that the payoff functions (11a) and (11b) are bounded: ∀(z, w) ∈631

Z×{−1, 1}, it holds that fm
⋆ (z, w) ∈ [−1, 1] and f s

⋆(z, w) ∈ [−1, 1]. Further, under the null632

H0 in (1a), it trivially holds that EH0 [f
m
⋆ (Zt,Wt) | Ft−1] = EH0 [f

s
⋆(Zt,Wt) | Ft−1] = 0,633

where Ft−1 = σ({(Zi,Wi)}i≤t−1). Since ONS betting fractions
(
λONS
t

)
t≥1

are pre-634

dictable, we conclude that the resulting wealth process is a nonnegative martingale. The635

assertion of the Theorem then follows directly from Ville’s inequality (Proposition 2) when636

a = 1/α.637

2. Suppose that H1 in (1b) is true. First, we prove the results for the lower bounds:638
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(a) Consider the wealth process based on the misclassification risk (Km,⋆
t )t≥0. Note that639

for all t ≥ 1:640

E [fm
⋆ (Zt,Wt)] = 2 ·

(
1

2
−Rm (g⋆)

)
, (fm

⋆ (Zt,Wt))
2
= 1.

Since E [fm
⋆ (Zt,Wt)] ∈ [0, 1], we also have (E [fm

⋆ (Zt,Wt)])
2 ≤ E [fm

⋆ (Zt,Wt)].641

From the first part of Lemma 6, it follows that:642

lim inf
t→∞

logKm,⋆
t

t

a.s.
≥ 1

4
(E [fm

⋆ (Zt,Wt)])
2
=

(
1

2
−Rm (g⋆)

)2

.

From the second part of Lemma 6, and (46) in particular, it follows that:643

E [log (1 + λm
⋆ f

m
⋆ (Z,W ))] ≤

(
16

3
·
(
1

2
−Rm(g⋆)

)2

∧
(
1

2
−Rm(g⋆)

))
.

The first term in the above is smaller or equal than the second one whenever Rm(g⋆) ≥644

5/16. We conclude that the assertion of the theorem is true.645

(b) Next, we consider the wealth process based on the squared error: (Ks,⋆
t )t≥0. Note that:646

E [f s
⋆(Zt,Wt)] = E [W · g⋆(Z)] ,

E
[
(f s

⋆(Zt,Wt))
2
]
= E

[
g2⋆(Z)

]
,

and hence from Lemma 6, it follows that:647

lim inf
t→∞

logKs,⋆
t

t

a.s.
≥ 1

4

(
(E [W · g⋆(Z)])

2

E [g2⋆(Z)]
∧ E [W · g⋆(Z)]

)
. (53)

In the above, we assume that the following case is not possible: g⋆(Z)
a.s.
= 0 (for such648

g⋆, the corresponding expected margin and the growth rate of the resulting wealth649

process are clearly zero, and will still be highlighted in our resulting bound). Next,650

note that since g⋆ ∈ argming∈G Rs (g), we have that:651

1−Rs (g⋆) = sup
s∈[0,1]

(1−Rs (sg⋆)) ,

meaning that g⋆ can not be improved by scaling with s < 1. From Proposition 1,652

and (51) in particular, it follows that:653

E [W · g⋆(Z)]

E [g2⋆(Z)]
≥ 1, (54)

and hence, the bound (53) reduces to654

lim inf
t→∞

logKs,⋆
t

t

a.s.
≥ E [W · g⋆(Z)]

4
.

From the second part of Lemma 6, it follows that:655

E [log (1 + λs
⋆f

s
⋆(Z,W ))] ≤ 4

3

(E [W · g⋆(Z)])
2

E
[
(g⋆(Z))

2
] ∧ E [W · g⋆(Z)]

2
. (55)

Next, we use that g⋆ satisfies (54), which implies that the second term in (55) is smaller,656

and hence,657

E [log (1 + λs
⋆f

s
⋆(Z,W ))] ≤ E [W · g⋆(Z)]

2
,

which concludes the proof of the second part of the theorem.658

659
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Corollary 1. Consider an arbitrary g ∈ G with nonnegative expected margin: E [W · g(Z)] ≥ 0.660

