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ABSTRACT

Traditional parameter-space posterior inference for Bayesian neural networks
faces several challenges, such as the difficulty in specifying meaningful prior,
the potential pathologies in deep models and the intractability for multi-modal
posterior. To address these issues, functional variational inference (fVI) and func-
tional Markov Chain Monte Carlo (fMCMC) are two recently emerged Bayesian
inference schemes that perform posterior inference directly in function space by
incorporating more informative functional priors. Similar to their parameter-space
counterparts, fVI and fMCMC have their own strengths and weaknesses. For in-
stance, fVI is computationally efficient but imposes strong distributional assump-
tions, while fMCMC is asymptotically exact but suffers from slow mixing in high
dimensions. To inherit the complementary benefits of both schemes, this work
proposes a novel hybrid inference method for the functional posterior inference.
Specifically, it combines fVI and fMCMC successively by an elaborate linking
mechanism to form an alternating approximation process. We also provide theo-
retical justification for the soundness of such a hybrid inference through the lens of
Wasserstein gradient flows in the function space. We evaluate our method on sev-
eral benchmark tasks and observe improvements in both predictive accuracy and
uncertainty quantification compared to parameter/function-space VI and MCMC.

1 INTRODUCTION

Over the past few decades, Bayesian inference has emerged as a promising direction for deep learn-
ing (also known as Bayesian deep learning (Wilson & Izmailov, 2020)), offering improved pre-
dictive performance, principled estimation of epistemic uncertainty, and enhanced generalization
(Neal, 1995; Gal et al., 2016; Wilson & Izmailov, 2020; Pielok et al., 2023). As one of the most
representative models in Bayesian deep learning, Bayesian neural networks (BNNs) provide natu-
ral support for continual learning, reinforcement learning, and decision-making tasks. BNNs have
found wide application in various safety-critical domains, including medical diagnosis such as Di-
abetic Retinopathy (Filos et al., 2019; Band et al., 2021), the dissolution prediction of planetary
systems (Cranmer et al., 2021), and the classification of radio galaxies (Mohan & Scaife, 2024).

Due to the high-dimensional and multi-modal distributional properties, posterior inference for model
parameters is remarkably challenging in modern BNNs (Izmailov et al., 2021). Typically, there are
two popular classes of inference schemes: deterministic approximations, such as the variational
inference (VI) (Blundell et al., 2015; Gal & Ghahramani, 2016), and sampling methods like Markov
Chain Monte Carlo (MCMC) (Welling & Teh, 2011; Neal, 2012; Chen et al., 2014). However, the
tricky prior issues in their parameter-space inference, including the non-interpretability and potential
pathologies in deep models, e.g., the function samples of isotropy Gaussian prior over parameters
tend to be horizontal as the depth of the network increases (Matthews et al., 2018; Tran et al., 2022),
can severely impact the performance of BNNs in practical applications (Fortuin et al., 2022; Wild
et al., 2022). These challenges have motivated researchers to explore Bayesian inference directly
in function space. For example, based on the Gaussian Processes prior (Rasmussen & Williams,
2006; Titsias, 2009) which can effectively encode prior information about the periodicity, regularity,
or smoothness through the corresponding kernel functions, there are several functional variational
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inference (fVI) approaches (Sun et al., 2019; Ma & Hernández-Lobato, 2021; Rudner et al., 2022)
have demonstrated improved prediction and uncertainty quantification compared to the parameter-
space VI typically relies on non-informative isotropic Gaussian priors. In the realm of MCMC,
Wu et al. (2024a) proposed a functional stochastic gradient MCMC (fMCMC) scheme, which lifts
the parameter-space dynamics of BNNs onto function space, enabling the incorporation of more
informative functional priors.

Despite their advantages, like their parameter-space counterparts, fVI and fMCMC have comple-
mentary strengths and limitations. fVI is fast and relatively easy to implement due to its explicit
variational objective, but it is prone to bias and often relies on strong distributional assumptions
about the structure and form of the variational posterior over parameters, such as using an oversim-
plified fully-factorized Gaussian for large models. Another drawback is that it tends to underestimate
posterior variance (Zhang et al., 2018), leading to poor uncertainty estimation. On the other hand,
fMCMC is non-parametric and can asymptotically generate exact samples from the true posterior
measure, but it is computationally expensive and suffers from slow mixing in high-dimensional mod-
els. While stochastic gradient variants of MCMC are more scalable, they can introduce significant
bias in posterior expectations (Izmailov et al., 2021).

Naturally, it is prospective to combine fVI and fMCMC to leverage their complementary strengths
and further improve posterior inference in function space. There has been some work focused on
how to connect VI and MCMC (Ahn et al., 2012; Domke, 2017; Habib & Barber, 2019). However,
all these methods are performed in the parameter space, extending them to function spaces is not
straightforward. For example, the structured MCMC proposed by Alexos et al. (2022) is based on an
artificial partitioning structure of variational posterior over parameters, which is hardly applicable to
infinite-dimensional posterior over functions. The tighter variational bound proposed by Salimans
et al. (2015) in an expanded space is constructed by auxiliary random variables embedded from
the intermediate MCMC transitions. However, extending this expanded variational posterior over
parameters directly to an infinite-dimensional variational posterior over functions is not reasonable.

In this work, we propose a new hybrid inference method for posterior over functions that combines
ideas from both fVI and fMCMC called Functional Variational Inference MCMC (FVIMC). We
bridge the theoretical gap between fVI and fMCMC and design a sophisticated linking mechanism
that can alternate between variational optimization and sampling in a seamless manner. Specifically,
we explore the relationship between these two schemes through the lens of Wasserstein gradient
flows in the function space, revealing that they share the same probability evolution marginals in
posterior inference. Thus, we innovatively alternate between fVI and fMCMC without changing the
evolutionary path of the posterior, linking such two inference schemes together successively based
on effective probability measure transformations to form a hybrid approximation process. This
newly developed FVIMC incorporates meaningful functional priors and combines the strengths of
both schemes: (1) the ability of fVI to quickly converge to local high-probability target regions
and (2) the non-parametric nature of fMCMC, which allows it to explore multi-modal surfaces and
prevent the posterior from collapsing to a local solution. Our main contributions are as follows:

• We develop a novel hybrid inference method that can efficiently link fVI and fMCMC
successively to form an alternating approximation process, which can delicately inherit the
benefits of both inference schemes and allow arbitrarily flexible and complex posterior over
functions.

• We prove that the functional Langevin stochastic differential equation (SDE) behind the
fMCMC and the probability flow ordinary differential equation (ODE) derived from the
corresponding Wasserstein gradient flows of the fVI share the same probability evolution
marginals, which can support the justification of our method.

• We perform a wide range of experiments to show the improved predictive performance and
reliable uncertainty estimations of our method consistently compared to the competing VI
and MCMC methods.

2 PRELIMINARIES

Bayesian neural networks (BNNs) Given a dataset D = {xi, yi}Ni=1 = {XD,YD}, where the
training inputs xi ∈ X ⊆ Rp and the corresponding targets yi ∈ Y ⊆ Rc, a Bayesian neural
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network is a stochastic neural network characterized by random network parameters (weights and
biases) denoted by a multivariate random variable w ∈ Rk defined on a probability space (Ω,A, P ).
Let f(·;w) : X × Ω → Y be the random function (product measurable) defined by a BNN on an
infinite-dimensional function (Polish) space H with Borel σ-algebra B(H), which is A measurable
for every x ∈ X . The prior distribution for the network parameters w is denoted as p0(w). The
likelihood is defined by a function p as Y × H → [0,∞), (Y, f(X ;w)) 7→ p(Y|f(X ;w)), where
Y ⊆ Rc is Borel measurable. The likelihood evaluated on the training data is p(YD|f(XD;w)).
The posterior distribution over parameters is then inferred with the unnormalised form as p(w|D) ∝
p(YD|f(XD;w))p0(w). Given test data x∗, the predictive distribution for y∗ is obtained by inte-
grating over the posterior as p(y∗|x∗,D) =

∫
p(y∗|f(x∗;w))p(w|D)dw.

Function-space VI Suppose P(H) represents the space of Borel probability measures on B(H).
To incorporate more meaningful prior information into posterior inference, fVI assigns a functional
prior measure P0 ∈ P(H), such as the classical Gaussian Processes (GP) prior denoted by P0 ∼
GP(m,K) and perform variational inference in function spaces. The posterior measure Pf |D ∈
P(H), induced by the functional prior and likelihood, is defined by the Radon–Nikodym derivative
as Pf |D(df) ∝ p(YD|f(XD;w))P0(df) (Matthews et al., 2016; Lambley, 2023). The functional
variational objective is to minimize the Kullback-Leibler (KL) divergence minQf

KL[Qf∥Pf |D],
where Qf ∈ P(H) 1 is the approximate posterior measure induced by the approximate posterior
distribution over parameters denoted by q(w;θ), with variational parameters θ, and q(w;θ)(dw) =
Qf (df). The pushforward of q(w;θ), denoted by T#q(w;θ) := Qf , where T#(·) refers to the
pushforward measure (Wild et al., 2022; Rudner et al., 2022). The functional evidence lower bound
(ELBO) to be maximized in this framework is

LQf
: = EQf

[log p(YD | f(XD;w))]−KL[Qf∥P0]

= EQf
[log p(YD | f(XD;w))]− sup

X∈XN

KL[Qf (f
X)∥P0(f

X)], (1)

where XN
.
=

⋃
n∈N {X ∈ Xn | Xn ⊆ Rn×p} is the set of all finite marginal measurement points in

the input domain, fX is the function value evaluated at X (Sun et al., 2019).

