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360

A Regression-based Independence Testing361

Regression-based independence tests represent an alternative to classification-based approaches362

in settings where a data stream ((Xt, Yt))t≥1 may be processed directly as feature-response pairs.363

Suppose that one selects a functional class G : X → Y for performing such prediction task, and364

let ℓ denote a loss function that evaluates the quality of predictions. For example, if (Yt)t≥1 is a365

sequence of univariate random variables, one can use the squared loss: ℓ(g(x), y) = (g(x)− y)2, or366

the absolute loss: ℓ(g(x), y) = |g(x)− y|.367

Such tests rely on the following idea: if the alternative H1 in (2b) is true and a sequence of sequentially368

updated predictors (gt)t≥1 has nontrivial predictive power, then the losses on random instances drawn369

from the joint distribution PXY are expected to be less on average than the losses on random instances370

from PX × PY . For the t-th pair of points from PXY , we can label the losses of gt on all possible371

(X,Y )-pairs as372

L2t−1 = ℓ (gt(X2t−1), Y2t−1) , L2t = ℓ (gt(X2t), Y2t) ,

L′
2t−1 = ℓ (gt(X2t−1), Y2t) , L′

2t = ℓ (gt(X2t), Y2t−1) .
(25)

One can view this problem as sequential two-sample testing under distribution drift (due to incremental373

learning of (gt)t≥1). Hence, one may use either Seq-C-2ST from Section 2 or sequential kernelized374

2ST of Shekhar and Ramdas [2021] on the resulting sequence of the losses on observations from375

PXY and PX × PY . In what follows, we analyze a direct approach where testing is performed by376

comparing the losses on instances drawn from the two distributions. A critical difference with a377

construction of Seq-C-2ST is that to design a valid betting strategy one has to ensure that the payoff378

functions are lower bounded by negative one.379

A.1 Proxy Regression-based Independence Test380

To avoid cases when some expected values are not well-defined, we assume for simplicity that X is a381

bounded subset of Rd for som d ≥ 1: X =
{
x ∈ Rd : ∥x∥2 ≤ B1

}
for some B1 > 0. Similarly, we382

assume that Y is a bounded subset of R: Y = {y ∈ R : |y| ≤ B2} for some B2 > 0. We note that383

the construction of the regression-based IT will not require explicit knowledge of constants B1 and384

B2. First, we consider a setting where an instance either from the joint distribution or an instance385

from the product of the marginal distributions is observed at each round.386

Definition 3 (Proxy Setting). Suppose that we observe a stream of i.i.d. observations387

((Xt, Yt,Wt))t≥1, where Wt ∼ Rademacher(1/2), the distribution of (Xt, Yt) | Wt = +1 is388

PX × PY , and that of (Xt, Yt) | Wt = −1 is PXY . The goal is to design a test for the following pair389

of hypotheses:390

H0 : PXY = PX × PY , (26a)
H1 : PXY ̸= PX × PY . (26b)

Oracle Proxy Sequential Regression-based IT. To construct an oracle test, we assume having391

access to the oracle predictor g⋆ : X → Y , e.g., the minimizer of the squared risk is g⋆(x) =392

E [Y | X = x]. Formalizing the above intuition, we use E [Wℓ(g⋆(X), Y )] as a natural way for393

measuring dependence between X and Y . To enforce boundedness of the payoff functions, we use394

ideas of the tests for symmetry from [Ramdas et al., 2020, Shekhar and Ramdas, 2021, Podkopaev395

et al., 2023, Shaer et al., 2023], namely we use a composition with an odd function:396

f r
⋆(Xt, Yt,Wt) = tanh (s⋆ ·Wt · ℓ(g⋆(Xt), Yt)) ∈ [−1, 1], (27)

where s⋆ > 0 is an appropriately selected scaling factor3. Since under H0 in (26a), s⋆ · Wt ·397

ℓ(g⋆(Xt), Yt) is a random variable that is symmetric around zero, it follows that E[f r
⋆(Xt, Yt,Wt)] =398

3We note that rescaling is important for arguing about consistency and not the type I error control.
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0, and, using the argument analogous to the proof of Theorem 1, we can easily deduce that a399

sequential IT based on f r
⋆ controls the type I error control. The scaling factor s⋆ is selected in a way400

that guarantees that, if H1 in (26b) is true and if E [Wℓ(g⋆(X), Y )] > 0, then E [f r
⋆(X,Y,W )] > 0,401

which is a sufficient condition for consistency of the oracle test. In particular, we show that it suffices402

to consider:403

s⋆ =

√
2µ⋆

ν⋆
, (28a)

where µ⋆ = E [Wℓ(g⋆(X), Y )] , (28b)

ν⋆ = E
[
(1 +W ) (ℓ(g⋆(X), Y ))

3
]
. (28c)

Without loss of generality, we assume that ν⋆ is bounded away from zero (which is a very mild404

assumption since ν⋆ essentially corresponds to a cubic risk of g⋆ on data drawn from the product of the405

marginal distributions PX×PY ). Let the oracle regression-based wealth process
(
Kr,⋆

t

)
t≥0

be defined406

by using the payoff function (27) with a scaling factor defined in (28a), along with a predictable407

sequence of betting fractions (λt)t≥1 selected via the ONS strategy (Algorithm 1). We have the408

following result about the oracle regression-based IT, whose proof is deferred to Appendix D.4.409

Theorem 3. The following claims hold for the oracle sequential regression-based IT based on410 (
Kr,⋆

t

)
t≥0

:411

1. Suppose that H0 in (26a) is true. Then the test ever stops with probability at most α:412

PH1 (τ < ∞) ≤ α.413

2. Suppose that H1 in (26b) is true. Further, suppose that: E [Wℓ(g⋆(X), Y )] > 0. Then the414

test is consistent: PH1
(τ < ∞) = 1.415

Practical Proxy Sequential Regression-based IT. To construct a practical test, we use a sequence416

of predictors (gt)t≥1 that are updated sequentially as more data are observed. We write Ar :417

(∪t≥1(X × Y)t)× G → G to denote a chosen regressor learning algorithm which maps a training418

dataset of any size and previously used predictor, to an updated predictor. We start with D0 = ∅ and419

some initial guess g1 ∈ G. At round t, we use the payoff function:420

f r
t (Xt, Yt,Wt) = tanh (st ·Wt · ℓ(gt(Xt), Yt)) . (29)

where a sequence of predictable scaling factors (st)t≥1 is defined as follows: we set s0 = 0 and421

define:422

st =

√
2µt

νt
, (30a)

where µt =

(
1

t− 1

t−1∑
i=1

Wi · ℓ(gi(Xi), Yi)

)
∨ 0, (30b)

νt =
1

t− 1

t−1∑
i=1

(1 +Wi) · (ℓ(gi(Xi), Yi))
3
. (30c)

After (Xt, Yt,Wt) has been used for betting, we update a training dataset: Dt = Dt−1 ∪423

{(Xt, Yt,Wt)}, and an existing predictor: gt+1 = Ar(Dt, gt). We summarize this practical se-424

quential 2ST in Algorithm 3.425

For simplicity, we consider a class of functions G := {gθ : X → Y, θ ∈ Θ} for some parameter set426

Θ which we assume to be a subset of a metric space. In this case, a sequence of predictors (gt)t≥1427

is associated with the corresponding sequence of parameters (θt)t≥1: for t ≥ 1, gt(·) = g(·; θt) for428

some θt ∈ Θ. To argue about the consistency of the resulting test, we make two assumptions.429

Assumption 3 (Smoothness). We assume that:430

• Predictors in G are L1-Lipschitz smooth:431

sup
x∈X

|g(x; θ)− g(x; θ′)| ≤ L1 ∥θ − θ′∥ , ∀θ, θ′ ∈ Θ. (31)
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Algorithm 3 Proxy Sequential Regression-based IT

Input: significance level α ∈ (0, 1), data stream ((Xt, Yt,Wt))t≥1, g1(z) ≡ 0, Ar, D0 = ∅,
λONS
1 = 0, s1 = 0.

for t = 1, 2, . . . do
Evaluate the payoff f r

t (Xt, Yt,Wt) as in (29);
Using λONS

t , update the wealth process Kr
t as in (5);

if Kr
t ≥ 1/α then
Reject H0 and stop;

else
Update the training dataset: Dt := Dt−1 ∪ {(Xt, Yt)};
Update predictor: gt+1 = Ar(Dt, gt);
Compute st+1 as in (30a);
Compute λONS

t+1 (Algorithm 1) using f r
t (Xt, Yt,Wt);