Then the growth rate of the corresponding wealth process (Ks
t)t≥0 satisfies:661

lim inf
t→∞

(
1
t logKs

t

) a.s.
≥ 1

4

(
sup

s∈[0,1]

(1−Rs (sg)) ∧ E [W · g(Z)])
)

(18a)

≥ 1
4 (E [W · g(Z)])

2
, (18b)

and the optimal growth rate achieved by λs
⋆ in (13) satisfies:662

E [log(1 + λs
⋆f

s(Z,W ))] ≤
(

4
3 · sup

s∈[0,1]

(1−Rs (sg))
)
∧
(
1
2 · E [W · g(Z)]

)
. (19)

Proof. Following the same argument as that of the proof of Theorem 1, we can deduce that:663

lim inf
t→∞

logKs
t

t

a.s.
≥ 1

4

(
(E [W · g(Z)])

2

E [g2(Z)]
∧ E [W · g(Z)]

)
. (56)

Hence, it suffices to argue that the lower bound (56) is equivalent to (18a). Without loss of generality,664

we can assume that E [W · g(Z)] ≥ 0, and further, the two lower bounds are equal if E [W · g(Z)] =665

0. Hence, we consider the case when E [W · g(Z)] > 0. First, let us consider the case when666

E [W · g(Z)]

E [g2(Z)]
< 1. (57)

Using (51), we get that:667

sup
s∈[0,1]

(1−Rs (sg)) =
(E [W · g(Z)])

2

E [g2(Z)]
, (58)

and hence, two bounds coincide. For the upper bound (19), we use Lemma 6, and the upper bound (46)668

in particular. Note that the first term in (46) is less than the second term whenever669

E [W · g(Z)]

E
[
(g(Z))

2
] ≤ 3

8
< 1.

However, in this regime we also know that (58) holds, and hence the two bounds coincide. This670

completes the proof.671

672

Theorem 2. The following claims hold for Seq-C-2ST (Algorithm 2):673

1. If H0 in (1a) is true, the test ever stops with probability at most α: PH0 (τ < ∞) ≤ α.674

2. Suppose that H1 in (1b) is true. Then:675

(a) Under Assumption 1, the test with the payoff (22a) is consistent: PH1 (τ < ∞) = 1.676

(b) Under Assumption 2, the test with the payoff (22b) is consistent: PH1
(τ < ∞) = 1.677

Proof. 1. We trivially have that the payoff functions (22a) and (22b) are bounded: ∀t ≥ 1678

and ∀(z, w) ∈ Z × {−1, 1}, it holds that fm
t (z, w) ∈ [−1, 1] and f s

t (z, w) ∈ [−1, 1].679

Further, under the null H0 in (1a), it trivially holds that EH0
[fm

t (Zt,Wt) | Ft−1] =680

EH0
[f s

t (Zt,Wt) | Ft−1] = 0, where Ft−1 = σ({(Zi,Wi)}i≤t−1). Since ONS betting681

fractions
(
λONS
t

)
t≥1

are predictable, we conclude that the resulting wealth process is a682

nonnegative martingale. The assertion of the Theorem then follows directly from Ville’s683

inequality (Proposition 2) when a = 1/α.684

2. Note that if ONS strategy for selecting betting fractions is deployed, then (49) implies that685

the tests will be consistent as long as686

lim inf
t→∞

1

t

t∑
i=1

fi
a.s.
> 0, (59)

where for i ≥ 1, fi = fm
i (Zi,Wi) and fi = f s

i (Zi,Wi) for the payoffs based on the687

misclassification and the squared risks respectively.688
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(a) Recall that689

fm
i (Zi,Wi) = Wi · sign [gi(Zi)] ,

and Assumption 1 states that:690

lim sup
t→∞

1

t

t∑
i=1

1 {Wi · sign [gi(Zi)] < 0} a.s.
<

1

2
.

Since 1 {x < 0} = (1− sign [x]) /2, we get that:691

lim sup
t→∞

1

t

t∑
i=1

(
1

2
− Wi · sign [gi(Zi)]

2

)
a.s.
<

1

2
,

which, after rearranging and multiplying by two, implies that:692

lim inf
t→∞

1

t

t∑
i=1

Wi · sign [gi(Zi)]
a.s.
> 0.