Function-space MCMC Wu et al. (2024a) explored the dynamics of BNNs in function space
and proposed a novel fMCMC scheme. This functional MCMC scheme is based on the potential
energy functional designed in terms of the posterior over functions Pf |D, which effectively incorpo-
rates functional priors while ensuring that the target posterior over functions remains the stationary
distribution. The specific functional Langevin dynamics for f(·;w) on H is given by:

dft(·;w) = µ(ft(·;w))dt+ σ(ft(·;w))dBt

=
[
−(∇wft)

T (∇wft)∇f

(
− log p(YD|ft(XD;w)) + I0(ft)

)
+Hwft

]
dt+

√
2(∇wft)

TdBt,
(2)

where I0(f) denotes the Onsager–Machlup (OM) functional for P0 ( heuristically interpreted as
the negative logarithm of P0 (Lambley, 2023)), B is a Wiener process (Brownian motion), ∇wf is
the Fréchet derivative of f(·;w) w.r.t. network parameters w, and Hwf denotes the second-order
Fréchet derivative. Additionally, leveraging the Itô Lemma (see in Appendix A), they derived the
corresponding diffusion process for the network parameters. The specific discretization update rule
for sampling the network parameters under this functional stochastic gradient Langevin dynamics
(fSGLD) is

wt+1 = wt − ϵt∇wf
[
− N

n

n∑
i=1

∇f log p(yi|ft(xi;wt))−∇fXM logP0(f
XM
t )

]
+
√
2ϵtηt,

(3)
where ϵt is the decreasing step-size, ηt is a standard Gaussian noise, n is the mini-batch size,
XM

def
= [x1, . . . ,xM ]

T are the finite measurement points, and fXM are the corresponding function
values evaluated at XM.

1Note that without loss of generality, we assume that Qf ∈ P(H) is dominated by P0 (therefore also
dominated by Pf |D) to avoid technical difficulties in the definition.
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3 OUR METHOD

In this section, we propose to bridge the theoretical gap between these two functional inference
schemes and develop a novel hybrid inference method for posterior measure over functions. We
start from an initial random function mapping defined by a BNN denoted by fs0(·;ws0), given a
simple initial approximate posterior over parameters qs0(ws0;θs0), e.g., a factorized Gaussian has
θs0 = {µs0,Σs0}, which induces the posterior measure over functions denoted by Qfs0 . Note that
this factorized Gaussian will be modified later rather than being fixed, as in fVI, so it does not impose
a strict restriction. Our functional hybrid inference method is formed by the following alternating
approximation stages:

• V-Stage: The first stage starts by executing the fVI through maximizing the functional
ELBO in Equation (1) to obtain the updated approximate posterior measure as Qfs1 , and
the corresponding variational posterior distribution over parameters is qs1(ws1;θs1) with
θs1 = {µs1,Σs1}.

• M-Stage: In this stage, starting from the randomly sampled initial point ws1 ∼
N (µs1,Σs1) from the last variational stage, we perform stochastic gradient fMCMC using
fSGLD in Equation (3). Let ws2{1:N} denotes the collected N samples of network parame-
ters, the corresponding function samples is as fs2{1:N} . The distribution over parameters for
the collected network parameters samples is denoted by qs2(ws2), which is distributional
assumption free and implicit, and the corresponding probability measure over functions is
as Qfs2 .

Our idea is to alternate between the two stages, but one challenge arises: qs2(ws2) from the M-Stage
is non-parametric and lacks the explicit distribution form required by the V-Stage. To address this,
we reconsider the relationship between Qfs2 and Qfs1 , where the latter comes from the last V-Stage
with explicit parametric qs1(ws1;θs1). We can simply consider Qfs1 as the input to the M-Stage and
Qfs2 as the output. Thus, Qfs2 is a refined posterior compared to Qfs1 . Given this relationship, we
propose treating Qfs2 as a transformation of Qfs1 , where the transformation follows a nonlinear, pa-
rameterized form. By uncovering this transformation, we can derive an explicit parametric qs2(ws2)
with the aid of qs1(ws1;θs1). We define the following stage for this transformation learning:

• T-Stage: Let F−1
λ1

: fs2(·;ws2) → fs1(·;ws1) be an invertible bijective function
parametrized by λ1 (with inverse Fλ1 ), where fs2(·;ws2) and fs1(·;ws1) denote the ob-
tained random function mappings from the M-Stage and V-Stage, respectively. According
to the change of variable formula, we have

Qfs2(f
XM
s2 ) = Qfs1(F

−1
λ1

(fXM
s2 ))

∣∣∣∣∣det ∂Fλ1

∂F−1
λ1

(fXM
s2 )

∣∣∣∣∣
−1

= Qfs1(F
−1
λ1

(fXM
s2 ))

∣∣∣∣∣det ∂F−1
λ1

∂fXM
s2

∣∣∣∣∣
(4)

and

logQfs2(f
XM
s2 ) = logQfs1(F

−1
λ1

(fXM
s2 )) + log

∣∣∣∣∣det ∂F−1
λ1

∂fXM
s2

∣∣∣∣∣ , (5)

where XM
def
= [x1, . . . ,xM ]

T are finite randomly sampled measurement points and
fXM
s2 are the function evaluations at XM. Based on the local linearization (Rudner

et al., 2022), the implicit functional Qfs1 is approximated as a Gaussian process given by
GP(fs1|fs1(·, µs1),Jµs1Σs1J T

µs1
), where Jµs1 denotes the Jacobian ∂fs1(·,ws1)

∂ws1
|ws1=µs1 ,

and the finite marginal distribution of Qfs1 is reduced to an analytical Gaussian distribu-
tion. Given the function samples fXM

s2{1:N}
on XM from M-Stage, we can obtain the optimal

bijective function F−1
λ∗
1

by maximizing Equation (5) and transform fs2(·;ws2). With F−1
λ∗
1

in hand, we can obtain the explicit form of Qfs2 as Fλ∗
1
◦Qfs1 , where Fλ∗

1
◦Qfs1 denotes

the pushforward relationship as shown in Equation (4).
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With the help of this T-Stage, we can successfully link the above V-Stage and M-Stage and form a
chain as follows:

V-Stage
Qfs1−→ M-Stage

f
XM
s2{1:N}−→ T-Stage

Qfs2−→ V-Stage
Fλ∗

1
◦Qfs3−→ · · ·−→V-Stage . (6)

The pseudocode for the above procedure (named FVIMC) is shown in Algorithm 1 in Appendix C.
Let us have an in-depth analysis of this procedure. Because each T-Stage in this hybrid inference
process yields a new explicit form for the approximate posterior obtained from the M-Stage based
on the approximate posterior from the previous V-Stage, and this will be used for the following
V-Stage, the form of the final posterior from the above procedure would no longer be a (initialized)
factorized Gaussian, and we have the following result.
Proposition 3.1. The final approximate posterior measure is in a composited form as Fλ∗

(K−1)/2
◦

· · ·Fλ∗
2
◦ Fλ∗

1
◦ QfsK with a total of K alternating approximate V-Stages and M-Stages, which is

arbitrarily complex and preferably flexible.

The derivation is given in Appendix B.1. This proposition demonstrates that, although we ini-
tially set a simple approximate posterior, the final result can still be flexible enough to match a
complex posterior. This validates our ability to overcome the strong distributional assumption of
the variational posterior in fVI. The key to achieving this lies in the M-Stage, which introduces
non-parametric updates to the posterior. By alternating between the V-Stage and M-stage with the
support of the T-Stage, the process continuously refines the posterior approximation. Specifically,
the M-Stage introduces samples that capture the multi-modal nature of the true posterior, while the
V-Stage applies optimization to tighten the approximation. Through this alternating and succes-
sive process, the approximate posterior evolves to become more expressive and accurate, leveraging
the strengths of both schemes—fVI’s efficiency in local regions and fMCMC’s ability to explore
complex distributions.

Another important question arises: can we safely link the M-Stage and V-Stage? Specifically, how
can we ensure consistent convergence paths if these two stages evolve in different directions and
ultimately converge to distinct optimums? To address this concern, we present the following result:
Proposition 3.2. The functional Langevin SDE defined in Equation (2) and the probability flow
ODE derived from the Wasserstein gradient of the functional variational inference in Equation (1)
share the same probability measure evolution marginals if they evolve from the same initial point.

The proof is given in Appendix B.2. This proposition guarantees the soundness of our proposed
hybrid FVIMC since the approximate posterior measures of fSGLD and fVI share the same evolution
marginals. Therefore, it is reasonable to link these two schemes successively to form an alternating
approximation process.

The form of the invertible transformations The parametric form of transformation Fλ(·) in the
T-Stage plays a crucial role in determining the approximation accuracy to the samples from the M-
Stage and, consequently, the flexibility of the posterior modelling capability. In general, increasing
complexity improves approximation. However, more complex transformations also increase compu-
tational difficulty, particularly when calculating the determinant of the Jacobian during optimization.
Therefore, designing Fλ(·) requires a balance between modelling flexibility and computational fea-
sibility. Here, we use three classes of flexible and tractable invertible bijections: linear, non-linear
Tanh and Sigmoid, respectively:

y =
1

a
f(x;w)− 1

a
b(x;ω), (7)

y = a2 Tanh
(
a1f (x;w) + b1(x;ω1)

)
+ b2(x;ω2), (8)

y = a2 Sigmoid
(
a1f(x;w)

)
+ b(x;ω), (9)

where f(x;w) denotes function mappings, a is a scalar parameter and b(x;ω) denotes a bias func-
tion. The computation of the Jacobian for all three transformations is straightforward and does not
involve the Jacobian of function b(x;ω), so it can be arbitrarily complex and we make them deep
neural networks with parameters ω to achieve high expression ability. Then the parameters of the
bijections are denoted as λ = {a, ω}. The specific form for each transformation need not be fixed.
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For flexibility, we can implement an automatic selection mechanism that chooses the form with the
highest likelihood value during the optimization. This allows the model to adaptively select the
most suitable transformation for different function mappings. More details about the Jacobians and
inverse bijections are shown in Appendix D.