• The loss function ℓ is L2-Lipschitz smooth:432

sup
x∈X
y∈Y

|ℓ(g(x; θ), y)− ℓ(g(x; θ′), y)| ≤ L2 sup
x∈X

|g(x; θ)− g(x; θ′)| , ∀θ, θ′ ∈ Θ. (32)

In words, Assumption (31) states that the outputs of predictors, whose parameters are close, will433

also be close. Assumption (32) states that that the losses of two predictors, whose outputs are close,434

will also be close. For example, if G is a class of linear predictors: gθ(x) = θ⊤x, x ∈ X , then435

Assumption 3 will be trivially satisfied for the squared and the absolute losses if X and Y are bounded.436

Note that we do not need an explicit knowledge of L1 or L2 for designing a test. Second, we make a437

learnability assumption about algorithm Ar.438

Assumption 4 (Learnability). Suppose that H1 in (26b) is true. We assume that the regressor439

learning algorithm Ar is such that for the resulting sequence of parameters (θt)t≥1, it holds that440

θt
a.s.→ θ⋆, where θ⋆ is a random variable taking values in Θ and E [Wℓ(g(X; θ⋆), Y ) | θ⋆]

a.s.
> 0,441

where (X,Y,W ) ⊥⊥ θ⋆.442

We conclude with the following result for the practical proxy sequential regression-based IT, whose443

proof is deferred to Appendix D.4.444

Theorem 4. The following claims hold for the proxy sequential regression-based IT (Algorithm 3):445

1. Suppose that H0 in (26a) is true. Then the test ever stops with probability at most α:446

PH0
(τ < ∞) ≤ α.447

2. Suppose that H1 in (26b) is true. Further, suppose that Assumptions 3 and 4 are satisfied.448

Then the test is consistent: PH1
(τ < ∞) = 1.449

Sequential Regression-based Independence Test (Seq-R-IT). Next, we instantiate this test450

for the sequential independence testing setting (as per Definition 2) where we observe sequence451

((Xt, Yt))t≥1, where (Xt, Yt)
iid∼ PXY , t ≥ 1. Analogous to Section 3, we bet on the outcome of452

two observations drawn from the joint distribution PXY . To proceed, we derandomize the payoff453

function (29) and consider454

f r
t ((X2t−1, Y2t−1), (X2t, Y2t)) =

1

4
(tanh (st · ℓ (gt(X2t−1), Y2t)) + tanh (st · ℓ (gt(X2t), Y2t−1)))

− 1

4
(tanh (st · ℓ (gt(X2t), Y2t))− tanh (st · ℓ (gt(X2t−1), Y2t−1))) .

(33)
After betting on the outcome of the t-th pair of observations from PXY , we update a training dataset:455

Dt = Dt−1 ∪ {(X2t−1, Y2t−1), (X2t, Y2t)} ,

and a predictive model: ĝt+1 = Ar(Dt, ĝt).456
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A.2 Synthetic Experiments457

To evaluate the performance of Seq-R-IT, we consider the Gaussian linear model. Let (Xt)t≥1 and458

(εt)t≥1 denote two independent sequences of i.i.d. standard Gaussian random variables. For t ≥ 1,459

we take460

(Xt, Yt) = (Xt, Xtβ + εt),

where β ̸= 0 implies nonzero linear correlation (hence dependence). We consider 20 values of β461

equally spaced in [0, 1/2]. For the comparison, we use:462

1. Seq-R-IT with ridge regression. We use ridge regression as an underlying model: ĝt(x) =463

β
(t)
0 + xβ

(t)
1 , where464

(β
(t)
0 , β

(t)
1 ) = argmin

β0,β1

2(t−1)∑
i=1

(Yi −Xiβ1 − β0)
2
+ λβ2

1 .

2. Seq-C-IT with QDA. Note that PXY = N (µ,Σ+) and PX × PY = N (µ,Σ−), where465

µ =

(
0
0

)
, Σ+ =

(
1 β
β 1 + β2

)
, Σ− =

(
1 0
0 1 + β2

)
.

For this problem, an oracle predictor which minimizes the misclassification risk is466

g⋆(x, y) =
φ((x, y);µ+,Σ+)− φ((x, y);µ−,Σ−)

φ((x, y);µ−,Σ−) + φ((x, y);µ+,Σ+)
∈ [−1, 1], (34)

where φ((x, y);µ,Σ) denotes the density of the Gaussian distribution N (µ,Σ) evaluated at467

(x, y). Recall that Dt−1 = {(Zi,+1)}i≤2(t−1) ∪ {(Z ′
i,−1)}i≤2(t−1) denotes the training468

dataset that is available at round t for training a predictor ĝt : X × Y → [−1, 1]. We469

deploy Seq-C-IT with an estimator ĝt of (34), obtained by using plug-in estimates of470

µ+,Σ+, µ−,Σ−, computed from Dt−1:471

µ̂+
t =

1

2(t− 1)

∑
Z∈D+

t−1

Z, Σ̂+
t =

 1

2(t− 1)

∑
Z∈D+

t−1

ZZ⊤

− (µ̂+
t )(µ̂

+
t )

⊤,

and µ̂−
t , Σ̂−

t are computed similarly from D−
t .472

In addition, we also include HSIC-based SKIT to the comparison and defer the details regarding473

kernel hyperparameters to Appendix E.1. We set the monitoring horizon to T = 5000 points from474

PXY and aggregate the results over 200 sequences of observations for each value of β. We illustrate475

the result in Figure 5: while Seq-R-IT has high power for large values of β, we observe its inferior476

performance against Seq-C-IT (and SKIT) under the harder settings. Improving regression-based477

betting strategies, e.g., designing better scaling factors that still yield a provably consistent test, is an478

open question for future research.479

B Two-sample Testing with Unbalanced Classes480

In Section 2, we developed a sequential 2ST under the assumption at each round, an instance from481

either P or Q is revealed with equal probability. Such assumption was reasonable for designing482

Seq-C-IT, where external randomization produced two instances from PXY and PX × PY at each483

round. Next, we generalize our sequential 2ST to a more general setting of unbalanced classes.484

Definition 4 (Sequential two-sample testing with unbalanced classes). Let π ∈ (0, 1). Suppose485

that we observe a stream of i.i.d. observations ((Zt,Wt))t≥1, where Wt ∼ Rademacher(π), the486

distribution of Zt | Wt = +1 is denoted P , and that of Zt | Wt = −1 is denoted Q. We set the goal487

of designing a sequential test for the following pair of hypotheses:488

H0 : P = Q, (35a)
H1 : P ̸= Q. (35b)
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Figure 5: Comparison between Seq-R-IT, Seq-C-IT and HSIC-based SKIT under the Gaussian linear
model. Inspecting Figure 5a at β = 0 confirms that all tests control the type I error. Non-surprisingly,
kernel-based SKIT performs better than predictive tests under this model (no localized dependence).
We also observe that Seq-C-IT performs better than Seq-R-IT.

For what follows, we will focus on the payoff based on the squared risk due to its relationship to the489

likelihood-ratio-based test (Remark 3). In particular, after correcting the likelihood under the null490

in (20) to account for a general positive class proportion π, we can deduce that (see Appendix D.5):491

(1−λt) ·1+λt ·
(ηt(Zt))

1{Wt=1}
(1− ηt(Zt))

1{Wt=0}

(π)
1{Wt=1}

(1− π)
1{Wt=0} = 1+λt ·

Wt (gt(Zt)− (2π − 1))

1 +Wt(2π − 1)
, (36)

where ηt(z) = (gt(z) + 1)/2, and hence, a natural payoff function for the case with unbalanced492

classes is493

fu
t (Zt,Wt) =

Wt (gt(Zt)− (2π − 1))

1 +Wt(2π − 1)
. (37)

Note that the payoff for the balanced case (22b) is recovered by setting π = 1/2. It is easy to check494

that (see Appendix D.5): (a) fu
t (z, w) ≥ −1 for any (z, w) ∈ Z × {−1, 1}, and (b) if H0 in (35a) is495

true, then EH0 [f
u
t (Zt,Wt) | Ft−1] = 0, where Ft−1 = σ({(Zi,Wi)}i≤t−1). This in turn implies496

that a wealth process that relies on the payoff function fu
t in (37) is a nonnegative martingale, and497

hence, the corresponding sequential 2ST is valid. However, the positive class proportion π, needed to498

use the payoff function (37), is generally unknown beforehand. First, let us consider the case when499

λt = 1, t ≥ 1. In this case, the wealth of a gambler that uses the payoff function (37) after round t is500

Kt =

∏t
i=1 (ηi(Zi))

1{Wi=1}
(1− ηi(Zi))

1{Wi=0}∏t
i=1 π

1{Wi=1} (1− π)
1{Wi=0} . (38)