Hence, a sufficient condition for consistency (59) holds, and we conclude that the result693

is true.694

(b) Recall that695

f s
i (Zi,Wi) = Wi · gi(Zi),

and Assumption 2 states that:696

lim sup
t→∞

1

t

t∑
i=1

(gi(Zi)−Wi)
2 a.s
< 1,

which is equivalent to697

lim sup
t→∞

1

t

t∑
i=1

(
g2i (Zi)− 2Wi · gi(Zi)

) a.s
< 0.

It is easy to see that the above, in turn, implies that:698

lim inf
t→∞

1

t

t∑
i=1

Wi · gi(Zi)
a.s
> 0.

Hence, a sufficient condition for consistency (59) holds, and we conclude that the result699

is true.700

701

D.4 Proofs for Appendix A702

Theorem 3. The following claims hold for the oracle sequential regression-based IT based on703 (
Kr,⋆

t

)
t≥0

:704

1. Suppose that H0 in (26a) is true. Then the test ever stops with probability at most α:705

PH1
(τ < ∞) ≤ α.706

2. Suppose that H1 in (26b) is true. Further, suppose that: E [Wℓ(g⋆(X), Y )] > 0. Then the707

test is consistent: PH1
(τ < ∞) = 1.708

Proof. 1. We trivially have that the payoff function (27) is bounded: ∀(x, y, w) ∈ X × Y ×709

{−1, 1}, it holds that f r
⋆(x, y, w) ∈ [−1, 1]. Further, under the null H0 in (26a), it trivially710

holds that EH0 [f
r
⋆(Xt, Yt,Wt) | Ft−1] = 0, where Ft−1 = σ({(Xi, Yi,Wi)}i≤t−1). Since711

ONS betting fractions
(
λONS
t

)
t≥1

are predictable, we conclude that the resulting wealth712

process is a nonnegative martingale. The assertion of the Theorem then follows directly713

from Ville’s inequality (Proposition 2) when a = 1/α.714
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2. Note that if ONS strategy for selecting betting fractions is deployed, then (49) implies that715

the tests will be consistent as long as716

lim inf
t→∞

1

t

t∑
i=1

f r
⋆(Xi, Yi,Wi)

a.s.
> 0. (60)

Note that:717

1

t

t∑
i=1

f r
⋆(Xi, Yi,Wi) =

1

t

t∑
i=1

tanh (s⋆ ·Wiℓ(g⋆(Xi), Yi))
a.s.→ E [tanh (s⋆ ·Wℓ(g⋆(X), Y ))] .

Note that for any x ∈ R : tanh(x) ≥ x− 1
3 ·max

{
x3, 0

}
. Hence, for any s > 0, it holds718

that:719

E [tanh (s ·Wℓ(g⋆(X), Y ))] ≥ sE [Wℓ(g⋆(X), Y )]− 1

3
E
[
max

{
s3 ·W (ℓ(g⋆(X), Y ))3, 0

}]
= sE [Wℓ(g⋆(X), Y )]− s3

3
E
[
(ℓ(g⋆(X), Y ))3 ·max {W, 0}

]
= sE [Wℓ(g⋆(X), Y )]− s3

6
E
[
(1 +W ) · (ℓ(g⋆(X), Y ))3

]
,

(61)
where we used that max {W, 0} = (W + 1)/2 since W ∈ {−1, 1}. Maximizing the RHS720

of (61) over s > 0 yields s⋆ defined in (28a). Hence,721

E [tanh (s⋆ ·Wℓ(g⋆(X), Y ))] ≥ s⋆E [Wℓ(g⋆(X), Y )]− s3⋆
6
E
[
(1 +W ) · (ℓ(g⋆(X), Y ))3

]
= s⋆

(
E [Wℓ(g⋆(X), Y )]− s2⋆

6
E
[
(1 +W ) · (ℓ(g⋆(X), Y ))3

])
= s⋆

(
E [Wℓ(g⋆(X), Y )]− 1

3
E [Wℓ(g⋆(X), Y )]

)
=

2s⋆
3

E [Wℓ(g⋆(X), Y )] > 0.