Avoid the potential problematic KL divergence for fVI The KL divergence in fVI is found
to be potentially problematic (Burt et al., 2020) (see Appendix A). Hence, following the lat-
est idea in the area (Knoblauch et al., 2022), we propose to use the Wasserstein distance to
replace the KL divergence in the V-Stage of our FVIMC with the alternative functional varia-
tional objective as LW := −EQf

[log p(YD | f(XD;w))] + W1(Qf , P0) + M2(Qf , P0), where
W1(Qf , P0) is the 1-Wasserstein distance between Qf and P0 that admits the dual form definition
as sup∥ϕ∥≤1 Ex∼Qf

ϕ(x) − Ey∼P0
ϕ(y), and M2(Qf , P0) = |var(Qf ) − var(P0)| is an enhanced

second-order moment matching term to preserve the uncertainty information encoded in the func-
tional prior, which is found to be weak in the naive 1-Wasserstein distance (Wu et al., 2024b).
Compared to the KL divergence-based fVI, which is severely limited by the requirement for ex-
plicitly accessible densities, the Wasserstein distance-based functional variational objective offers
significantly more flexibility. This is because it relies entirely on a sampling-based procedure, elim-
inating the need for the closed-form of Qf . At the same time, Proposition 3.2 still holds under this
replacement in certain cases (see Appendix G.5 for more discussions and empirical evidence).

4 RELATED WORK

Functional posterior inference in BNNs Due to unresolved deficiencies of parameter-space in-
ference for BNNs, recent work has shifted toward performing Bayesian inference directly in func-
tion space. For functional variational inference, Sun et al. (2019) introduced a functional ELBO
that leverages more informative GP priors and explicitly minimizes the KL divergence between the
variational posterior and the true posterior in function space. They proved that the KL divergence
between two infinite-dimensional stochastic processes corresponds to the supremum of the KL di-
vergence over all finite marginal distributions. However, employing KL divergence in function
spaces requires careful consideration as it presents several definitional and estimation challenges
(Burt et al., 2020). For example, the variational posterior measure must be dominated by the func-
tional prior to ensure the existence of the Radon-Nikodym derivative, which defines the posterior
measure (Matthews et al., 2016; Wild et al., 2022). If this condition is unmet, this functional KL
divergence may become ill-defined, e.g., the KL divergence between two BNNs formed by different
network architectures can be infinite (Ma & Hernández-Lobato, 2021). Additionally, Rudner et al.
(2022) pointed out the analytical intractability of the supremum over marginal KL divergences and
proposed a more practical, well-defined functional variational objective. Their method is based on
approximating the posterior and prior over functions as Gaussian processes via local linearization.
Considering the limitations of functional KL divergence, Tran et al. (2022) proposed matching a
BNN prior with an interpretable GP prior using the 1-Wasserstein distance (Kantorovich, 1960),
while Wild et al. (2022) introduced a generalized functional variational objective for Gaussian mea-
sures based on the 2-Wasserstein distance. For functional MCMC, Wu et al. (2024a) investigated
the diffusion process of BNNs in function space and designed a new functional stochastic gradient
MCMC scheme, which can incorporate functional priors and guarantee that the stationary distribu-
tion of the resulting functional dynamics aligns with the target posterior distribution over functions.

Connections between VI and MCMC in parameter space There has also been some work aimed
at hybridizing VI and MCMC in parameter space. Most of these efforts focus on sampling from an
approximate posterior, rather than the true posterior, typically on a tempered or structured evidence
lower bound. Alternatively, they optimize variational parameters using auxiliary variables derived
from embedded MCMC schemes to achieve a tighter variational bound. For example, Ahn et al.
(2012) proposed a Stochastic Gradient Fisher Scoring (SGFS) algorithm that uses the inverse Fisher
information matrix to sample from a Gaussian approximation of the posterior based on stochas-
tic gradient Langevin dynamics. Salimans et al. (2015) integrated Markov transition chains into
variational lower bound as auxiliary variables to improve posterior approximation. Domke (2017)
derived two bounds for the variational divergence and introduced a hybrid algorithm based on it that
directly interpolates between variational inference and Langevin dynamics. Hoffman & Ma (2020)
find that Langevin dynamics can implicitly track the nonparametric normalizing flow of variational
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Figure 1: Learning polynomial curves. The green line is the ground true function and the blue
lines correspond to mean approximate posterior predictions. Black dots denote 20 training points;
shadow areas represent the predictive standard deviations. The top row is our FVIMC, parameter-
space VI/SGLD and functional fSGLD, and the bottom row shows the results of four function-space
VI baselines. For more experimental details, see Appendix E. The complete inference process of
FVIMC is shown in Appendix F.

inference, reinterpreting black-box variational inference as a parametric approximation to Langevin
dynamics. Moreover, Liu et al. (2019) developed a framework on the Wasserstein space, casting
general MCMC dynamics on it as the fiber-gradient Hamiltonian flow. Alexos et al. (2022) pro-
posed a structured MCMC scheme that samples from an approximate posterior under distributional
factorization constraints. However, all of these methods are restricted to parameter space, making it
challenging to extend them directly to function space.

5 EXPERIMENTS

We evaluate FVIMC on a variety of benchmark tasks, including a synthetic extrapolation, multi-
variate regressions on UCI datasets, contextual bandits and image classification tasks. We compare
the performance of FVIMC with several competing parameter/function-space VI and MCMC base-
lines, including the benchmark parameter-space VI method BBB (Blundell et al., 2015) denoted
by KLBBB, and four competing function-space VI methods: FBNN (KL divergence-based fVI)
(Sun et al., 2019), GWI(Wild et al., 2022), IFBNN(Wu et al., 2023) and our proposed Wasser-
stein distance-based fVI denoted as fVI. Also, for MCMC methods, we compare with the classic
parameter-space stochastic gradient Langevin dynamics denoted by SGLD (Welling & Teh, 2011)
and the functional fSGLD (Wu et al., 2024a). We obtain the improved predictive performance and
uncertainty quantification, indicating that FVIMC can efficiently incorporate meaningful knowledge
from the functional prior and inherit the strengths of both fVI and fSGLD schemes.

5.1 EXTRAPOLATION ON SYNTHETIC DATA

We begin by verifying the data fitting and uncertainty quantification capabilities of our method
through a 1-D oscillation curve extrapolation experiment using a synthetic dataset. Consider
a polynomial target function: y = sin(3πx) + 0.3 cos(9πx) + 0.5 sin(7πx) + ϵ with noise
ϵ ∼ N (0, 0.52), we randomly sampled 10 points from Uniform(−0.75,−0.25) and another 10
points from Uniform(0.25, 0.75) as input data. The model used is a fully-connected neural network
with two hidden layers. We apply the same GP prior with the RBF kernel, pre-trained on the input
dataset, for all functional methods. For all parameter-space methods that cannot specify a meaning-
ful prior, we place the default isotropic Gaussian prior over network parameters. For our FVIMC,
we employ a hybrid inference process consisting of 21 alternating V-Stages and M-Stages, along
with 10 intermediate T-Stages. Specifically, this process includes 11 V-Stages and 10 M-Stages,
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Table 1: The table shows the results of average RMSE for multivariate regression on UCI datasets.
We split each dataset randomly into 90% training data and 10% test data, and this process is repeated
10 times to ensure validity. Bold indicates statistically significant best results (p < 0.01 with t-test).

RMSE
YACHT BOSTON CONCRETE ENERGY WINE KIN8NM PROTEIN

FVIMC 0.37 ± 0.13 0.36 ± 0.07 0.40 ± 0.04 0.23 ± 0.02 0.68 ± 0.05 0.57 ± 0.02 0.95 ± 0.03
FVI 0.45 ± 0.10 0.40 ± 0.08 0.44 ± 0.04 0.27 ± 0.02 0.69 ± 0.05 0.61 ± 0.02 1.01 ± 0.02
GWI 2.20 ± 0.08 1.74 ± 0.05 1.30 ± 0.05 1.46 ± 0.04 1.68 ± 0.06 1.19 ± 0.02 1.33 ± 0.01
FBNN 1.52 ± 0.08 1.68 ± 0.12 1.27 ± 0.05 1.35 ± 0.06 1.53 ± 0.05 1.45 ± 0.07 1.50 ± 0.03
IFBNN 1.24 ± 0.10 1.44 ± 0.09 1.07 ± 0.07 1.19 ± 0.05 1.21 ± 0.05 1.12 ± 0.02 1.16 ± 0.01
KLBBB 2.13 ± 0.09 1.92 ± 0.07 1.78 ± 0.06 1.78 ± 0.07 1.86 ± 0.07 1.79 ± 0.03 1.80 ± 0.01
SGLD 1.09 ± 0.10 1.23 ± 0.06 1.10 ± 0.07 1.04 ± 0.06 1.08 ± 0.09 1.20 ± 0.02 1.12 ± 0.01
FSGLD 0.41 ± 0.10 0.36 ± 0.09 0.45 ± 0.04 0.24 ± 0.03 0.71 ± 0.05 0.74 ± 0.02 0.84 ± 0.01

with each V-Stage trained for 1000 epochs and each M-Stage run for 500 iterations. We use two dif-
ferent bijections for the transformations of probability measures in the T-Stage after each M-Stage:
the linear transformation in Equation (7) and the non-linear Tanh bijection in Equation (8). The
bias function for both bijections is parametrized by a neural network with two hidden layers. We
implement the likelihood-based auto-selection mechanism to choose between these two invertible
transformations. For fair comparisons, we run 16000 epochs for all other parameter/function-space
VI methods. For all sampling methods, we use 2000 burn-in iterations and 14000 iterations for 140
samples (to reduce correlations between samples, we draw separated samples every 100 epochs).
The results are shown in Figure 1. The parameter-space VI method KLBBB in Figure 1(b) fails to
fit the target function. The two MCMC methods could recover the key polynomial trend of the curve
in the observation range, while the uncertainty quantization in the unseen areas is not justified. Sim-
ilarly, the three function-space VI methods in Figure 1(f), Figure 1(g), and Figure 1(h) also severely
underestimates the predictive uncertainty, which is a typical downside of VI (Zhang et al., 2018;
Alexos et al., 2022). In contrast, our FVIMC and the Wasserstein distance-based fVI show better
predictive performances and improved uncertainty estimations. In particular, the hybrid FVIMC in
Figure 1(a) exhibits stronger ability than the pure variational fVI in Figure 1(e), e.g., the smoother
fitting curves, and can capture critical features of the non-observed middle range [−0.25, 0.25],
which demonstrates the powerful advantages of combining fVI and fMCMC for a hybrid inference.
See Appendix H for more detailed ablation studies about the impact of kernel functions in functional
GP priors and the form of the bijections for probability transformations.