Note that:501

π̂t :=
1

t

t∑
i=1

1 {Wt = 1} = argmax
π∈[0,1]

(
t∏

i=1

π1{Wi=1} (1− π)
1{Wi=0}

)
,

is the MLE for π computed from {Wi}i≤t. In particular, if we consider a process (K̃t)t≥0, where502

K̃t :=

∏t
i=1 (ηi(Zi))

1{Wi=1}
(1− ηi(Zi))

1{Wi=0}∏t
i=1 (π̂t)

1{Wi=1}
(1− π̂t)

1{Wi=0} , t ≥ 1,

it follows that K̃t ≤ Kt, ∀t ≥ 1, meaning that (K̃t)t≥0 is a process that is upper bounded by a503

nonnegative martingale with initial value one. This in turn implies that a test based on (K̃t)t≥0 is a504

valid level-α sequential 2ST for the case of unknown class proportions. This idea underlies the running505

MLE sequential likelihood ratio test of Wasserman et al. [2020] and has been recently considered in506

the context of two-sample testing by Pandeva et al. [2022]. In case of nontrivial betting fractions:507

(λt)t≥1, representation of the wealth process (38) no longer holds, and to proceed, we modify the rules508

of the game and use minibatching. A bet is placed on every b (say, 5 or 10) observations, meaning509
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that for a given minibatch size b ≥ 1, at round t we bet on {(Zb(t−1)+i,Wb(t−1)+i)}i∈{1,...,b}. The510

MLE of π computed from the t-th minibatch is511

π̂t =
1

b

bt∑
i=b(t−1)+1

1 {Wi = +1} .

We consider a payoff function of the following form:512

fu
t

({
(Zb(t−1)+i,Wb(t−1)+i)

}
i∈{1,...,b}

)
=

bt∏
i=b(t−1)+1

(
1 +Wigt(Zi)

1 +Wi(2π̂t − 1)

)
− 1. (39)

In words, the above payoff essentially compares the performance of a predictor gt, trained on513

{(Zi,Wi)}i≤b(t−1) and evaluated on the t-th minibatch, to that of a trivial baseline predictor to514

form a bet. In particular, setting b = 1 yields a valid, yet a powerless test. Indeed, we have515

π̂t = 1 {Wt = 1} = (Wt + 1)/2. In this case, the payoff (39) reduces to516

Wt (gt(Zt)− (2π̂t − 1))

1 +Wt(2π̂t − 1)
=

Wtgt(Zt)− 1

2

a.s.∈ [−1, 0],

implying that the wealth can not grow even if the null is false. Define a wealth processes (Ku
t )t≥0517

based on the payoff functions (39) along with a predictable sequence of betting fractions (λt)t≥1518

selected via ONS strategy (Algorithm 1). Let Ft = σ({(Zi,Wi)}i≤bt) for t ≥ 1, with F0 denoting a519

trivial sigma-algebra. We conclude with the following result, whose proof is deferred to Appendix D.5.520

Theorem 5. Suppose that H0 in (35a) is true. Then (Ku
t )t≥0 is a nonnegative supermartingale521

adapted to (Ft)t≥0. Hence, the sequential 2ST based on (Ku
t )t≥0 satisfies: PH0

(τ < ∞) ≤ α.522

C Testing under Distribution Drift523

First, we define the problem of two-sample testing when at each round instances from both distribu-524

tions are observed.525

Definition 5 (Sequential two-sample testing). Suppose that we observe that a stream of observations:526

((Xt, Yt))t≥1, where (Xt, Yt)
iid∼ PX × PY for t ≥ 1. The goal is to design a sequential test for527

H0 : (Xt, Yt)
iid∼ PX × PY and PX = PY , (40a)

H1 : (Xt, Yt)
iid∼ PX × PY and PX ̸= PY . (40b)

Under the two-sample testing setting (Definition 5), we label observations from PY as positive (+1)528

and observations from PX as negative (−1). We write A2ST
c : (∪t≥1(X × {−1,+1})t)× G → G to529

denote a chosen learning algorithm which maps a training dataset of any size and previously used530

predictor, to an updated predictor. We start with D0 = ∅ and g1 : g1(x) = 0, ∀x ∈ X . At round t,531

we bet using derandomized versions of the payoffs (22), namely532

fm
t (Xt, Yt) =

1
2 (sign [gt(Yt)]− sign [gt(Xt)]) , (41a)

f s
t (Xt, Yt) =

1
2 (gt(Yt)− gt(Xt)) . (41b)

After (Xt, Yt) has been used for betting, we update a training dataset and an existing predictor:533

Dt = Dt−1 ∪ {(Yt,+1), (Xt,−1)} , gt+1 = A2ST
c (Dt, gt).

Testing under Distribution Drift. Batch two-sample and independence tests generally rely on534

either a cutoff computed using the asymptotic null distribution of a chosen test statistic (if tractable)535

or a permutation p-value. Both approaches require imposing i.i.d. (or exchangeability, for the latter536

option) assumption about the data distribution, and if the distribution drifts, both approaches fail to537

guarantee the type I error control. In contrast, Seq-C-2ST and Seq-C-IT remain valid beyond the538

i.i.d. setting by construction (analogous to tests developed in [Shekhar and Ramdas, 2021, Podkopaev539

et al., 2023]). First, we define the problems of sequential two-sample and independence testing under540

distribution drift.541
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Definition 6 (Sequential two-sample testing under distribution drift). Suppose that we observe that a542

stream of independent observations: ((Xt, Yt))t≥1, where (Xt, Yt) ∼ P
(t)
X × P

(t)
Y , t ≥ 1. The goal543

is to design a sequential test for the following pair of hypotheses:544

H0 : P
(t)
X = P

(t)
Y , ∀t, (42a)

H1 : ∃t′ : P (t′)
X ̸= P

(t′)
Y . (42b)

Definition 7 (Sequential independence testing under distribution drift). Suppose that we observe that545

a stream of independent observations from the joint distribution which drifts over time: ((Xt, Yt))t≥1,546

where (Xt, Yt) ∼ P
(t)
XY . The goal is to design a sequential test for the following pair of hypotheses:547

H0 : P
(t)
XY = P

(t)
X × P

(t)
Y , ∀t, (43a)

H1 : ∃t′ : P (t′)
XY ̸= P

(t′)
X × P

(t′)
Y . (43b)

The superscripts highlight that, in contrast to the standard i.i.d. setting (Definitions 5 and 2), the548

underlying distributions may drift over time. For independence testing, we need to impose an549

additional assumption that enables reasoning about the type I error control of Seq-C-IT.550

Assumption 5. Consider the setting of independence testing under distribution drift (Definition 7).551

We assume that for each t ≥ 1, it holds that either P (t−1)
X = P

(t)
X or P (t−1)

Y = P
(t)
Y , meaning that at552

each step either the distribution of X changes or that of Y changes, but not both simultaneously4.553

We have the following result about the type I error control of our tests under distribution drift.554

Corollary 2. The following claims hold:555

1. Suppose that H0 in (42a) is true. Then Seq-C-2ST satisfies: PH0
(τ < ∞) ≤ α.556

2. Suppose that H0 in (43a) is true. Further, suppose that Assumption 5 is satisfied. Then557

Seq-C-IT satisfies: PH0
(τ < ∞) ≤ α.558

The above result follows from the fact the payoff functions underlying Seq-C-2ST (41) and Seq-C-559

IT (23) are valid under the more general null hypotheses (42a) and (43a) respectively. The rest of560

the proof of Corollary 2 follows the same steps as that of Theorem 2, and we omit the details. We561

conclude with an example which shows that Assumption 5 is necessary for the type I error control.562

Example 2. Consider the following case when the null H0 in (43a) is true, but Assumption 5 is not563

satisfied. We show that Seq-C-IT fails to control type I error (at any prespecified level α ∈ (0, 1)), and564

for simplicity, focus on the payoff function based on the squared risk (23). Suppose that we observe a565

sequence of observations: ((Xt, Yt))t≥1, where (Xt, Yt) = (t+Wt, t+Vt) and Wt, Vt
iid∼ Bern(1/2).566

It suffices to show that there exists a sequence of predictors (gt)t≥1, for which567

lim inf
t→∞

1

t

t∑
i=1

f s
t ((X2t−1, Y2t−1), (X2t, Y2t))

a.s.
> 0. (44)

If (44) holds, then using the same argument as in the proof of Theorem 2, one can then deduce that568

P (τ < ∞) = 1. Consider the following sequence of predictors (gt)t≥1:569

gt(x, y) =
((
x−

(
2t− 1

2

)) (
y −

(
2t− 1

2

))
∧ 1
)
∨ −1.