Hence, we conclude that the oracle regression-based IT is consistent since the sufficient condition (62)722

holds.723

Theorem 4. The following claims hold for the proxy sequential regression-based IT (Algorithm 3):724

1. Suppose that H0 in (26a) is true. Then the test ever stops with probability at most α:725

PH0
(τ < ∞) ≤ α.726

2. Suppose that H1 in (26b) is true. Further, suppose that Assumptions 3 and 4 are satisfied.727

Then the test is consistent: PH1
(τ < ∞) = 1.728

Proof. 1. We trivially have that the payoff function (29) is bounded: ∀(x, y, w) ∈ X × Y ×729

{−1, 1}, it holds that f r
t (x, y, w) ∈ [−1, 1]. Further, under the null H0 in (26a), it trivially730

holds that EH0 [f
r
t (Xt, Yt,Wt) | Ft−1] = 0, where Ft−1 = σ({(Xi, Yi,Wi)}i≤t−1). Since731

ONS betting fractions (λONS
t )t≥1 are predictable, we conclude that the resulting wealth732

process is a nonnegative martingale. The assertion of the Theorem then follows directly733

from Ville’s inequality (Proposition 2) with a = 1/α.734

2. Note that if ONS strategy for selecting betting fractions is deployed, then (49) implies that735

the tests will be consistent as long as736

lim inf
t→∞

1

t

t∑
i=1

f r
t (Xi, Yi,Wi)

a.s.
> 0. (62)

(a) Step 1. Consider a predictable sequence of scaling factors (st)t≥1, defined in (30a),737

and the corresponding sequences (µt)t≥1 and (νt)t≥1, defined in (30b) and (30c)738
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respectively. For t ≥ 1, let Ft := σ({(Xi, Yi,Wi)}i≤t). Since the losses are bounded,739

we have that:740

(Wi · ℓ(g(Xi; θi), Yi)− E [Wi · ℓ(g(Xi; θi), Yi) | Fi−1])i≥1 ,

is a bounded martingale difference sequence (BMDS). By the Strong Law of Large741

Numbers for BMDS, it follows that:742

1

t

t∑
i=1

(Wi · ℓ(g(Xi; θi), Yi)− E [Wi · ℓ(g(Xi; θi), Yi) | Fi−1])
a.s.→ 0.

Since ((Xt, Yt,Wt))t≥1 is a sequence of i.i.d. observations, we can write743

1

t

t∑
i=1

E [Wi · ℓ(g(Xi; θi), Yi) | Fi−1] =
1

t

t∑
i=1

E [W · ℓ(g(X; θi), Y ) | θi] ,

where (X,Y,W ) ⊥⊥ (θt)t≥1, θ⋆. Using Assumption 3, we get that:744 ∣∣∣∣∣1t
t∑

i=1

E [W · ℓ(g(X; θi), Y ) | θi]− E [W · ℓ(g(X; θ⋆), Y ) | θ⋆]
∣∣∣∣∣

≤ 1

t

t∑
i=1

sup
x∈X
y∈Y

|ℓ(g(x; θi), y)− ℓ(g(x; θ⋆), y)|

≤ 1

t

t∑
i=1

L2 sup
x∈X

|g(x; θi)− g(x; θ⋆)|

≤ 1

t

t∑
i=1

L2 · L1 · ∥θi − θ⋆∥ a.s.→ 0,

(63)

since ∥θi − θ⋆∥ a.s.→ 0 by Assumption 4. In particular, this implies that µt
a.s.→745

E [Wℓ(g(X; θ⋆), Y ) | θ⋆]. Similar argument can be used to show that νt
a.s.→746

E
[
(1 +W ) · (ℓ(g(X; θ⋆), Y ))3 | θ⋆

]
, and hence,747

st
a.s.→
√

2E [Wℓ(g(X; θ⋆), Y ) | θ⋆]
E [(1 +W ) · (ℓ(g(X; θ⋆), Y ))3 | θ⋆]

=: s⋆. (64)

Note that s⋆ is a random variable which is positive (almost surely) by Assumption 4.748

(b) Step 2. Recall that for any x ∈ R : tanh(x) ≥ x − 1
3 · max

{
x3, 0

}
and that749

max {W, 0} = (W + 1)/2 since W ∈ {−1, 1}. We have:750

1

t

t∑
i=1

f r
i (Xi, Yi,Wi) =

1

t

t∑
i=1

tanh (si ·Wiℓ(g(Xi; θi), Yi))

≥ 1

t

t∑
i=1

(
si ·Wi · ℓ(g(Xi; θi), Yi)−

s3i
6

· (1 +Wi) · (ℓ(g(Xi; θi), Yi))
3

)
.