5.2 UCI REGRESSION

In this experiment, we evaluate the predictive performance of FVIMC for multivariate regression
tasks on 7 real-world UCI datasets: Yacht, Boston, Concrete, Energy, Wine, Kin8nm and Protein.
We use a 2- hidden-layer fully connected neural network. For FVIMC, we employ a total of five
alternating V-Stages and M-Stages to form the hybrid approximation process. Each V-Stage and M-
Stage is trained for 400 epochs, resulting in a total of 2000 iterations. Therefore, we run 2000 epochs
for all other VI methods for fair comparison. For the two sampling methods, we run 500 iterations
for the burn-in stage and collect 15 samples in the following 1500 iterations. We report the average
root mean square error (RMSE) results in Table 1. Our FVIMC achieves better accuracy than all
other VI and MCMC baselines in 6/7 datasets, which illustrates the impressive predictive power of
our hybrid method. For NLL results shown in Table 2, FVIMC outperforms other methods on 5/7
datasets, demonstrating its competitive uncertainty quantification ability. Moreover, the analyses of
the mixing time, computational complexity and transformation errors in the T-Stage are presented
in Appendix G, where our FVIMC exhibits high convergence speed and training stability.

5.3 CONTEXTUAL BANDITS

In this section, we examine the ability to guide exploration-exploitation in contextual bandits, where
uncertainty modelling is crucial in sequential decision-making for such downstream tasks. In this
problem, the agent interacts with an unknown environment repeatedly and chooses an optimal action
to maximize the reward given the context in each round of interaction. Thompson sampling is a clas-
sic technique applicable to this scenario Thompson (1933). It samples a model configuration from
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Table 2: The table shows the results of average NLL for multivariate regression on UCI datasets. We
split each dataset randomly into 90% training data and 10% test data, and this process is repeated 10
times to ensure validity. Bold indicates statistically significant best results (p < 0.01 with t-test).

NLL
YACHT BOSTON CONCRETE ENERGY WINE KIN8NM PROTEIN

FVIMC -5.03 ± 1.13 -3.74 ± 0.48 -5.00 ± 0.34 -5.70 ± 0.39 -3.77 ± 0.40 -0.31 ± 0.65 -2.07 ± 0.36
FVI -3.07 ± 0.66 -2.66 ± 0.27 -3.03 ± 0.22 -4.20 ± 0.25 -2.25 ± 0.20 -0.59 ± 0.54 -2.30 ± 0.30
GWI 0.11 ± 0.76 -1.04 ± 0.68 -0.68 ± 0.49 -2.03 ± 0.39 0.70 ± 0.16 -2.60 ± 0.24 -1.58 ± 0.23
FBNN -0.77 ± 0.86 -1.19 ± 0.76 -1.00 ± 0.52 -2.14 ± 0.47 0.52 ± 0.14 -2.45 ± 0.62 -1.49 ± 0.24
IFBNN -1.25 ± 1.21 0.32 ± 0.30 -0.39 ± 0.33 -1.78 ± 0.36 0.26 ± 0.15 -1.01 ± 0.14 -2.13 ± 0.34
KLBBB 2.51 ± 0.16 2.07 ± 0.12 2.61 ± 0.17 2.17 ± 0.14 2.15 ± 0.13 2.61 ± 0.07 2.22 ± 0.02
SGLD -0.37 ± 0.08 -0.60 ± 0.11 -0.54 ± 0.05 -0.58 ± 0.09 -0.90 ± 0.12 -0.60 ± 0.04 -0.60 ± 0.01
FSGLD -2.46 ± 0.28 -2.20 ± 0.20 -1.63 ± 0.14 -2.25 ± 0.25 -2.53 ± 0.15 -2.24 ± 0.09 -2.10 ± 0.08
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Figure 2: Comparisons of cumulative regrets of FVIMC, fVI, FBNN, GWI, KLBBB, SGLD for
contextual bandit task on the Mushroom dataset. Lower represents better performance.

the current posterior first and adaptively chooses an optimal action under this sampled configuration
for the current context, then updates the posterior based on the corresponding observed reward.

We compare FVIMC with several baselines on the UCI Mushroom dataset with 8124 instances. In
each instance, the mushroom is labelled as edible or poisonous and has 22 features as the input
context. The agent can observe mushroom features in each interaction and choose to eat or reject
a mushroom. We follow the basic settings by (Blundell et al., 2015) and consider three different
reward patterns: if the agent eats an edible mushroom, it receives a reward of 5; otherwise, a reward
of 0 if the agent rejects the edible mushroom. For the poisonous situation, if the agent chooses to eat,
it receives a reward of -35 with probabilities of 0.4, 0.5, and 0.6, respectively, to form three different
patterns; otherwise, a reward of 0 for rejection. Suppose an oracle always eats an edible mushroom
and rejects the poisonous ones. The cumulative regrets with respect to the reward achieved by
the oracle can measure the exploration-exploitation ability of an agent. For FVIMC, we run five
alternating V-Stages and M-Stages with a total of 7000 iterations. And we run 7000 epochs for all
other baselines with batch size 64. The cumulative regrets for three reward patterns are shown in
Figure 2, where our FVIMC consistently achieves the lowest regrets, which indicates its reliable
uncertainty quantification in decision-making.

5.4 IMAGINE CLASSIFICATION AND OOD DETECTION

We demonstrate the scalability of FVIMC on high-dimensional image classification tasks. We
test the in-distribution predictive performance and out-of-distribution (OOD) detection ability on
MNIST (LeCun et al., 2010) and FashionMNIST (Xiao et al., 2017). For our FVIMC, we use five
alternating V-Stages and M-Stages with a total of 320 iterations. Therefore, we run 320 epochs for
all other VI methods. For sampling methods, we run for 300 burn-in iterations and then collect 20
samples. We report the test classification errors (%) for predictive performance and the area under
the curve (AUC) of OOD detection pairs FashionMNIST/MNIST, MNIST/FashionMNIST based
on predictive entropies in Table 3. Our FVIMC outperforms all parameter/function-space VI and
MCMC baselines for classification accuracy and demonstrates competitive OOD detection ability.
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Table 3: Image classification and OOD detection performance.

MNIST FMNIST
MODEL TEST ERROR AUC TEST ERROR AUC
FVIMC 4.95 ± 0.00 0.832 ± 0.00 14.57 ± 0.00 0.800 ± 0.00
FVI 5.49 ± 0.00 0.815 ± 0.01 14.99 ± 0.00 0.831 ± 0.05
GWI 6.23 ± 0.00 0.826 ± 0.03 15.24 ± 0.00 0.459 ± 0.07
FBNN 5.06 ± 0.00 0.787 ± 0.05 15.44 ± 0.00 0.809 ± 0.03
IFBNN 5.00± 0.00 0.703 ± 0.30 15.64 ± 0.00 0.833 ± 0.03
KLBBB 5.30 ± 0.00 0.827 ± 0.03 15.26 ± 0.00 0.782 ± 0.00
FSGLD 5.21 ± 0.00 0.756 ± 0.01 15.99 ± 0.00 0.810 ± 0.00

6 CONCLUSION

We propose a hybrid inference method for BNNs in function space, combining the strengths of both
functional variational inference (fVI) and functional MCMC (fMCMC) schemes. To achieve this, we
develop a hybrid approximation process that alternately and successively links these two schemes,
allowing the process to inherit the advantages of both while constructing arbitrarily flexible and
complex approximate posteriors. We prove that the functional Langevin SDE and the probability
flow ODE derived from the Wasserstein gradient flows of the functional variational inference share
the same probability evolution marginals. This ensures the theoretical soundness of the hybrid ap-
proach. Empirically, we show the improved predictive performance and uncertainty estimation of
our method on a range of tasks.
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David R Burt, Sebastian W Ober, Adrià Garriga-Alonso, and Mark van der Wilk. Understand-
ing variational inference in function-space. In Third Symposium on Advances in Approximate
Bayesian Inference, pp. 1–17, 2020.

10



Published as a conference paper at ICLR 2025

Changyou Chen, Ruiyi Zhang, Wenlin Wang, Bai Li, and Liqun Chen. A unified particle-
optimization framework for scalable bayesian sampling. In 34th Conference on Uncertainty in
Artificial Intelligence, 2018.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In
International Conference on Machine Learning, pp. 1683–1691. PMLR, 2014.