We have:570

gt(X2t, Y2t) =
((
W2t +

1
2

) (
V2t +

1
2

)
∧ 1
)
∨ −1,

gt(X2t−1, Y2t−1) =
(
W2t−1 − 1

2

) (
V2t−1 − 1

2

)
,

gt(X2t, Y2t−1) =
(
W2t +

1
2

) (
V2t−1 − 1

2

)
,

gt(X2t−1, Y2t) =
(
W2t−1 − 1

2

) (
V2t +

1
2

)
.

Simple calculation shows that:571

E [gt(X2t, Y2t)] = 11/16, E [gt(X2t−1, Y2t−1)] = E [gt(X2t, Y2t−1)] = E [gt(X2t−1, Y2t)] = 0

and hence, for all t ≥ 1, it holds that E [f s
t ((X2t−1, Y2t−1), (X2t, Y2t))] = 11/64 > 0. This in turn572

implies (44), and hence, we conclude that Seq-C-IT fails to control the type I error.573

4Technically, a slightly weaker condition suffices — at odd t, the distribution can change arbitrarily, but at
even t, either the distribution of X changes or that of Y changes but not both; however, this weaker condition is
slightly less intuitive than the stated condition.
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D Proofs574

D.1 Auxiliary Results575

Proposition 2 (Ville’s inequality [Ville, 1939]). Suppose that (Mt)t≥0 is a nonnegative supermartin-576

gale process adapted to a filtration (Ft)t≥0. Then, for any a > 0 it holds that:577

P (∃t ≥ 1 : Mt ≥ a) ≤ E [M0]

a
.

D.2 Supporting Lemmas578

Lemma 6. Consider sequential two-sample testing setting (Definition 1). Suppose that a predictor579

g ∈ G satisfies E [f(Z,W )] > 0, where f(z, w) := wg(z).580

(a) Consider the wealth process (Kt)t≥0 based on f along with the ONS strategy for selecting581

betting fractions (Algorithm 1). Then we have the following lower bound on the growth rate582

of the wealth process:583

lim inf
t→∞

logKt

t

a.s.
≥ 1

4

(
(E [f(Z,W )])

2

E [f2(Z,W )]
∧ E [f(Z,W )]

)
. (45)

(b) For λ⋆ = argmaxλ∈[−0.5,0.5] E [log(1 + λf(Z,W ))], it holds that:584

E [log(1 + λ⋆f(Z,W ))] ≤ 4

3
· (E [f(Z,W )])

2

E
[
(f(Z,W ))

2
] ∧ E [f(Z,W )]

2
. (46)

Analogous result holds when the payoff function f(z, w) := w · sign [g(z)] is used instead.585

Proof. (a) Under the ONS betting strategy, for any sequence of outcomes (ft)t≥1, ft ∈ [−1, 1],586

it holds that (see the proof of Theorem 1 in [Cutkosky and Orabona, 2018]):587

logKt(λ0)− logKt = O

(
log

(
t∑

i=1

f2
i

))
, (47)

where Kt(λ0) is the wealth of any constant betting strategy λ0 ∈ [−1/2, 1/2] and Kt is the588

wealth corresponding to the ONS betting strategy. Hence, it follows that589

logKt

t
≥ logKt(λ0)

t
− C · log t

t
, (48)

for some absolute constant C > 0. Next, consider590

λ0 =
1

2

((∑t
i=1 fi∑t
i=1 f

2
i

∧ 1

)
∨ 0

)
.

We obtain:591

logKt(λ0)

t
=

1

t

t∑
i=1

log(1 + λ0fi)

(a)

≥ 1

t

t∑
i=1

(λ0fi − λ2
0f

2
i )

=

(
1
t

∑t
i=1 fi

4
∨ 0

)
·
(

1
t

∑t
i=1 fi

1
t

∑t
i=1 f

2
i

∧ 1

)
,

(49)

19



where in (a) we used that log(1 + x) ≥ x − x2 for x ∈ [−1/2, 1/2]. From (48), it then592

follows that:593

lim inf
t→∞

logKt

t

a.s.
≥
(
E [f(Z,W )]

4
∨ 0

)
·
(

E [f(Z,W )]

E [f2(Z,W )]
∧ 1

)
=

1

4

(
(E [f(Z,W )])

2

E [f2(Z,W )]
∧ E [f(Z,W )]

)
,

which completes the proof of the first assertion of the lemma.594

(b) Since log(1 + x) ≤ x− 3x2/8 for any x ∈ [−0.5, 0.5], we know that:595

E [log (1 + λ⋆f(Z,W ))] ≤ E
[
λ⋆f(Z,W )− 3

8
(λ⋆f(Z,W ))

2

]
≤ max

λ∈[−0.5,0.5]

(
λ · E [f(Z,W )]− 3λ2

8
· E
[
(f(Z,W ))

2
])

.

The optimizer of the above is596

λ̃ =
4E [f(Z,W )]

3E
[
(f(Z,W ))

2
] ∧ 1

2
.

Hence, as long as E [f(Z,W )] ≤ (3/8) · E
[
(f(Z,W ))

2
]
, we have:597

E [log (1 + λ⋆f(Z,W ))] ≤ 2

3

(E [f(Z,W )])
2

E
[
(f(Z,W ))

2
] . (50)

If however, E [f(Z,W )] > (3/8) · E
[
(f(Z,W ))

2
]
, then we know that:598

E [log (1 + λ⋆f(Z,W ))] ≤ E [f(Z,W )]

2
.

To bring it to a convenient form, we multiply the upper bound in (50) by two and get the599

bound (46), which completes the proof of the second assertion of the lemma.600

601

D.3 Proofs for Section 2602

Proposition 1. Fix an arbitrary predictor g ∈ G. The following claims hold:603

1. For the misclassification risk, we have that:604

sup
s∈[0,1]

(
1
2 −Rm(sg)

)
=
(
1
2 −Rm(g)

)
∨ 0 =

(
1
2 · E [W · sign [g(Z)]]

)
∨ 0. (9)

2. For the squared risk, we have that:605

sup
s∈[0,1]

(1−Rs(sg)) ≥ (E [W · g(Z)] ∨ 0) ·
(
E [W · g(Z)]

E [g2(Z)]
∧ 1

)
(10)

Further, ds(P,Q) > 0 if and only if there exists g ∈ G such that E [W · g(Z)] > 0.606

Proof. 1. The first equality in (9) follows from two facts: (a) for any g ∈ G and any s ∈ (0, 1],607

it holds that Rm(sg) = Rm(g), (b) Rm(0) = 1/2. The second equality easily follows from608

the following fact: sign [x] /2 = 1/2− 1 {x < 0}.609

2. Consider an arbitrary predictor g ∈ G. Let us consider all possible scenarios:610
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(a) If E [W · g(Z)] ≤ 0, then the RHS of (10) is zero. For the LHS of (10), we have that:611

sup
s∈[0,1]

(1−Rs(sg)) ≥ 1−Rs(0) = 0,

so the bound (10) holds.612

(b) Next, assume that E [W · g(Z)] > 0, then it is easy to derive that:613

s⋆ := argmax
s∈[0,1]

(1−Rs(sg)) =
E [W · g(Z)]

E [g2(Z)]
∧ 1. (51)

A simple calculation shows that:614

1−Rs(s⋆g) ≥ E [W · g(Z)] ·
(
E [W · g(Z)]

E [g2(Z)]
∧ 1

)
,

and hence, we conclude that the bound (10) holds.615

To establish the second part of the statement, note that ds(P,Q) > 0 iff there is a predictor616

g ∈ G such that Rs(g) < 1. For the squared risk, we have:617

1−Rs(g) = 2E [W · g(Z)]− E
[
g2(Z)

]
, (52)

and hence, Rs(g) < 1 trivially implies that E [W · g(Z)] > 0. The converse implication618

trivially follows from (10). Hence, the result follows.619

620

Theorem 1. The following claims hold:621

1. Suppose that H0 in (1a) is true. Then the oracle sequential test based on either (Km,⋆
t )t≥0622

or (Ks,⋆
t )t≥0 ever stops with probability at most α: PH0

(τ < ∞) ≤ α.623

2. Suppose that H1 in (1b) is true. Then:624

(a) The growth rate of the oracle wealth process (Km,⋆
t )t≥0 satisfies:625

lim inf
t→∞

(
1
t logK

m,⋆
t

) a.s.
≥
(
1
2 −Rm (g⋆)

)2
. (14)

If Rm (g⋆) < 1/2, then the test based on (Km,⋆
t )t≥0 is consistent: PH1

(τ < ∞) = 1.626

Further, the optimal growth rate achieved by λm
⋆ in (13) satisfies:627

E [log(1 + λm
⋆ f

m
⋆ (Z,W ))] ≤

(
16
3 ·
(
1
2 −Rm(g⋆)