Note that θi and si are Fi−1-measurable (see Step 1 for the definition of Fi−1). Under751

a minor technical assumption that (st)t≥1 is a sequence of bounded scaling factors (the752

lower bound is trivially zero and the upper bound also holds if νt are bounded away753

from zero almost surely which is reasonable given the definition of νt), we can use754

analogous argument regarding a BMDS in Step 1 to deduce that:755

lim inf
t→∞

1

t

t∑
i=1

f r
i (Xi, Yi,Wi)

≥ lim inf
t→∞

1

t

t∑
i=1

(
si · E [W · ℓ(g(X; θi), Y ) | θi]−

s3i
6
E
[
(1 +W ) · (ℓ(g(X; θi), Y ))3 | θi

])
.

(65)
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Using argument analogous to (63), we can show that:756

1

t

t∑
i=1

E
[
(1 +W ) · (ℓ(g(X; θi), Y ))3 | θi

] a.s.→ E
[
(1 +W ) · (ℓ(g(X; θ⋆), Y ))3 | θ⋆

]
.

(66)
Combining (63), (64) and (66), we deduce that757

1

t

t∑
i=1

(
si · E [W · ℓ(g(X; θi), Y ) | θi]−

s3i
6
E
[
(1 +W ) · (ℓ(g(X; θi), Y ))3 | θi

])
a.s.→ s⋆ · E [W · ℓ(g(X; θ⋆), Y ) | θ⋆]−

s3⋆
6

· E
[
(1 +W ) · (ℓ(g(X; θ⋆), Y ))3 | θ⋆

]
=

2s⋆
3

· E [W · ℓ(g(X; θ⋆), Y ) | θ⋆] .
Hence, from (65) it follows that:758

lim inf
t→∞

1

t

t∑
i=1

f r
i (Xi, Yi,Wi) ≥

2s⋆
3

· E [W · ℓ(g(X; θ⋆), Y ) | θ⋆] ,

where the RHS is a random variable which is positive almost surely. Hence, a sufficient759

condition for consistency (62) holds which concludes the proof.760

761

D.5 Proofs for Appendix B762

Two-Sample Testing with Unbalanced Classes. Note that (g(z) = 2η(z)− 1):763

(1− λt) · 1 + λt ·
(η(Zt))

1{Wt=1}
(1− η(Zt))

1−1{Wt=1}

(π)
1{Wt=1}

(1− π)
1−1{Wt=1}

= (1− λt) · 1 + λt ·

(
1+g(Zt)

2

)1{Wt=1} (
1−g(Zt)

2

)1−1{Wt=1}

(π)
1{Wt=1}

(1− π)
1−1{Wt=1}

= (1− λt) · 1 +
λt

2
· (1 + g(Zt))

1{Wt=1}
(1− g(Zt))

1−1{Wt=1}

(π)
1{Wt=1}

(1− π)
1−1{Wt=1}

= (1− λt) · 1 +
λt

2
· 1 +Wtg(Zt)

(π)
1{Wt=1}

(1− π)
1−1{Wt=1}

= (1− λt) · 1 +
λt

2
· 2

1 +Wt(2π − 1)
· (1 +Wtg(Zt))

= (1− λt) · 1 +
λt

1 +Wt(2π − 1)
· (1 +Wtg(Zt))

= 1 + λt ·
Wt (g(Zt)− (2π − 1))

1 +Wt(2π − 1)
.

Payoff for the Case of Unbalanced Classes (known π). To see that the payoff function (37) is764

lower bounded by negative one, note that:765

fu
t (z, 1) =

gt(z)− (2π − 1)

2π
≥ −1− (2π − 1)

2π
= −1,

fu
t (z,−1) =

−gt(z) + (2π − 1)

2(1− π)
≥ −1 + (2π − 1)

2(1− π)
= −1.