Miles Cranmer, Daniel Tamayo, Hanno Rein, Peter Battaglia, Samuel Hadden, Philip J Armitage,
Shirley Ho, and David N Spergel. A bayesian neural network predicts the dissolution of compact
planetary systems. Proceedings of the National Academy of Sciences, 118(40):e2026053118,
2021.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
International Conference on Learning Representations, 2017.

Justin Domke. A divergence bound for hybrids of mcmc and variational inference and an application
to langevin dynamics and sgvi. In International Conference on Machine Learning, pp. 1029–
1038. PMLR, 2017.

Angelos Filos, Sebastian Farquhar, Aidan N Gomez, Tim GJ Rudner, Zachary Kenton, Lewis Smith,
Milad Alizadeh, Arnoud De Kroon, and Yarin Gal. A systematic comparison of bayesian deep
learning robustness in diabetic retinopathy tasks. In 4th workshop on Bayesian Deep Learning
(NeurIPS 2019), 2019.
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A FURTHER BACKGROUND

Itô Lemma Itô Lemma (Itô, 1951) is a fundamental result in stochastic calculus to find the differ-
ential of a function of a stochastic process, which serves as the stochastic calculus counterpart of the
chain rule. For an Itô diffusion, let f(Xt) be an arbitrary twice differentiable scalar function of real
variables Xt, then the differential of f(Xt) can be derived from the Taylor series expansion of the
function as

df(Xt) =

(
µ(Xt)

∂f

∂x
+

σ2(Xt)

2

∂2f

∂x2

)
dt+ σ(Xt)

∂f

∂x
dBt, (10)

which implies that f(Xt) is itself an Itô diffusion (Brzeźniak et al., 2008).

Change of variable formula and normalizing flows A normalizing flow is a powerful transfor-
mation that can generate highly flexible and complex probability density from a simple initial one
through a sequence of bijective invertible mappings (Tabak & Turner, 2013; Kobyzev et al., 2020;
Papamakarios et al., 2021). Let ξ ∈ Rd be a random variable with probability density pξ(ξ), and
F : Rd → Rd is an invertible mapping (with inverse F−1). Then, the density of the transformed
variable η = F (ξ) can be obtained using the change of variable formula (Dinh et al., 2017) as

pη(η) = pξ(ξ)

∣∣∣∣det ∂F−1

∂η

∣∣∣∣ = pξ(ξ)

∣∣∣∣det ∂F∂ξ
∣∣∣∣−1

. (11)

By successively transforming an initial variable ξ0 with density pξ0 through a sequence of K invert-
ible mappings Fk as ξK = FK ◦ · · · ◦F2 ◦F1(ξ0), we can derived an arbitrarily flexible density pξK
of ξK by successively applying equation 11:

log pξK (ξK) = log pξ0(ξ0)−
K∑

k=1

log

∣∣∣∣det ∂Fk

∂ξk−1

∣∣∣∣ . (12)

Limitations of KL-based functional variational inference Note that the Radon-Nikodym
derivative between the variational posterior measure and the prior measure is dQf

dP0
, and KL[Qf∥P0]

is defined as
∫
log(

dQf

dP0
)dQf for the infinite-dimensional stochastic processes (Gray, 2011). In the

case where dQf is not absolutely continuous with respect to dP0 will lead to KL[Qf∥P0] = ∞
(Matthews et al., 2016; Wild et al., 2022), e.g., the KL divergence between stochastic processes
defined by two BNNs with different network structures can be infinite (Ma & Hernández-Lobato,
2021). Moreover, Sun et al. (2019) proved that KL[Qf∥P0] = supX∈XN

KL[Qf ((f
X)∥P0(f

X)],
where XN

.
=

⋃
n∈N {X ∈ Xn | Xn ⊆ Rn×p} is the set of all finite marginal measurement points in

the input domain. However, there is no analytical solution for such a supremum, and even for finite
X, this KL term is intractable for many distributions due to the unavailability of the density (Rudner
et al., 2022). Therefore, the KL-based functional variational inference is a delicate task that has
several limitations in practical applications.

B THEORETICAL PROOF

B.1 PROOF FOR PROPOSITION 3.1

Based on the transformed posterior obtained in the first T-Stage of the main paper for the approx-
imate posterior resulting from the second M-Stage, we derive the approximate posteriors for the
following alternating stages in detail as follows:

V-Stage Based on the transformed Fλ∗
1
◦Qfs1 , we now can continue to perform the fVI procedure,

and the resulting approximate posterior measure is denoted as Fλ∗
1
◦ Qfs3 with the corresponding

updated posterior over parameters as qs3(ws3;θs3).
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M-Stage Similar to the previous M-Stage, we continue to run the fSGLD from the randomly
sampled initial point ws3 ∼ N (µs3,Σs3) from the V-Stage, and the corresponding initial function
is Fλ∗

1
(fs3(·;ws3)). Then, the probability measure of the collected function samples Fλ∗

1
(fXM

s4{1:N}
)

is denoted as Fλ∗
1
◦Qfs4 and Fλ∗

1
(fs4(·;ws4)) is the random function mapping at this stage.

T-Stage In order to perform the fVI procedure in following V-Stage, it is necessary to fit the
second invertible bijection F−1

λ2
to transform Fλ∗

1
(fs4(·;ws4)) based on Fλ∗

1
(fs3(·;ws3)) obatnied

from the last V-Stage as Fλ∗
1
(fs4(·;ws4)) = Fλ∗

2
(Fλ∗

1
(fs3(·;ws3))). Then the corresponding trans-

formation for probability measure Fλ∗
1
◦Qfs4 can be represented by Fλ∗

2
◦Fλ∗

1
◦Qfs3 with parametric

qs3(ws3;θs3), which is able to run the fVI smoothly and the resulting updated approximate posterior
measure is denoted by Fλ∗

2
◦ Fλ∗

1
◦Qfs5 with the corresponding qs5(ws5;θs5).

We continue in this fashion by successively alternating between V-Stage and M-Stage, utilizing
T-Stage as the intermediary, to create a chain of total K V-Stages and M-Stages. This hybrid ap-
proximate process results in a final approximate posterior measure that is in a composite form:
Fλ∗

(K−1)/2
◦· · ·Fλ∗

2
◦Fλ∗

1
◦QfsK , which is arbitrarily complex and preferably flexible. This composi-

tional structure allows for a more refined posterior approximation, enhancing both its expressiveness
and ability to capture complex distributions.

B.2 PROOF FOR PROPOSITION 3.2

Dynamics-based MCMC sampling techniques are derived from the more general Itô diffusion
(Øksendal, 2003), which is often used to characterize the evolution of particles. Given a stochastic
process X : [0,∞) × Ω → Rn defined on a probability space (Ω,Σ, P ), an Itô diffusion in n-
dimensional Euclidean space driven by the standard Wiener process satisfies the following specific
type of stochastic differential equation (SDE):

dXt = µ(Xt)dt+ σ(Xt)dBt, (13)

where Xt is the state of the stochastic process at time t, µ(·) : Rn → Rn is a vector field denoting
the deterministic drift term, σ(·) : Rn → Rn×n is a matrix field denotes the diffusion coefficient
for Xt. Both µ(·) and σ(·) are assumed to satisfy the usual Lipschitz continuity condition (Ghosh,
2010). And B ∈ Rn is an n-dimensional Wiener process (Brownian motion), dBt is the increment
of a Wiener process distributed as dBt ∼ N (0,dt · In). Let p(x, t) be the probability density of Xt,
the evolution of p(x, t) is formed by the following Fokker-Planck (FP) equation (Risken, 1996):

∂p(x, t)

∂t
= −

∑
i

∂

∂xi
[µi(Xt)p(x, t)] +

∑
i,j

∂2

∂xi∂xj
[Di,j(x, t)p(x, t)] , (14)

where Di,j(x, t) =
1
2σ(Xt)σ(Xt)

T . Ma et al. (2015) proved in Theorem 1 that if µ(Xt) and σ(Xt)
are restricted to the following form

µ(X) =− [D(X) +Q(X)]∇U(X) + Γ(X),

Γ(X) =
∑ ∂

∂X
(Dij(X) +Qij(X)),

σ(X) =
√

2D(X),

(15)

where U(·) is the potential energy functional, D(·) is a positive semidefinite matrix, and Q(·) is
a skew-symmetric curl matrix, then the Fokker–Planck equation can be transformed into a more
compact form (Yin & Ao, 2006; Shi et al., 2012):

∂p(x, t)

∂t
= ∇T · ([D(X) +Q(X)][p(x, t)∇U(X) +∇p(x, t)]). (16)

Wu et al. (2024a) proved that their functional Langevin dynamics in Equation (2) can be cast into
the above general framework as

dft(·;w) = [−(∇wf)T (∇wf)∇fU(ft) +Hwf ]dt+
√
2(∇wf)TdBt

= (−[D(f) +Q(f)]∇fU(ft) + Γ(f)) dt+
√
2D(f)dBt,

(17)
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where U(f) = − log p(YD|f(XD;w)) + I0(f) is an OM functional for Pf |D, D(f) =

(∇wf)T (∇wf), Q(f) = 0, Γ(f) = Hwf . Therefore, the Fokker-Planck equation of the prob-
ability measure p(f, t) for ft(·;w) then can be derived as

∂p(f, t)

∂t
= ∇T · ([D(f) +Q(f)][p(f, t)∇fU(f) +∇p(f, t)]) , (18)

from which the stationary measure π(f) of p(f, t) can be verified as exp(−U(f)) = Pf |D, that is,
the target posterior measure over functions.