)2 ∧ ( 12 −Rm(g⋆)
))

. (15)

(b) The growth rate of the oracle wealth process (Ks,⋆
t )t≥0 satisfies:628

lim inf
t→∞

(
1
t logK

s,⋆
t

) a.s.
≥ 1

4 · E [W · g⋆(Z)] . (16)

If E [W · g⋆(Z)] > 0, then the test based on (Ks,⋆
t )t≥0 is consistent: PH1

(τ < ∞) =629

1. Further, the optimal growth rate achieved by λs
⋆ in (13) satisfies:630

E [log(1 + λs
⋆f

s
⋆(Z,W ))] ≤ 1

2 · E [W · g⋆(Z)] . (17)

Proof. 1. We trivially have that the payoff functions (11a) and (11b) are bounded: ∀(z, w) ∈631

Z×{−1, 1}, it holds that fm
⋆ (z, w) ∈ [−1, 1] and f s

⋆(z, w) ∈ [−1, 1]. Further, under the null632

H0 in (1a), it trivially holds that EH0 [f
m
⋆ (Zt,Wt) | Ft−1] = EH0 [f

s
⋆(Zt,Wt) | Ft−1] = 0,633

where Ft−1 = σ({(Zi,Wi)}i≤t−1). Since ONS betting fractions
(
λONS
t

)
t≥1

are pre-634

dictable, we conclude that the resulting wealth process is a nonnegative martingale. The635

assertion of the Theorem then follows directly from Ville’s inequality (Proposition 2) when636

a = 1/α.637

2. Suppose that H1 in (1b) is true. First, we prove the results for the lower bounds:638
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(a) Consider the wealth process based on the misclassification risk (Km,⋆
t )t≥0. Note that639

for all t ≥ 1:640

E [fm
⋆ (Zt,Wt)] = 2 ·

(
1

2
−Rm (g⋆)

)
, (fm

⋆ (Zt,Wt))
2
= 1.

Since E [fm
⋆ (Zt,Wt)] ∈ [0, 1], we also have (E [fm

⋆ (Zt,Wt)])
2 ≤ E [fm

⋆ (Zt,Wt)].641

From the first part of Lemma 6, it follows that:642

lim inf
t→∞

logKm,⋆
t

t

a.s.
≥ 1

4
(E [fm

⋆ (Zt,Wt)])
2
=

(
1

2
−Rm (g⋆)

)2

.

From the second part of Lemma 6, and (46) in particular, it follows that:643

E [log (1 + λm
⋆ f

m
⋆ (Z,W ))] ≤

(
16

3
·
(
1

2
−Rm(g⋆)

)2

∧
(
1

2
−Rm(g⋆)

))
.

The first term in the above is smaller or equal than the second one whenever Rm(g⋆) ≥644

5/16. We conclude that the assertion of the theorem is true.645

(b) Next, we consider the wealth process based on the squared error: (Ks,⋆
t )t≥0. Note that:646

E [f s
⋆(Zt,Wt)] = E [W · g⋆(Z)] ,

E
[
(f s

⋆(Zt,Wt))
2
]
= E

[
g2⋆(Z)

]
,

and hence from Lemma 6, it follows that:647

lim inf
t→∞

logKs,⋆
t

t

a.s.
≥ 1

4

(
(E [W · g⋆(Z)])

2

E [g2⋆(Z)]
∧ E [W · g⋆(Z)]

)
. (53)

In the above, we assume that the following case is not possible: g⋆(Z)
a.s.
= 0 (for such648

g⋆, the corresponding expected margin and the growth rate of the resulting wealth649

process are clearly zero, and will still be highlighted in our resulting bound). Next,650

note that since g⋆ ∈ argming∈G Rs (g), we have that:651

1−Rs (g⋆) = sup
s∈[0,1]

(1−Rs (sg⋆)) ,

meaning that g⋆ can not be improved by scaling with s < 1. From Proposition 1,652

and (51) in particular, it follows that:653

E [W · g⋆(Z)]

E [g2⋆(Z)]
≥ 1, (54)

and hence, the bound (53) reduces to654

lim inf
t→∞

logKs,⋆
t

t

a.s.
≥ E [W · g⋆(Z)]

4
.

From the second part of Lemma 6, it follows that:655

E [log (1 + λs
⋆f

s
⋆(Z,W ))] ≤ 4

3

(E [W · g⋆(Z)])
2

E
[
(g⋆(Z))

2
] ∧ E [W · g⋆(Z)]

2
. (55)

Next, we use that g⋆ satisfies (54), which implies that the second term in (55) is smaller,656

and hence,657

E [log (1 + λs
⋆f

s
⋆(Z,W ))] ≤ E [W · g⋆(Z)]

2
,

which concludes the proof of the second part of the theorem.658

659
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Corollary 1. Consider an arbitrary g ∈ G with nonnegative expected margin: E [W · g(Z)] ≥ 0.660

Then the growth rate of the corresponding wealth process (Ks
t)t≥0 satisfies:661

lim inf
t→∞

(
1
t logKs

t

) a.s.
≥ 1

4

(
sup

s∈[0,1]

(1−Rs (sg)) ∧ E [W · g(Z)])
)

(18a)

≥ 1
4 (E [W · g(Z)])

2
, (18b)

and the optimal growth rate achieved by λs
⋆ in (13) satisfies:662

E [log(1 + λs
⋆f

s(Z,W ))] ≤
(

4
3 · sup

s∈[0,1]

(1−Rs (sg))
)
∧
(
1
2 · E [W · g(Z)]

)
. (19)

Proof. Following the same argument as that of the proof of Theorem 1, we can deduce that:663

lim inf
t→∞

logKs
t

t

a.s.
≥ 1

4

(
(E [W · g(Z)])

2

E [g2(Z)]
∧ E [W · g(Z)]

)
. (56)

Hence, it suffices to argue that the lower bound (56) is equivalent to (18a). Without loss of generality,664

we can assume that E [W · g(Z)] ≥ 0, and further, the two lower bounds are equal if E [W · g(Z)] =665

0. Hence, we consider the case when E [W · g(Z)] > 0. First, let us consider the case when666

E [W · g(Z)]

E [g2(Z)]
< 1. (57)

Using (51), we get that:667

sup
s∈[0,1]

(1−Rs (sg)) =
(E [W · g(Z)])

2

E [g2(Z)]
, (58)

and hence, two bounds coincide. For the upper bound (19), we use Lemma 6, and the upper bound (46)668

in particular. Note that the first term in (46) is less than the second term whenever669

E [W · g(Z)]

E
[
(g(Z))

2
] ≤ 3

8
< 1.

However, in this regime we also know that (58) holds, and hence the two bounds coincide. This670

completes the proof.671

672

Theorem 2. The following claims hold for Seq-C-2ST (Algorithm 2):673

1. If H0 in (1a) is true, the test ever stops with probability at most α: PH0 (τ < ∞) ≤ α.674

2. Suppose that H1 in (1b) is true. Then:675

(a) Under Assumption 1, the test with the payoff (22a) is consistent: PH1 (τ < ∞) = 1.676

(b) Under Assumption 2, the test with the payoff (22b) is consistent: PH1
(τ < ∞) = 1.677

Proof. 1. We trivially have that the payoff functions (22a) and (22b) are bounded: ∀t ≥ 1678

and ∀(z, w) ∈ Z × {−1, 1}, it holds that fm
t (z, w) ∈ [−1, 1] and f s

t (z, w) ∈ [−1, 1].679

Further, under the null H0 in (1a), it trivially holds that EH0
[fm

t (Zt,Wt) | Ft−1] =680

EH0
[f s

t (Zt,Wt) | Ft−1] = 0, where Ft−1 = σ({(Zi,Wi)}i≤t−1). Since ONS betting681

fractions
(
λONS
t

)
t≥1

are predictable, we conclude that the resulting wealth process is a682

nonnegative martingale. The assertion of the Theorem then follows directly from Ville’s683

inequality (Proposition 2) when a = 1/α.684

2. Note that if ONS strategy for selecting betting fractions is deployed, then (49) implies that685

the tests will be consistent as long as686

lim inf
t→∞

1

t

t∑
i=1

fi
a.s.
> 0, (59)

where for i ≥ 1, fi = fm
i (Zi,Wi) and fi = f s

i (Zi,Wi) for the payoffs based on the687

misclassification and the squared risks respectively.688
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(a) Recall that689

fm
i (Zi,Wi) = Wi · sign [gi(Zi)] ,

and Assumption 1 states that:690

lim sup
t→∞

1

t

t∑
i=1

1 {Wi · sign [gi(Zi)] < 0} a.s.
<

1

2
.