To see that such payoff is fair, note that:766

EH0 [f
u
t (Zt,Wt) | Ft−1] = EP

[
π · gt(Zt)− (2π − 1)

2π

]
−EQ

[
(1− π) · gt(Zt)− (2π − 1)

2(1− π)
| Ft−1

]
= 0,

where Ft−1 = σ
(
{(Zi,Wi)}i≤t−1

)
.767
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Theorem 5. Suppose that H0 in (35a) is true. Then (Ku
t )t≥0 is a nonnegative supermartingale768

adapted to (Ft)t≥0. Hence, the sequential 2ST based on (Ku
t )t≥0 satisfies: PH0

(τ < ∞) ≤ α.769

Proof. First, we show that (Ku
t )t≥0 is a nonnegative supermartingale. For any t ≥ 1, the wealth770

Kt−1 is multiplied at round t by771

1+λtf
u
t

({
(Zb(t−1)+i,Wb(t−1)+i)

}
i∈{1,...,b}

)
= (1−λt) · 1+λt ·

∏bt
i=b(t−1)+1 (1 +Wigt(Zi))∏b

i=1 (1 +Wi(2π̂t − 1))
.

Since λt ∈ [0, 0.5], we conclude that the process (Ku
t )t≥0 is nonnegative. Next, note that since π̂t is772

the MLE of π computed from a t-th minibatch, it follows that:773

1 + λtf
u
t

({
(Zb(t−1)+i,Wb(t−1)+i)

}
i∈{1,...,b}

)
≤ (1− λt) · 1 + λt ·

∏bt
i=b(t−1)+1 (1 +Wigt(Zi))∏bt

i=b(t−1)+1 (1 +Wi(2π − 1))

= (1− λt) · 1 + λt ·
bt∏

i=b(t−1)+1

(
1 +Wigt(Zi)

1 +Wi(2π − 1)

)
.

Recall that Ft−1 = σ
(
{Zi,Wi}i≤b(t−1)

)
. It suffices to show that if H0 is true, then774

EH0

 bt∏
i=b(t−1)+1

(
1 +Wigt(Zi)

1 +Wi(2π − 1)

)
| Ft−1

 = 1.

Note that the individual terms in the above product are independent conditional on Ft−1. Hence,775

EH0

 bt∏
i=b(t−1)+1

(
1 +Wigt(Zi)

1 +Wi(2π − 1)

)
| Ft−1

 =

bt∏
i=b(t−1)+1

EH0

[
1 +Wigt(Zi)

1 +Wi(2π − 1)
| Ft−1

]
.

For any i ∈ {b(t− 1) + 1, . . . , bt}, it holds that:776

EH0

[
1 +Wigt(Zi)

1 +Wi(2π − 1)
| Ft−1

]
= EH0

[
π · 1 + gt(Zi)

1 + (2π − 1)
+ (1− π) · 1− gt(Zi)

1− (2π − 1)
| Ft−1

]
= EH0

[
1 + gt(Zi)

2
+

1− gt(Zi)

2
| Ft−1

]
= 1.

Hence, we conclude that (Ku
t )t≥0 is a nonnegative supermartingale adapted to (Ft)t≥0. The time-777

uniform type I error control of the resulting test then follows from Ville’s inequality (Proposition 2).778

779

E Additional Experiments and Details780

E.1 Modeling Details781

CNN Architecture and Training. We use CNN with 4 convolutional layers (kernel size is taken782

to be 3× 3) and 16, 32, 32, 64 filters respectively. Further, each convolutional layer is followed by783

max-pooling layer (2 × 2). After flattening, those layers are followed by 1 fully connected layer784

with 128 neurons. Dropout (p = 0.5) and early stopping (with patience equal to ten epochs and 20%785

of data used in the validation set) is used for regularization. ReLU activation functions are used786

in each layer. Adam optimizer is used for training the network. We start training after processing787

twenty observations, and update the model parameters after processing every next ten observations.788

Maximum number of epochs is set to 25 for each training iteration. The batch size is set to 32.789
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Single-stream Sequential Kernelized 2ST. The construction of this test is the extension of 2ST790

of Shekhar and Ramdas [2021] to the case when at each round an observation only from a single791

distribution (P or Q) is revealed. Let G denote an RKHS with positive-definite kernel k and canonical792

feature map φ(·) defined on Z . Recall that instances from P as labeled as +1 and instances from Q793

are labeled as −1 (characterized by W ). The mean embeddings of P and Q are then defined as794

µ̂
(t)
P =

1

N+(t)

t∑
i=1

φ(Zi) · 1 {Wi = +1} ,

µ̂
(t)
Q =

1

N−(t)

t∑
i=1

φ(Zi) · 1 {Wi = −1} ,

where N+(t) = |i ≤ t : Wi = +1| and N−(t) = |i ≤ t : Wi = −1|. The corresponding payoff795

function is796

fk
t (Zt+1,Wt+1) = Wt+1 · ĝt(Zt+1),

where ĝt =
µ̂
(t)
P − µ̂

(t)
Q∥∥∥µ̂(t)

P − µ̂
(t)
Q

∥∥∥
G

.