The proof of Proposition 3.2 is based on the Wasserstein gradient flows, which is an extension
version of gradient flows in Euclidean space to the space of probability measures. Formally, suppose
P(Ω) is the space of probability measures on Ω with finite second moments and endowed with
a Riemannian geometry characterized by the 2-Wasserstein distance (Chen et al., 2018). For a
functional F that maps probability measures to real values: P(Ω)→ R, Wasserstein gradient flows
describe the evolution of probability measures over time by decreasing the functional F (Yi & Liu,
2023), e.g., F(q) can be the KL[q∥p] for probability measure q. Let (P(Ω),W2) be a metric space
of P(Ω) and be equipped with 2-Wasserstein distance, a curve {qt} ∈ P(Ω) in the Wasserstein
space (P(Ω),W2) is the gradient flow of functional F if it satisfies the following PDE:

∂qt
∂t

= div(qt∇W2
F(qt)) = ∇x

(
qt∇x(

δF(qt)
δqt

)
)
, (19)

where∇W2
F(q) is the Wasserstein gradient of the functionalF(q), δF(q)

δq is called the first variation
of F at q (Ambrosio et al., 2008) and ∇x denotes the Euclidean gradient operation. Let {vt} be a
family of vector fields in space Ω induced by the Wasserstein gradient and it formulates a probability
flow ordinary differential equation (ODE) as

dxt = vt(xt)dt = −∇x(
δF(qt)
δqt

)dt, (20)

where v(x) = −∇x(
δF(q)
δq ). This ODE characterize the evolution of particle xt ∼ qt in Ω when the

corresponding marginal qt evolves to decrease F(q) as in Equation (19).

The Wasserstein gradient flows of parameter-space variational inference for posterior inference is to
decrease the following functional F of the approximate posterior q(w)

F(q(w)) ≜
∫

U(w)q(w)dw︸ ︷︷ ︸
E1

+

∫
q(w) log q(w)dw︸ ︷︷ ︸

E2

= KL[q(w)∥p(w|D)],

(21)

where U(w) = − log p(YD|f(XD;w))−log p0(w), E2 is the energy functional of a pure Brownian
motion (Zhang et al., 2019). The first variational of E1 and E2 is as δE1

δq(w) = U(w) and δE2

δq(w) =

log q(w) + 1. Then, the gradient flow of F(q(w)) is as

∂qt(w)

∂t
= ∇w

[
qt(w)

(
∇wU(w) +∇w log qt(w)

)]
= ∇w

[
qt(w)∇wU(w) +∇wqt(w)

]
,

(22)

which reads the Fokker–Planck equation of Langevin dynamics for posterior sampling of network
parameters as in Equation (16). And the corresponding probability ODE is

dwt = −∇wU(wt)dt−∇w log qt(wt)dt, (23)

which share the same marginals {qt(w)}t≥0 with the Langevin SDE dwt = −∇wU(w)dt+
√
2dBt

if they evolve from the same q0(w) (Yi & Liu, 2023).

We now extend this conclusion to the function spaces, that is, to verify whether the functional vari-
ation inference and fSGLD share the same marginals. Let P(H) be the space of Borel probability
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measures on function space H with finite second moments and endowed with a Riemannian geom-
etry. The functional Ffvi for functional variational inference in Equation (1) is

Ffvi ≜ −
∫

log p(YD | f(XD;w))dQf (f)︸ ︷︷ ︸
E1

+

∫
log

dQf

dP0
(f)dQf (f)︸ ︷︷ ︸

E2

= KL[Qf∥Pf |D],

(24)

The Wasserstein gradient flows of the corresponding variational distribution q(w) to this Ffvi is
derived as

∂qt(w)

∂t
= ∇w

[
qt(w)∇w

(
− log p(YD | f(XD;w)) + log

dQf

dP0
(f)

)]
, (25)

and the corresponding probability ODE for wt is

dwt = ∇w

[
log p(YD | ft(XD;w))− log

dQf

dP0
(ft)

]
dt

= ∇wf

[
∇f

(
log p(YD|ft(XD;w)) + log

dP0

drH,F
(ft)− log

dQf

drH,F
(ft)

)]
dt,

(26)

where rH,F denotes the corresponding Hausdorff/Riemannian measure, and the second equation
holds by applying the chain rule for Radon-Nikodym derivatives (Matthews et al., 2016). It shares
the same evolution with the functional Langevin SDE for network parameters as (Wu et al., 2024a)

dwt = −∇wU(ft)dt+
√
2dBt

= −∇wf [∇f (− log p(YD|ft(XD;w)) + I0f(tt))] dt+
√
2dBt

= ∇wf

[
∇f (log p(YD|ft(XD;w)) + log

dP0

drH,F
(ft))

]
dt+

√
2dBt,

(27)

where the OM functional I0(f) for prior measure P0 can be represented by − log dP0

drH,F
(f) with

rH,F , and the potential energy functional U(f) = − log p(YD|f(XD;w))− log dp0

drH,F
(f). More-

over, the Wasserstein gradient flows in Equation (25) corresponds to the following function-space
probability measure evolution (Wang et al., 2019):

∂Qf

∂t
= ∇f

[
Qf (∇wf)T (∇wf)∇f

(
− log p(YD | f(XD;w)) + log

dQf

dP0
(f)

)]
= ∇f · (∇wf)T (∇wf)

[
Qf∇fU(f) +∇fQf

]
,

(28)

where the second equation recovers the Fokker-Planck equation in Equation (18) of the probability
measure p(f, t) for ft(·;w) of the functional Langevin SDE in Equation (2). The corresponding
probability ODE for f is derived as

dft = (∇wf)T (∇wf)∇f

[
− U(ft)− log

dQf

drH,F
(ft)

]
dt, (29)

which, therefore, share the same probability measure evolution marginals with functional Langevin
SDE in Equation (2). Note that this proposition remains valid even under data subsampling. The
justification is twofold: 1) The stochastic gradient approximation of the likelihood term does not
alter the target functional of the Wasserstein gradient flow in fVI. This ensures that the overall
optimization landscape remains unchanged despite subsampling; 2) It is well-established that the
stationary distribution of fSGLD converges to the target posterior when using a decreasing step size.
This holds because the stochastic gradient noise decays at a faster rate than the injected Gaussian
noise, preserving the asymptotic correctness of the inference process. Thus, the validity of this
proposition remains independent of the stochastic gradient approximation, ensuring its robustness
even when subsampling is applied. The schematically is shown in the following Figure 3.

C PSEUDOCODE FOR FVIMC

Algorithm 1 presents the pseudocode for FVIMC.
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Algorithm 1 Functional Variational Inference MCMC (FVIMC)
Require: Dataset D = {XD,YD}, minibatch B = {xj , yj}nj=1 ⊂ D, functional prior P0, total

number of hybrid approximation stages K, U(f) = − log p(YD|f(XD;w)) + I0(f)
1: Initialise ws0 ∼ N (µs0,Σs0), reparameterize w = µ+Σ⊙ϵ with ϵ ∼ N (0, I), µs0 ∼ N (0, I),

Σs0 ∼ N (0, I) + 1, θs0 := {µs0,Σs0}
2: while θ not converged do
3: # V-Stage 1:
4: draw measurement set XM randomly from input domain
5: draw functional prior functions fXM ∼ P0 at XM
6: draw neaural network (NN) functions fXM ∼ Qs0 at XM
7: θs0← Optimizer(θs0, LW )
8: θs1← θ∗

s0
9: Obtain qs1(ws1;θs1), corresponding Qfs1 and approximated

GP(fs1|fs1(·, µs1),Jµs1
Σs1J T

µs1
)

10: # M-Stage 2:
11: S ← ∅;
12: randomly sample w0 ∼ N (µs1,Σs1)
13: for t = 0 to N do
14: draw measurement set XM;
15: wt+1 ← wt − ϵt∇wŨ(ft)) +

√
2ϵtηt using Equation (3);

16: S ← S ∪ {wt+1};
17: end for
18: Obtain the implicit qs2(ws2), corresponding Qfs2
19: # T-Stage 1:
20: Collect corresponding function samples fXM

s2{1:N}
∼ Qfs2 on XM based on the network pa-

rameters samples S
21: λ1← Optimizer(λ1, L) in Equation (5) based on the Qfs1 from the last V-Stage 1
22: Obtain the transformed Fλ∗

1
◦Qfs1 for Qfs2

23: # Alternating loops
24: for i in range(3, K, 2) do
25: # V-Stage i:
26: draw measurement set XM randomly from input domain
27: draw functional prior functions fXM ∼ P0 at XM
28: draw NN functions fXM ∼ Fλ∗

(i−1)/2
◦ · · · ◦ Fλ∗

1
◦Qfsi−2

at XM
29: θsi−2← Optimizer(θsi−2, LW )
30: θsi ← θ∗

si−2
31: Obain qsi(wsi;θsi), corresponding Fλ∗

(i−1)/2
◦ · · · ◦ Fλ∗

1
◦ Qfsi and approximated

GP(fsi|fsi(·, µsi),JµsiΣsiJ T
µsi

) for Qfsi
32: while i+ 1 < K do
33: # M-Stage i+ 1:
34: S ← ∅;
35: randomly sample w0 ∼ N (µsi,Σsi)
36: for t = 0 to N do
37: draw measurement set XM;
38: wt+1 ← wt − ϵt∇wŨ(Fλ∗

(i−1)/2
(· · ·Fλ∗

1
(ft))) +

√
2ϵtηt using Equation (3);

39: S ← S ∪ {wt+1};
40: end for
41: Obtain the implicit qsi+1(wsi+1), corresponding Fλ∗

(i−1)/2
◦ · · · ◦ Fλ∗

1
◦Qfsi+1

42: # T-Stage (i+ 1)/2:
43: Collect corresponding function samples Fλ∗

(i−1)/2
(· · · (Fλ∗

1
(fXM

si+1{1:N}
))) ∼ Fλ∗

(i−1)/2
◦

· · · ◦ Fλ∗
1
◦Qfsi+1

on XM based on the network parameters samples S
44: λ(i+1)/2← Optimizer(λ(i+1)/2, L) in Equation (5) based on Fλ∗

(i−1)/2
◦ · · · ◦Fλ∗

1
◦Qfsi

obtained from the last V-Stage i
45: Obtain the transformed Fλ∗

(i+1)/2
◦Fλ∗

(i−1)/2
◦ · · · ◦Fλ∗

1
◦Qfsi for Fλ∗

(i−1)/2
◦ · · · ◦Fλ∗

1
◦

Qfsi+1
of the M-Stage i+ 1

46: end while
47: end for
48: end while
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Figure 3: Schematic representation of the same probability measure evolution marginals of fSGLD
and the probability ODE derived from the Wasserstein gradient of fVI for posterior inference.