Since 1 {x < 0} = (1− sign [x]) /2, we get that:691

lim sup
t→∞

1

t

t∑
i=1

(
1

2
− Wi · sign [gi(Zi)]

2

)
a.s.
<

1

2
,

which, after rearranging and multiplying by two, implies that:692

lim inf
t→∞

1

t

t∑
i=1

Wi · sign [gi(Zi)]
a.s.
> 0.

Hence, a sufficient condition for consistency (59) holds, and we conclude that the result693

is true.694

(b) Recall that695

f s
i (Zi,Wi) = Wi · gi(Zi),

and Assumption 2 states that:696

lim sup
t→∞

1

t

t∑
i=1

(gi(Zi)−Wi)
2 a.s
< 1,

which is equivalent to697

lim sup
t→∞

1

t

t∑
i=1

(
g2i (Zi)− 2Wi · gi(Zi)

) a.s
< 0.

It is easy to see that the above, in turn, implies that:698

lim inf
t→∞

1

t

t∑
i=1

Wi · gi(Zi)
a.s
> 0.

Hence, a sufficient condition for consistency (59) holds, and we conclude that the result699

is true.700

701

D.4 Proofs for Appendix A702

Theorem 3. The following claims hold for the oracle sequential regression-based IT based on703 (
Kr,⋆

t

)
t≥0

:704

1. Suppose that H0 in (26a) is true. Then the test ever stops with probability at most α:705

PH1
(τ < ∞) ≤ α.706

2. Suppose that H1 in (26b) is true. Further, suppose that: E [Wℓ(g⋆(X), Y )] > 0. Then the707

test is consistent: PH1
(τ < ∞) = 1.708

Proof. 1. We trivially have that the payoff function (27) is bounded: ∀(x, y, w) ∈ X × Y ×709

{−1, 1}, it holds that f r
⋆(x, y, w) ∈ [−1, 1]. Further, under the null H0 in (26a), it trivially710

holds that EH0 [f
r
⋆(Xt, Yt,Wt) | Ft−1] = 0, where Ft−1 = σ({(Xi, Yi,Wi)}i≤t−1). Since711

ONS betting fractions
(
λONS
t

)
t≥1

are predictable, we conclude that the resulting wealth712

process is a nonnegative martingale. The assertion of the Theorem then follows directly713

from Ville’s inequality (Proposition 2) when a = 1/α.714
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2. Note that if ONS strategy for selecting betting fractions is deployed, then (49) implies that715

the tests will be consistent as long as716

lim inf
t→∞

1

t

t∑
i=1

f r
⋆(Xi, Yi,Wi)

a.s.
> 0. (60)

Note that:717

1

t

t∑
i=1

f r
⋆(Xi, Yi,Wi) =

1

t

t∑
i=1

tanh (s⋆ ·Wiℓ(g⋆(Xi), Yi))
a.s.→ E [tanh (s⋆ ·Wℓ(g⋆(X), Y ))] .

Note that for any x ∈ R : tanh(x) ≥ x− 1
3 ·max

{
x3, 0

}
. Hence, for any s > 0, it holds718

that:719

E [tanh (s ·Wℓ(g⋆(X), Y ))] ≥ sE [Wℓ(g⋆(X), Y )]− 1

3
E
[
max

{
s3 ·W (ℓ(g⋆(X), Y ))3, 0

}]
= sE [Wℓ(g⋆(X), Y )]− s3

3
E
[
(ℓ(g⋆(X), Y ))3 ·max {W, 0}

]
= sE [Wℓ(g⋆(X), Y )]− s3

6
E
[
(1 +W ) · (ℓ(g⋆(X), Y ))3

]
,

(61)
where we used that max {W, 0} = (W + 1)/2 since W ∈ {−1, 1}. Maximizing the RHS720

of (61) over s > 0 yields s⋆ defined in (28a). Hence,721

E [tanh (s⋆ ·Wℓ(g⋆(X), Y ))] ≥ s⋆E [Wℓ(g⋆(X), Y )]− s3⋆
6
E
[
(1 +W ) · (ℓ(g⋆(X), Y ))3

]
= s⋆

(
E [Wℓ(g⋆(X), Y )]− s2⋆

6
E
[
(1 +W ) · (ℓ(g⋆(X), Y ))3

])
= s⋆

(
E [Wℓ(g⋆(X), Y )]− 1

3
E [Wℓ(g⋆(X), Y )]

)
=

2s⋆
3

E [Wℓ(g⋆(X), Y )] > 0.

Hence, we conclude that the oracle regression-based IT is consistent since the sufficient condition (62)722

holds.723

Theorem 4. The following claims hold for the proxy sequential regression-based IT (Algorithm 3):724

1. Suppose that H0 in (26a) is true. Then the test ever stops with probability at most α:725

PH0
(τ < ∞) ≤ α.726

2. Suppose that H1 in (26b) is true. Further, suppose that Assumptions 3 and 4 are satisfied.727

Then the test is consistent: PH1
(τ < ∞) = 1.728

Proof. 1. We trivially have that the payoff function (29) is bounded: ∀(x, y, w) ∈ X × Y ×729

{−1, 1}, it holds that f r
t (x, y, w) ∈ [−1, 1]. Further, under the null H0 in (26a), it trivially730

holds that EH0 [f
r
t (Xt, Yt,Wt) | Ft−1] = 0, where Ft−1 = σ({(Xi, Yi,Wi)}i≤t−1). Since731

ONS betting fractions (λONS
t )t≥1 are predictable, we conclude that the resulting wealth732

process is a nonnegative martingale. The assertion of the Theorem then follows directly733

from Ville’s inequality (Proposition 2) with a = 1/α.734

2. Note that if ONS strategy for selecting betting fractions is deployed, then (49) implies that735

the tests will be consistent as long as736

lim inf
t→∞

1

t

t∑
i=1

f r
t (Xi, Yi,Wi)

a.s.
> 0. (62)

(a) Step 1. Consider a predictable sequence of scaling factors (st)t≥1, defined in (30a),737

and the corresponding sequences (µt)t≥1 and (νt)t≥1, defined in (30b) and (30c)738
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respectively. For t ≥ 1, let Ft := σ({(Xi, Yi,Wi)}i≤t). Since the losses are bounded,739

we have that:740

(Wi · ℓ(g(Xi; θi), Yi)− E [Wi · ℓ(g(Xi; θi), Yi) | Fi−1])i≥1 ,

is a bounded martingale difference sequence (BMDS). By the Strong Law of Large741

Numbers for BMDS, it follows that:742

1

t

t∑
i=1

(Wi · ℓ(g(Xi; θi), Yi)− E [Wi · ℓ(g(Xi; θi), Yi) | Fi−1])
a.s.→ 0.

Since ((Xt, Yt,Wt))t≥1 is a sequence of i.i.d. observations, we can write743

1

t

t∑
i=1

E [Wi · ℓ(g(Xi; θi), Yi) | Fi−1] =
1

t

t∑
i=1

E [W · ℓ(g(X; θi), Y ) | θi] ,

where (X,Y,W ) ⊥⊥ (θt)t≥1, θ⋆. Using Assumption 3, we get that:744 ∣∣∣∣∣1t
t∑

i=1

E [W · ℓ(g(X; θi), Y ) | θi]− E [W · ℓ(g(X; θ⋆), Y ) | θ⋆]
∣∣∣∣∣

≤ 1

t

t∑
i=1

sup
x∈X
y∈Y

|ℓ(g(x; θi), y)− ℓ(g(x; θ⋆), y)|

≤ 1

t

t∑
i=1

L2 sup
x∈X

|g(x; θi)− g(x; θ⋆)|

≤ 1

t

t∑
i=1

L2 · L1 · ∥θi − θ⋆∥ a.s.→ 0,

(63)

since ∥θi − θ⋆∥ a.s.→ 0 by Assumption 4. In particular, this implies that µt
a.s.→745

E [Wℓ(g(X; θ⋆), Y ) | θ⋆]. Similar argument can be used to show that νt
a.s.→746

E
[
(1 +W ) · (ℓ(g(X; θ⋆), Y ))3 | θ⋆

]
, and hence,747

st
a.s.→
√

2E [Wℓ(g(X; θ⋆), Y ) | θ⋆]
E [(1 +W ) · (ℓ(g(X; θ⋆), Y ))3 | θ⋆]

=: s⋆. (64)

Note that s⋆ is a random variable which is positive (almost surely) by Assumption 4.748

(b) Step 2. Recall that for any x ∈ R : tanh(x) ≥ x − 1
3 · max

{
x3, 0

}
and that749

max {W, 0} = (W + 1)/2 since W ∈ {−1, 1}. We have:750

1

t

t∑
i=1

f r
i (Xi, Yi,Wi) =

1

t

t∑
i=1

tanh (si ·Wiℓ(g(Xi; θi), Yi))

≥ 1

t

t∑
i=1

(
si ·Wi · ℓ(g(Xi; θi), Yi)−

s3i
6

· (1 +Wi) · (ℓ(g(Xi; θi), Yi))
3

)
.