To make the test computationally efficient, it is critical to update the normalization constant efficiently.797

Suppose that at round t+ 1, an instance from P is observed. In this case, µ̂(t+1)
Q = µ̂

(t)
Q . Note that:798

µ̂
(t+1)
P =

1

N+(t+ 1)

t+1∑
i=1

φ(Zi) · 1 {Wi = +1}

=
1

N+(t) + 1

t+1∑
i=1

φ(Zi) · 1 {Wi = +1}

=
1

N+(t) + 1
φ(Zt+1) +

1

N+(t) + 1

t∑
i=1

φ(Zi) · 1 {Wi = +1}

=
1

N+(t) + 1
φ(Zt+1) +

N+(t)

N+(t) + 1
µ̂
(t)
P .

Hence, we have:799 ∥∥∥µ̂(t+1)
P − µ̂

(t+1)
Q

∥∥∥2
G
=
∥∥∥µ̂(t+1)

P − µ̂
(t)
Q

∥∥∥2
G

=
∥∥∥µ̂(t+1)

P

∥∥∥2
G
− 2

〈
µ̂
(t+1)
P , µ̂

(t)
Q

〉
G
+
∥∥∥µ̂(t)

Q

∥∥∥2
G
.

In particular,800 〈
µ̂
(t+1)
P , µ̂

(t)
Q

〉
G
=

〈
1

N+(t) + 1
φ(Zt+1) +

N+(t)

N+(t) + 1
µ̂
(t)
P , µ̂

(t)
Q

〉
G

=
1

N+(t) + 1

〈
φ(Zt+1), µ̂

(t)
Q

〉
G
+

N+(t)

N+(t) + 1

〈
µ̂
(t)
P , µ̂

(t)
Q

〉
G
.

Note that:801 〈
φ(Zt+1), µ̂

(t)
Q

〉
G
=

1

N−(t)

t∑
i=1

k(Zt+1, Zi) · 1 {Wi = −1} .

Next, we assume for simplicity that k(x, x) = 1,∀x which holds for RBF kernel. Observe that:802 ∥∥∥µ̂(t+1)
P

∥∥∥2
G
=
〈
µ̂
(t+1)
P , µ̂

(t+1)
P

〉
G

=
1

(N+(t) + 1)
2 +

2N+(t)

(N+(t) + 1)
2

〈
φ(Zt+1), µ̂

(t)
P

〉
G
+

(N+(t))
2

(N+(t) + 1)
2

∥∥∥µ̂(t)
P

∥∥∥2
G
.

By caching intermediate results, we can compute the normalization constant using linear in t number803

of kernel evaluations. We start betting once at least one instance is observed from both P and Q.804

For simulations, we use RBF kernel and the median heuristic with first 20 instances to compute the805

kernel hyperparameter.806
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MLP Training Scheme We begin training after processing twenty datapoints from PXY which807

gives a training dataset with 40 datapoints (due to randomization). When updating a model, we808

use previous parameters as initialization. We use the following update scheme: we start after next809

n0 = 10 datapoints from PXY are observed. Once n0 becomes less than 1% of the size of the810

existing training dataset, we increase it by ten, that is, nt = nt−1 + 10. When we fit the model, we811

set the maximum number of epochs to be 25 and use early stopping with patience of 3 epochs.812

Kernel Hyperparameters for Synthetic Experiments. For SKIT, we use RBF kernels:813

k(x, x′) = exp
(
−λX ∥x− x′∥22

)
, l(y, y′) = exp

(
−λY ∥y − y′∥22

)
.