D MORE DETAILS FOR INVERTIBLE TRANSFORMATIONS

The specific forms for Linear transformation are as follows:

Forward : y =
1

a
∗ f(x;w)− 1

a
∗ b(x;ω),

Inverse : f(x;w) = a ∗ y + b(x;ω),

Jacobian :
1

a

(30)

The specific forms for Tanh transformation are as follows:

Forward : y = a2 ∗ Tanh
(
a1 ∗ f (x;w) + b1(x;ω1)

)
+ b2(x;ω2),

Inverse : f(x;w) =
1

a1
∗
[
arctanh

(y − b2(x;ω2)

a2

)]
− b1(x;ω1)

a1
,

Jacobian : a1 ∗ a2 ∗
[
1−

(
Tanh(f(x;w) ∗ a1 + b1(x;ω1))

)2] (31)

The specific forms for Sigmoid transformation are as follows:

Forward : y = a2 ∗ Sigmoid
(
a1 ∗ f(x;w)

)
+ b(x;ω),

Inverse : f(x;w) =
1

a1
∗ log

[ y−b(x;ω)
a2

1− y−b(x;ω)
a2

]
,

Jacobian : a1 ∗ a2 ∗ Sigmoid
(
a1 ∗ f(x;w)

)
∗
[
1− Sigmoid

(
a1 ∗ f(x;w)

)] (32)

where f(x;w) denotes function mappings, a is a scalar parameter and b(x;ω) denotes a bias func-
tion.

E EXPERIMENTAL SETTING

Extrapolation on Synthetic Data In this experiment, we employ two-hidden-layer fully con-
nected neural networks with 100 hidden units per layer across all methods. For all functional ap-
proaches, the functional GP prior, utilizing an RBF kernel, is pre-trained on 20 training points for
1000 epochs. The bias function used in the bijections during the T-Stage is implemented as a 2×100
fully connected neural network.
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UCI Regression In this experiment, we utilize 2 × 10 fully connected neural networks for all
methods. Using the RBF kernel, the functional GP prior is pre-trained for 100 epochs. The bias
function of the bijections in the T-Stage is formed as a 2× 100 fully connected neural network.

Contextual Bandits In this experiment, all methods use fully connected neural networks (input-
100-100-output). The GP prior (RBF kernel) is pre-trained on 1000 randomly sampled points from
training data. All methods are trained using the last 4096 input-output tuples in the training buffer
with a batch size of 64 and training frequency of 64 for each iteration.

Imagine Classification and OOD Detection In this experiment, we use two-hidden-layer fully
connected neural networks with 50 hidden units per layer for all methods. The functional prior is a
Dirichlet-based GP designed for classification tasks and is pre-trained on randomly sampled 1000
points for 500 epochs.

F COMPLETE INFERENCE PROCESS OF FVIMC

The full inference process of FVIMC for the 1-D extrapolation experiment is shown in the Figure 4
and Figure 5 (since the whole process cannot fit in one figure, we split it into two), where the leftmost
column is the posteriors of all V-Stages, the middle column shows the posteriors of all M-Stages, and
the rightmost column is the approximation posterior measures in all T-Stages for the transformation
of posterior obtained in all M-Stages. The results are organized in 1-20 alternating V-Stage and
M-Stage from top to bottom (the final result from the last V-Stage is shown in Figure 1). The final
approximate posterior measures is in the composited form of Fλ∗

10
◦ · · ·Fλ∗

2
◦ Fλ∗

1
◦Qf21 .

G FURTHER RESULTS

G.1 ANALYSIS OF MIXING TIME

The trajectories of fMCMC in the M-Stage of FVIMC, the parameter-space SGLD and the func-
tional fSGLD for the synthetic extrapolation and UCI regression (Yacht) are presented in Figure 6.
The model used for the extrapolation experiment is a two-hidden-layer fully connected neural net-
work (100 hidden units in each layer) with 10401-dimensional network parameters. For the UCI
regression, the network is 2 × 10 fully connected with 191-dimensional parameters. As shown in
Figure 6, the top and bottom rows show the results of the toy and UCI experiments, respectively.
With the aid of the explicit optimization of fVI in the V-stage, which quickly converges to local
high-probability target regions, the fMCMC in the M-stage of our hybrid FVIMC exhibits a rapid
mixing rate for high-dimensional parameter space. In the extrapolation example, the fMCMC in
the M-stage converges rapidly to the stationary measure within 800 iterations, while fSGLD and
SGLD show stabilizing trends until after 2000 iterations. Similarly, for the UCI regression, our
FVIMC reaches the stationary in only 400 iterations, while SGLD and fSGLD require more than
500 iterations for mixing.

G.2 COMPUTATIONAL COMPLEXITY

The running time for all 2000 training iterations of all inference methods in the UCI regression
on the small Boston dataset and the large Protein dataset are shown in Table 4. There are 455
training points with 13-dimensional input features for the Boston dataset and 41157 training points
with 9-dimensional features in the Protein dataset. For all functional inference methods, the GP
prior was pre-trained for 100 epochs, which takes only an extra 1s. In general, parameter-space
KLBBB and SGLD are faster than the corresponding functional VI and MCMC methods. In the
small Boston dataset, our FVIMC shows similar computational efficiency to the other functional
fVI, GWI, IFBNN, and is nearly 5 times faster than FBNN. With the fast convergence of the V-
Stage to locally high probabilities, our FVIMC demonstrates its computational efficiency advantage
on the larger Protein dataset: the running time of GWI and FBNN is nearly 1.7-2.5× higher than
FVIMC. The mixing rate of fSGLD, which performs well on small datasets, has deteriorated at this
time and is significantly slower than our hybrid method. Moreover, the convergence processes of
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Figure 4: The alternating approximation stages 1-10 in full hybrid inference process of FVIMC.

training loss for all parameter/functiona-space VI methods and the V-Stage of FVIMC are shown in
Figure 7, FVIMC achieves high convergence speed and training stability.
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Figure 5: The alternating approximation stages 11-20 in full hybrid inference process of FVIMC.
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Figure 6: Log-posterior probability versus the number of iterations.

Table 4: Running time comparison on Boston and Protein dataset.

Run time(s) Boston Protein
FVIMC 39.000 ± 0.000 182.500 ± 0.707
fVI 19.000 ± 0.000 104.000 ± 2.828
GWI 16.000 ± 1.000 472.667 ± 0.577
FBNN 200.667 ± 6.531 318.333 ± 5.774
IFBNN 19.000 ± 0.000 78.500 ± 2.121
KLBBB 8.333 ± 0.577 8.000 ± 0.000
SGLD 5.500 ± 0.707 6.500 ± 2.121
fSGLD 9.500 ± 0.707 239.500 ± 2.121
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Figure 7: Convergence of training loss for UCI regressions. The top row is the results for the Boston
dataset, and the bottom row is the results for the Protein dataset.

G.3 CALIBRATION CURVES

The calibration curves of all parameter/function-space inference approaches for the synthetic ex-
trapolation example are shown in Figure 8, which assess how well the predicted probabilities of a
model match the true frequencies. The horizontal axis represents the predicted cumulative distribu-
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Figure 8: Calibration curves for the synthetic extrapolation. The gray dashed line indicates the
perfect calibration.

tion function (CDF), while the vertical axis corresponds to the empirical CDF. The 45-degree dashed
diagonal line indicates perfect calibration, where our FVIMC demonstrates competitive calibration
capability.

G.4 TRANSFORMATION ERRORS IN T-STAGE

To quantify the transformation errors introduced in the T-Stage, we plot the predictive RMSE re-
sults from the posterior in the M-Stage and the transformed posterior obtained in the T-Stage in
the UCI regressions (on Yacht and Boston datasets). As shown in the leftmost column Figure 9(a)
and Figure 9(d), the black line represents the RMSE obtained from the M-Stage posterior, the red
line denotes the result of the corresponding transformed posterior in the T-Stage, and the blue line
is the difference between these two results. With the progress of FVIMC, we can see that the gap
between the predicted RMSE by the posterior of the M-Stage and the results corresponding to the
approximate posterior obtained through the T-Stage transformation is significantly reduced. There-
fore, it can be empirically assumed that this transformation error is controllable, and it will gradually
converge to 0 as the whole hybrid inference process proceeds. That is, the parameterized posterior
obtained by the T-Satge transformation is a reasonable approximation to the implicit posterior of
M-Stage. Additionally, the convergence processes of the training losses in the two T-stages are in
the middle and rightmost columns, respectively, and it can be seen that they converge quickly and
smoothly.