Note that θi and si are Fi−1-measurable (see Step 1 for the definition of Fi−1). Under751

a minor technical assumption that (st)t≥1 is a sequence of bounded scaling factors (the752

lower bound is trivially zero and the upper bound also holds if νt are bounded away753

from zero almost surely which is reasonable given the definition of νt), we can use754

analogous argument regarding a BMDS in Step 1 to deduce that:755

lim inf
t→∞

1

t

t∑
i=1

f r
i (Xi, Yi,Wi)

≥ lim inf
t→∞

1

t

t∑
i=1

(
si · E [W · ℓ(g(X; θi), Y ) | θi]−

s3i
6
E
[
(1 +W ) · (ℓ(g(X; θi), Y ))3 | θi

])
.

(65)
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Using argument analogous to (63), we can show that:756

1

t

t∑
i=1

E
[
(1 +W ) · (ℓ(g(X; θi), Y ))3 | θi

] a.s.→ E
[
(1 +W ) · (ℓ(g(X; θ⋆), Y ))3 | θ⋆

]
.

(66)
Combining (63), (64) and (66), we deduce that757

1

t

t∑
i=1

(
si · E [W · ℓ(g(X; θi), Y ) | θi]−

s3i
6
E
[
(1 +W ) · (ℓ(g(X; θi), Y ))3 | θi

])
a.s.→ s⋆ · E [W · ℓ(g(X; θ⋆), Y ) | θ⋆]−

s3⋆
6

· E
[
(1 +W ) · (ℓ(g(X; θ⋆), Y ))3 | θ⋆

]
=

2s⋆
3

· E [W · ℓ(g(X; θ⋆), Y ) | θ⋆] .
Hence, from (65) it follows that:758

lim inf
t→∞

1

t

t∑
i=1

f r
i (Xi, Yi,Wi) ≥

2s⋆
3

· E [W · ℓ(g(X; θ⋆), Y ) | θ⋆] ,

where the RHS is a random variable which is positive almost surely. Hence, a sufficient759

condition for consistency (62) holds which concludes the proof.760

761

D.5 Proofs for Appendix B762

Two-Sample Testing with Unbalanced Classes. Note that (g(z) = 2η(z)− 1):763

(1− λt) · 1 + λt ·
(η(Zt))

1{Wt=1}
(1− η(Zt))

1−1{Wt=1}

(π)
1{Wt=1}

(1− π)
1−1{Wt=1}

= (1− λt) · 1 + λt ·

(
1+g(Zt)

2

)1{Wt=1} (
1−g(Zt)

2

)1−1{Wt=1}

(π)
1{Wt=1}

(1− π)
1−1{Wt=1}

= (1− λt) · 1 +
λt

2
· (1 + g(Zt))

1{Wt=1}
(1− g(Zt))

1−1{Wt=1}

(π)
1{Wt=1}

(1− π)
1−1{Wt=1}

= (1− λt) · 1 +
λt

2
· 1 +Wtg(Zt)

(π)
1{Wt=1}

(1− π)
1−1{Wt=1}

= (1− λt) · 1 +
λt

2
· 2

1 +Wt(2π − 1)
· (1 +Wtg(Zt))

= (1− λt) · 1 +
λt

1 +Wt(2π − 1)
· (1 +Wtg(Zt))

= 1 + λt ·
Wt (g(Zt)− (2π − 1))

1 +Wt(2π − 1)
.

Payoff for the Case of Unbalanced Classes (known π). To see that the payoff function (37) is764

lower bounded by negative one, note that:765

fu
t (z, 1) =

gt(z)− (2π − 1)

2π
≥ −1− (2π − 1)

2π
= −1,

fu
t (z,−1) =

−gt(z) + (2π − 1)

2(1− π)
≥ −1 + (2π − 1)

2(1− π)
= −1.

To see that such payoff is fair, note that:766

EH0 [f
u
t (Zt,Wt) | Ft−1] = EP

[
π · gt(Zt)− (2π − 1)

2π

]
−EQ

[
(1− π) · gt(Zt)− (2π − 1)

2(1− π)
| Ft−1

]
= 0,

where Ft−1 = σ
(
{(Zi,Wi)}i≤t−1

)
.767
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Theorem 5. Suppose that H0 in (35a) is true. Then (Ku
t )t≥0 is a nonnegative supermartingale768

adapted to (Ft)t≥0. Hence, the sequential 2ST based on (Ku
t )t≥0 satisfies: PH0

(τ < ∞) ≤ α.769

Proof. First, we show that (Ku
t )t≥0 is a nonnegative supermartingale. For any t ≥ 1, the wealth770

Kt−1 is multiplied at round t by771

1+λtf
u
t

({
(Zb(t−1)+i,Wb(t−1)+i)

}
i∈{1,...,b}

)
= (1−λt) · 1+λt ·

∏bt
i=b(t−1)+1 (1 +Wigt(Zi))∏b

i=1 (1 +Wi(2π̂t − 1))
.

Since λt ∈ [0, 0.5], we conclude that the process (Ku
t )t≥0 is nonnegative. Next, note that since π̂t is772

the MLE of π computed from a t-th minibatch, it follows that:773

1 + λtf
u
t

({
(Zb(t−1)+i,Wb(t−1)+i)

}
i∈{1,...,b}

)
≤ (1− λt) · 1 + λt ·

∏bt
i=b(t−1)+1 (1 +Wigt(Zi))∏bt

i=b(t−1)+1 (1 +Wi(2π − 1))

= (1− λt) · 1 + λt ·
bt∏

i=b(t−1)+1

(
1 +Wigt(Zi)

1 +Wi(2π − 1)

)
.

Recall that Ft−1 = σ
(
{Zi,Wi}i≤b(t−1)

)
. It suffices to show that if H0 is true, then774

EH0

 bt∏
i=b(t−1)+1

(
1 +Wigt(Zi)

1 +Wi(2π − 1)

)
| Ft−1

 = 1.

Note that the individual terms in the above product are independent conditional on Ft−1. Hence,775

EH0

 bt∏
i=b(t−1)+1

(
1 +Wigt(Zi)

1 +Wi(2π − 1)

)
| Ft−1

 =

bt∏
i=b(t−1)+1

EH0

[
1 +Wigt(Zi)

1 +Wi(2π − 1)
| Ft−1

]
.

For any i ∈ {b(t− 1) + 1, . . . , bt}, it holds that:776

EH0

[
1 +Wigt(Zi)

1 +Wi(2π − 1)
| Ft−1

]
= EH0

[
π · 1 + gt(Zi)

1 + (2π − 1)
+ (1− π) · 1− gt(Zi)

1− (2π − 1)
| Ft−1

]
= EH0

[
1 + gt(Zi)

2
+

1− gt(Zi)

2
| Ft−1

]
= 1.

Hence, we conclude that (Ku
t )t≥0 is a nonnegative supermartingale adapted to (Ft)t≥0. The time-777

uniform type I error control of the resulting test then follows from Ville’s inequality (Proposition 2).778

779

E Additional Experiments and Details780

E.1 Modeling Details781

CNN Architecture and Training. We use CNN with 4 convolutional layers (kernel size is taken782

to be 3× 3) and 16, 32, 32, 64 filters respectively. Further, each convolutional layer is followed by783

max-pooling layer (2 × 2). After flattening, those layers are followed by 1 fully connected layer784

with 128 neurons. Dropout (p = 0.5) and early stopping (with patience equal to ten epochs and 20%785

of data used in the validation set) is used for regularization. ReLU activation functions are used786

in each layer. Adam optimizer is used for training the network. We start training after processing787

twenty observations, and update the model parameters after processing every next ten observations.788

Maximum number of epochs is set to 25 for each training iteration. The batch size is set to 32.789
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Single-stream Sequential Kernelized 2ST. The construction of this test is the extension of 2ST790

of Shekhar and Ramdas [2021] to the case when at each round an observation only from a single791

distribution (P or Q) is revealed. Let G denote an RKHS with positive-definite kernel k and canonical792

feature map φ(·) defined on Z . Recall that instances from P as labeled as +1 and instances from Q793

are labeled as −1 (characterized by W ). The mean embeddings of P and Q are then defined as794

µ̂
(t)
P =

1

N+(t)

t∑
i=1

φ(Zi) · 1 {Wi = +1} ,

µ̂
(t)
Q =

1

N−(t)

t∑
i=1

φ(Zi) · 1 {Wi = −1} ,

where N+(t) = |i ≤ t : Wi = +1| and N−(t) = |i ≤ t : Wi = −1|. The corresponding payoff795

function is796

fk
t (Zt+1,Wt+1) = Wt+1 · ĝt(Zt+1),

where ĝt =
µ̂
(t)
P − µ̂

(t)
Q∥∥∥µ̂(t)

P − µ̂
(t)
Q

∥∥∥
G

.