For simulations on synthetic data, we take kernel hyperparameters to be inversely proportional to the814

second moment of the underlying variables (the median heuristic yields similar results):815

λX =
1

2E
[
∥X −X ′∥22

] , λY =
1

2E
[
∥Y − Y ′∥22

] .
1. Spherical model. By symmetry, we have: PX = PY , and hence we take λX = λY . We have816

E
[
(X −X ′)2

]
= 2E

[
X2
]
=

2

d
.

2. HTDD model. By symmetry, we have: PX = PY , and hence we take λX = λY . We have817

E
[
(X −X ′)2

]
= 2E

[
X2
]
=

2π2

3
.

3. Sparse signal model. We have818

E
[
∥X −X ′∥22

]
= 2E

[
∥X∥22

]
= 4d,

E
[
∥Y − Y ′∥22

]
= 2E

[
∥Y ∥22

]
= 2tr(BsB

⊤
s + Id) = 2(d+

d∑
i=1

β2
i ).

4. Gaussian model. We have819

E
[
(X −X ′)2

]
= 2E

[
X2
]
= 2,

E
[
(Y − Y ′)2

]
= 2E

[
Y 2
]
= 2(1 + β2).

Ridge Regression. We use ridge regression as an underlying predictive model: ĝt(x) = β
(t)
0 +xβ

(t)
1 ,820

where the coefficients are obtained by solving:821

(β
(t)
0 , β

(t)
1 ) = argmin

β0,β1

2(t−1)∑
i=1

(Yi −Xiβ1 − β0)
2
+ λβ2

1 .

Let Γ = diag(0, 1). Let Xt−1 ∈ R2(t−1)×2 be such that (Xt−1)i = (1, Xi), i ∈ [1, 2(t − 1)].822

Finally, let Yt−1 be a vector of responses: (Yt−1)i = Yi, i ∈ [1, 2(t− 1)]. Then:823

β(t) = argmin
β

∥Yt−1 −Xt−1β∥2 + λβ⊤Γβ =
(
X⊤

t−1Xt−1 + λΓ
)−1

(X⊤
t−1Yt−1).

E.2 Additional Experiments for Seq-C-IT824

In Figure 6, we present average stopping times for ITs under the synthetic settings from Section 3.825

We confirm that all tests adapt to the complexity of a problem at hand, stopping earlier on easy826

tasks and later on harder ones. We also consider two additional synthetic examples where Seq-C-IT827

outperforms a kernelized approach:828
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(b) HTDD model.

Figure 6: Stopping times of ITs on synthetic data from Section 3. Subplot (a) shows that SKIT is only
marginally better than Seq-C-IT (MLP) due to slightly better sample efficiency under the spherical
model (no localized dependence). Under the structured HTDD model, SKIT is inferior to Seq-C-ITs.

1. Sparse signal model. Let (Xt)t≥1 and (εt)t≥1 be two independent sequences of standard829

Gaussian random vectors in Rd: Xt, εt
iid∼ N (0, Id), t ≥ 1. We take830

(Xt, Yt) = (Xt, BsXt + εt),

where Bs = diag(β1, . . . , βd) and only s = 5 of {βi}di=1 are nonzero being sampled from831

Unif([−0.5, 0.5]). We consider d ∈ {5, . . . , 50}.832

2. Nested circles model. Let (Lt)t≥1, (Θt)t≥1, (ε(1)t )t≥1, (ε(2)t )t≥1 denote sequences of ran-833

dom variables where L
iid∼ Unif(1, . . . , l) for some prespecified l ∈ N, Θt

iid∼ Unif([0, 2π]),834

and ε
(1)
t , ε

(2)
t

iid∼ N (0, (1/4)2). For t ≥ 1, we take835

(Xt, Yt) = (Lt cos(Θt) + ε
(1)
t , Lt sin(Θt) + ε

(2)
t ). (67)

We consider l ∈ {1, . . . , 10}.836

In Figure 7, we show that Seq-C-ITs significantly outperform SKIT under these models. We note that837

the degrading performance of kernel-based tests under the nested circles model (67) has been also838

observed in earlier works [Berrett and Samworth, 2019, Podkopaev et al., 2023].839
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(b) Sparse signal model.
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(c) Nested circles model.
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Figure 7: Rejection rates (left column) and average stopping times (right column) of sequential ITs
for synthetic datasets from Appendix E.2. In both cases, SKIT is inferior to Seq-C-ITs.
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