G.5 KL DIVERGENCE IN FVIMC

Empirically, we use the KL divergence-based fVI in the V-Stage to compare the KL-based hy-
brid FVIMC (denoted as FVIMC(kl)) and our alternative Wasserstein distance-based FVIMC used
in the main paper on the UCI regressions. The results are shown in the Table 5, where FBNN
represents the KL-based pure functional VI. We can see that under our hybrid inference scheme,
FVIMC(kl) outperforms the pure functional variational FBNN, demonstrating the advantage of hy-
brid inference. However, our FVIMC still achieves superior performance compared to FVIMC(kl),
highlighting the benefits of the more flexible Wasserstein distance in capturing complex posterior
distributions. Moreover, we present the convergence processes of the KL divergence in FVIMC(kl)
and the Wasserstein distance in our FVIMC in Figure 10, where the Wasserstein distance exhibits a
significantly more rapid and stable convergence.

Table 5: Comparisons between KL-based FVIMC and Wasserstein distance-based FVIMC

FBNN FVIMC(kl) FVIMC
Yacht RMSE 1.52 0.92 0.37

NLL -0.77 -0.83 -5.03
Boston RMSE 1.68 0.99 0.36

NLL -1.19 -1.62 -3.74
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Figure 9: Transformation errors in the T-Stage on UCI regressions. The top row is the result for the
Yacht dataset, and the bottom row is the result for the Boston dataset.
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Figure 10: Convergence processes of the KL divergence and the Wasserstein distance in FVIMC,
where W1 denotes the Wasserstein distance, and KL denotes the KL divergence.

For the theoretical guarantee of Proposition 3.2, we observe that in some special cases, KL-based
FVIMC and Wasserstein-based FVIMC are equivalent. This suggests that replacing the KL diver-
gence with the Wasserstein distance can be interpreted as a relaxation of the original formulation. In
the following, we provide a detailed discussion of this relationship.

Let X and Y be two measurable sets, and define P (X) and P (Y ) are the sets of all proba-
bility measures on X and Y, respectively. Similarly, let P (X × Y ) denote the set of all joint
probability measures on X × Y . Given two probability measures (distributions) q ∈ P (X) and
p ∈ P (Y ), the general dual formulation of the 1-Wasserstein distance between q and p is given by
W1(q, p) := sup{Eq(f) − Ep(g) : f(x) − g(y) ≤ c(x, y)}, where c : X × Y → R is a proper
distance metric(e.g. Euclidean norm distance), f : X → R and g : Y → R are real functions, and
assume that X ≡ Y (Belavkin, 2018). On the other hand, the KL divergence between q and p can
be denoted as KL[q∥p] = Eq(log q) − Eq(log p). Interestingly, this can be seen as a special case
of the 1-Wasserstein distance when choosing f = log q and g = q

p log p. Under this condition, the
Wasserstein gradient flows of the objective functional FKL(q) = KL[q∥p] and FW (q) = W1(q, p)

share the same continuity equation as ∂qt
∂t = div(qt(∇x log qt−∇x log p)), which reads the Fokker-

Planck equation of the corresponding Langevin SDE dxt = ∇x log p(xt)dt+
√
2dBt. As a result,

Proposition 3.2 remains valid for FVIMC when using the Wasserstein distance instead of the KL
divergence in this special case. Moreover, to ensure that the 1-Lipschitz continuity condition is
met—i.e., f(x)− g(y) ≤ |x− y| in the general form of the Wasserstein distance—further consider-
ations and discussions are provided in the following.
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Consider first the special case where q and p are of the same type (e.g., both Gaussian distributions
with identical means and variances). Under certain local assumptions, it can be shown that the 1-
Lipschitz condition f(x)−g(y) ≤ |x−y| holds. Since the ratio q/p is constant in this case, the rate
of change is controlled. Specifically, at this time, f = g = log p, f(x)−g(y) = log p(x)− log p(y).
The composition of the logarithmic function with a Gaussian distribution is locally 1-Lipschitz.
To satisfy the 1-Lipschitz condition, it should have a bounded first derivative as |∇x log p(x)| =
|x−µ|
σ2 ≤ 1 by the mean value theorem. Thus, the log-gaussian is 1-Lipschitz in the local range
|x− µ| ≤ σ2. Additionally, we can verify the derivative condition as |f ′(x)− g′(y)| = | − x−µ

σ2 +
y−µ
σ2 | = |x−y|

σ2 . Thus, for |x − y| ≤ σ2, the function f(x) − g(y) satisfies 1-Lipschitz continuity.
This indicates that if the distance between x and y is sufficiently small (bounded by the variance
σ2), the desired Lipschitz property can be satisfied. For more general cases where q and p are
absolutely continuous (differentiable almost everywhere), the Lipschitz condition is influenced by
how smoothly q/p varies. If q/p does not exhibit abrupt fluctuations, the behaviour of g(y)remains
controlled. Additionally, If p and q are smooth and similar in shape, the variations in log q(x) and
(q(y)/p(y)) log p(y) will be moderate, further supporting the 1-Lipschitz condition. To enforce the
Lipschitz condition in practical applications, a gradient norm regularization term can be added to the
dual form of the Wasserstein distance (Gulrajani et al., 2017; Gouk et al., 2021) as Eq(f)−Ep(g)+

λ(|f ′(x) − g′(y)| − 1)2, where f ′(x) = q′(x)/q(x), g′(y) = q′(y)·log p(y)
p(y) + q(y)·p′(y)·(1−log p(y))

p2(y) ,
and λ is a penalty coefficient.

H ABLATION STUDY

H.1 THE EFFECTS OF THE INVERTIBLE TRANSFORMATIONS

We used two different bijection forms as the base for the auto-selection mechanism in the T-Stage
for the probability measure transformation in the 1-D extrapolation experiment: the Linear form
and the non-linear Tanh model. To explore the effects of the invertible bijections for the transfor-
mation of probability measure after each M-Stage and final on the posterior inference, we consider
four other bijection schemes: pure Linear transformation, pure Tanh transformation, pure Sigmoid
transformation and the likelihood-based auto-selection mechanism based on these three different bi-
jections. The resulting corresponding FVIMC posteriors are shown in Figure 11. For the pure Linear
bijection, the prediction of the FVIMC posterior in the middle unseen range [−0.25, 0.25] has been
destroyed as in Figure 11(a). The pure Tanh form in Figure 11(b) exhibits some in-between uncer-
tainty quantification pathologies in the non-observation [−0.25, 0.25]. And for the pure Sigmoid
scheme in Figure 11(c), the uncertainty in the three non-observed regions is underestimated, which
can not fully cover the ground truth function. In contrast, the posterior from the auto-selection mech-
anism in Figure 11(d) significantly outperforms these three mechanisms regarding both predictive
accuracy and uncertainty quantification, demonstrating that this log-likelihood maximization-based
auto-selection, rather than a pre-fixed form, can approximate the posterior more accurately. The bi-
jections selected by this automatic mechanism are, in order, the following: [Linear, Tanh, Sigmoid,
Linear, Linear, Linear, Linear, Linear, Sigmoid, Linear].

H.2 THE EFFECTS OF THE KERNEL FUNCTION IN GP PRIOR

Functional Gaussian processes (GPs) priors are able to encode prior knowledge about function prop-
erties (e.g., periodicity and smoothness) through corresponding kernel functions. We used the RBF
kernel in the 1-D extrapolation experiment, which is suited for modelling polynomial functions. We
now consider two alternative kernels: the Matern kernel with the smoothness parameter taking the
value of 1/2, which implies that the function will be less smooth; and the Linear kernel, which is not
suitable for modelling polynomial oscillatory curves. The results are shown in Figure 12. The top
row shows three GP priors with different RBF, Matern and Linear kernels. And the bottom row is
the corresponding FVIMC posteriors using these three different GP priors, respectively. Compared
to the RBF GP prior in Figure 12(a), the Martern GP prior in Figure 12(b) is slightly less smooth
and the variance for the two observation regions [−0.75,−0.25] and [0.25, 0.75] shows some unrea-
sonable expansion. Consequently, the uncertainty estimation of the corresponding FVIMC posterior
in Figure 12(e) of these two observation ranges is a little higher, and it can not recover the main
trend of the middle unseen region [−0.25, 0.25]. The results from the mismatched Linear kernel
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Figure 11: The effects of the bijection forms in the T-Stage.
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(b) GP prior-Matern
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(c) GP prior-Linear
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(d) FVIMC posteior-RBF
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(e) FVIMC poterior-Matern
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Figure 12: The effects of the kernel function in the functional GP prior. The text after the short line
in each subheading represents the corresponding kernel functions.

are shown in Figure 12(c) and Figure 12(f). Since the Linear GP prior shows a completely lin-
ear trend and falls to fit the target function, the predictive accuracy and uncertainty estimation of
the corresponding FVIMC posterior deteriorates significantly, which indicates that our method can
effectively incorporate functional prior information into posterior inference process.

I NOTATION TABLE

Table 6 is the notation table to demonstrate the notation used in this paper.
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Table 6: Notation table
Notation Meanings

D = {XD,YD} Training dataset
X ⊆ Rp (p-dimensional) input space
Y ⊆ Rc (c-dimensional) output space
(Ω,A, P ) Probability space on Rk

H Infinite-dimensional function space (Polish space)
B(H) Borel σ-algebra on H
P(H) The space of Borel probability measures on B(H).
X Finite marginal points

XM Finite measurement points
w ∈ Rk Random network parameters

θ = {µ,Σ} Variational parameters
λ Parameters of invertible bijections

f(·;w) Random function mapping defined by a BNN parameterized by w
p0(w) Prior distribution over network parameters
p(w|D) Posterior distribution over network parameters

p(YD|f(XD;w)) Likelihood function evaluated on the training data
q(w;θ) Variational posterior over network parameters parametrized by θ

P0 Functional Prior measure
Pf |D Posterior measure over functions
Qf Approximate posterior measure over functions
Fλ Invertible bijection parametrized by λ with inverse F−1

λ
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