To make the test computationally efficient, it is critical to update the normalization constant efficiently.797

Suppose that at round t+ 1, an instance from P is observed. In this case, µ̂(t+1)
Q = µ̂

(t)
Q . Note that:798

µ̂
(t+1)
P =

1

N+(t+ 1)

t+1∑
i=1

φ(Zi) · 1 {Wi = +1}

=
1

N+(t) + 1

t+1∑
i=1

φ(Zi) · 1 {Wi = +1}

=
1

N+(t) + 1
φ(Zt+1) +

1

N+(t) + 1

t∑
i=1

φ(Zi) · 1 {Wi = +1}

=
1

N+(t) + 1
φ(Zt+1) +

N+(t)

N+(t) + 1
µ̂
(t)
P .

Hence, we have:799 ∥∥∥µ̂(t+1)
P − µ̂

(t+1)
Q

∥∥∥2
G
=
∥∥∥µ̂(t+1)

P − µ̂
(t)
Q

∥∥∥2
G

=
∥∥∥µ̂(t+1)

P

∥∥∥2
G
− 2

〈
µ̂
(t+1)
P , µ̂

(t)
Q

〉
G
+
∥∥∥µ̂(t)

Q

∥∥∥2
G
.

In particular,800 〈
µ̂
(t+1)
P , µ̂

(t)
Q

〉
G
=

〈
1

N+(t) + 1
φ(Zt+1) +

N+(t)

N+(t) + 1
µ̂
(t)
P , µ̂

(t)
Q

〉
G

=
1

N+(t) + 1

〈
φ(Zt+1), µ̂

(t)
Q

〉
G
+

N+(t)

N+(t) + 1

〈
µ̂
(t)
P , µ̂

(t)
Q

〉
G
.

Note that:801 〈
φ(Zt+1), µ̂

(t)
Q

〉
G
=

1

N−(t)

t∑
i=1

k(Zt+1, Zi) · 1 {Wi = −1} .

Next, we assume for simplicity that k(x, x) = 1,∀x which holds for RBF kernel. Observe that:802 ∥∥∥µ̂(t+1)
P

∥∥∥2
G
=
〈
µ̂
(t+1)
P , µ̂

(t+1)
P

〉
G

=
1

(N+(t) + 1)
2 +

2N+(t)

(N+(t) + 1)
2

〈
φ(Zt+1), µ̂

(t)
P

〉
G
+

(N+(t))
2

(N+(t) + 1)
2

∥∥∥µ̂(t)
P

∥∥∥2
G
.

By caching intermediate results, we can compute the normalization constant using linear in t number803

of kernel evaluations. We start betting once at least one instance is observed from both P and Q.804

For simulations, we use RBF kernel and the median heuristic with first 20 instances to compute the805

kernel hyperparameter.806
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MLP Training Scheme We begin training after processing twenty datapoints from PXY which807

gives a training dataset with 40 datapoints (due to randomization). When updating a model, we808

use previous parameters as initialization. We use the following update scheme: we start after next809

n0 = 10 datapoints from PXY are observed. Once n0 becomes less than 1% of the size of the810

existing training dataset, we increase it by ten, that is, nt = nt−1 + 10. When we fit the model, we811

set the maximum number of epochs to be 25 and use early stopping with patience of 3 epochs.812

Kernel Hyperparameters for Synthetic Experiments. For SKIT, we use RBF kernels:813

k(x, x′) = exp
(
−λX ∥x− x′∥22

)
, l(y, y′) = exp

(
−λY ∥y − y′∥22

)
.

For simulations on synthetic data, we take kernel hyperparameters to be inversely proportional to the814

second moment of the underlying variables (the median heuristic yields similar results):815

λX =
1

2E
[
∥X −X ′∥22

] , λY =
1

2E
[
∥Y − Y ′∥22

] .
1. Spherical model. By symmetry, we have: PX = PY , and hence we take λX = λY . We have816

E
[
(X −X ′)2

]
= 2E

[
X2
]
=

2

d
.

2. HTDD model. By symmetry, we have: PX = PY , and hence we take λX = λY . We have817

E
[
(X −X ′)2

]
= 2E

[
X2
]
=

2π2

3
.

3. Sparse signal model. We have818

E
[
∥X −X ′∥22

]
= 2E

[
∥X∥22

]
= 4d,

E
[
∥Y − Y ′∥22

]
= 2E

[
∥Y ∥22

]
= 2tr(BsB

⊤
s + Id) = 2(d+

d∑
i=1

β2
i ).

4. Gaussian model. We have819

E
[
(X −X ′)2

]
= 2E

[
X2
]
= 2,

E
[
(Y − Y ′)2

]
= 2E

[
Y 2
]
= 2(1 + β2).

Ridge Regression. We use ridge regression as an underlying predictive model: ĝt(x) = β
(t)
0 +xβ

(t)
1 ,820

where the coefficients are obtained by solving:821

(β
(t)
0 , β

(t)
1 ) = argmin

β0,β1

2(t−1)∑
i=1

(Yi −Xiβ1 − β0)
2
+ λβ2

1 .

Let Γ = diag(0, 1). Let Xt−1 ∈ R2(t−1)×2 be such that (Xt−1)i = (1, Xi), i ∈ [1, 2(t − 1)].822

Finally, let Yt−1 be a vector of responses: (Yt−1)i = Yi, i ∈ [1, 2(t− 1)]. Then:823

β(t) = argmin
β

∥Yt−1 −Xt−1β∥2 + λβ⊤Γβ =
(
X⊤

t−1Xt−1 + λΓ
)−1

(X⊤
t−1Yt−1).

E.2 Additional Experiments for Seq-C-IT824

In Figure 6, we present average stopping times for ITs under the synthetic settings from Section 3.825

We confirm that all tests adapt to the complexity of a problem at hand, stopping earlier on easy826

tasks and later on harder ones. We also consider two additional synthetic examples where Seq-C-IT827

outperforms a kernelized approach:828
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(a) Spherical model.
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Figure 6: Stopping times of ITs on synthetic data from Section 3. Subplot (a) shows that SKIT is only
marginally better than Seq-C-IT (MLP) due to slightly better sample efficiency under the spherical
model (no localized dependence). Under the structured HTDD model, SKIT is inferior to Seq-C-ITs.

1. Sparse signal model. Let (Xt)t≥1 and (εt)t≥1 be two independent sequences of standard829

Gaussian random vectors in Rd: Xt, εt
iid∼ N (0, Id), t ≥ 1. We take830

(Xt, Yt) = (Xt, BsXt + εt),

where Bs = diag(β1, . . . , βd) and only s = 5 of {βi}di=1 are nonzero being sampled from831

Unif([−0.5, 0.5]). We consider d ∈ {5, . . . , 50}.832

2. Nested circles model. Let (Lt)t≥1, (Θt)t≥1, (ε(1)t )t≥1, (ε(2)t )t≥1 denote sequences of ran-833

dom variables where L
iid∼ Unif(1, . . . , l) for some prespecified l ∈ N, Θt

iid∼ Unif([0, 2π]),834

and ε
(1)
t , ε

(2)
t

iid∼ N (0, (1/4)2). For t ≥ 1, we take835

(Xt, Yt) = (Lt cos(Θt) + ε
(1)
t , Lt sin(Θt) + ε

(2)
t ). (67)

We consider l ∈ {1, . . . , 10}.836

In Figure 7, we show that Seq-C-ITs significantly outperform SKIT under these models. We note that837

the degrading performance of kernel-based tests under the nested circles model (67) has been also838

observed in earlier works [Berrett and Samworth, 2019, Podkopaev et al., 2023].839
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(a) Sparse signal model.
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(b) Sparse signal model.
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(c) Nested circles model.
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(d) Nested circles model.

Figure 7: Rejection rates (left column) and average stopping times (right column) of sequential ITs
for synthetic datasets from Appendix E.2. In both cases, SKIT is inferior to Seq-C-ITs.
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