A Dataset

A.1 Dataset Information

Figure[J]illustrates a typical task instance in the SWE-Dev, detailing the entire development workflow.
The process begins with the Project Requirement Description (PRD), which provides instructions
and specifies features to be implemented. Methods to be evaluated then generate code to complete
the features mentioned in the PRD, which is subsequently verified against the test suite to produce
pass/fail results to calculate pass rate. Additionally, the ground truth implementation for each PRD
is included for reference. The tasks in SWE-Dev simulate real-world software development cycles
within a repository context. For detailed information about each data field included in SWE-Dev
tasks, please refer to Table

Project Requirement Description (PRD) Ground Truth Code
'V FOLDER STRUCTURE: pumziont STy, num2wordslbase.py
num2words/ def num2words(number, ordinal=False, lang='en', to="cardinal’,**kwargs): class Num2Word_Base(object): -
init__py num2words if lang not in CONVERTER_CLASSES: def to_currency(self, val, currency=EUR, cents=True,
base.py W y lang = lang[:2] separator=", adjective=False)
\t;an:;yz Py ﬂﬁﬂﬂiﬁ}iﬁ;";ﬁfﬁ;?" if lang not in CONVERTER_CLASSES: left, right, is_negative = parse_currency_parts(val)
o - - raise NotimplementedError() wy:

WV Instruction crl, cr2 = self CURRENCY_FORMS[currency]

WV Module description
The module facilitates numerical text conversion in the Azerbaijani language ...

Generated Code
WV FILE I: num2words/_init_.py V/ FILE 2: num2words/base.py

FUNCTION NAME: num2words CLASS METHOD: num2words num2words/_init__.py num2words/base.py
SIGNATURE: CLASS SIGNATURE: + def num2words(number, ordinal=False, lang="en’, to="cardinal’, *kwargs): | * 1458 Num2Word_Base(object): _
e) rn, s X + ““iflang not in CONVERTER, CLASSES: + defto_currency(sel,val, currency="EUR, cents=True,
lang="en’, to="cardinal) METHOD SIGNATURE: + raise NotimplementedError(f'Language "{lang}' is not supported.”) & separator=', adjective=False):

def to_currency(sel, val, currency="EUR + converter = CONVERTER_CLASSES[lang] + left, right, is_negative = parse_currency_parts(val)
DOCSTRING: <) Y- o + integral_word = self._money_verbose(left, currency)

cents=True, separator=", adjective=False): *+ ifto notin CONVERTES_TYPES: gral) —money Xy s)

+ raise NotmplementedError(f"Conversion type ‘ftof is not valid”) + fractional_word = self._cents_verbose(right, currency)

Converts a given number intc

&5 DOCSTRING:

representation in a specified language

ts a numeric value into a formatted

Generated Code Test Result
[> FILE 3: num2wordsflang AZ.py

'V TASK DESCRIPTION PASSED Num2WordAZTest:test_cardinal FAILED Num2WordAZTest:test_ordinal
In this project, you need to implement the functions and methods listed above. The functions PASSED Num2WordAZTest:test_currency FAILED Num2WordAZTest:test_ordinal_num
have been removed from the code but their docstrings remain. PASSED Num2WordAZTest: test_year FAILED Num2W. T

Your task is to:
1. Read and understand the docstrings of each function/method...

=3 failed,3 passed in 0.20s =:

Figure 9: Example of a SWE-Dev Sample. Each sample includes a Project Requirement Description
(PRD) with folder structure, module-level task description, and masked docstrings; the corresponding
ground truth implementation. Generated code is evaluated by the test function execution results. This
structure supports realistic, testable feature development in a repository context.

Table 7: Description of each field of an SWE-Dev task instance object.

Field | Description

PRD Description of the project development requirements for this task.

file_code Incomplete code contents of the core files involved in the task.

test_code Content of the test code used to verify the task’s functionality.

dir_path Root directory path of the project corresponding to this task instance.

package_name Name of the software package or module to which this task instance
belongs.

sample_name Unique identifier or name for this task instance or sample within the
benchmark.

src_dir Relative directory path where the source code files for the project or
task are located.

test_dir Relative directory path where the test code files for the project or task
are located.

test_file Relative path of the unit test file used for executing tests.

GT_file_code Ground Truth source code for the file to complete.

GT_src_dict Ground Truth source dictionary, mapping file names/paths to their
expected correct code content.

dependency_dict | Dictionary describing the dependencies required by the current task
(e.g., internal modules) and their relationships.

call_tree Function call tree or call graph of the code, representing the relation-
ships between function calls.

16

A.2 Dataset Distribution

We present the distribution statistics of the training and test sets in SWE-Dev. Each sample includes a
Project Requirement Document (PRD), which describes the feature to be implemented. The average
PRD length is 1,845.4 tokens. On average, each sample includes at least 5 unit tests for functional
evaluation, spans 3 source files, and requires the implementation of approximately 6 functions.

5000

150 4000

i i : 3l (1]
i £ : i
Z s0 z Z 400
om0 D
. D i D -
. 0 LU e . [0 p—— o

J— =
1000 2000 3000 4000 5000 6000 7000 5000+ 10 15 20 B3 Eg 1000 2000 3000 4000 5000 6000 7000 8000+ s 10 15 EIE
Number of Tokens. ur ases Number of Tokens. Number of Testcases

Number of Samples

10 2 o 5 0 25 30 25 50 75 100 125 150 175 o 5 20 25 30

3 5 N 10 15
Number of Files Number of Functions Number of Files Number of Functions

(a) Test Set Distribution (b) Train Set Distribution

Figure 10: Dataset distribution of PRD tokens, number of testcases, number of files to complete, and
number of functions per sample.

A.3 Dataset Diversity

We assess the diversity of SWE-Dev from two perspectives: sample-level diversity (Figure[IT and
Figure[I2), and package-level diversity (Figure [23).

Sample Diversity via t-SNE. To visualize the diversity of feature requirements, we perform t-
SNE on PRD embeddings generated using OpenAl’s text-embedding-ada-002 model We use 500
test samples and randomly sample 2,000 training samples. Each point represents a PRD, and the
color denotes its corresponding package. The resulting distribution reveals rich semantic variation
across tasks, even within the same package, highlighting the dataset’s diversity in both content and
functionality.

Package Category Diversity. To analyze the functional diversity of the dataset, we classify packages
into high-level categories based on their primary domain (e.g., web development, data science,
utilities). The classification is performed using GPT-4o0-mini with the prompt provided below (see
Figure[23). The resulting distribution confirms that SWE-Dev spans a broad spectrum of software
domains.

Package
10 ® pytube ® python_jsonpath
® yamllint pymonetdb
® fhirclient terminaltables
® yamlpath dogpile_cache
5 ® num2words datashader
® python_string_utils stestr
® elasticsearch_curator ® magicalimport
mparticle ® ncclient
intervaltree ® typish
0 o idna ® skforecast
® casbin ® pygls
® scylla_driver ® amazon_textract_textractor
® mypy_boto3_s3 uvicorn
-5 ® getschema thermo
questionary envier
vulture ® datefinder
motmetrics ® py_healthcheck
-10 ° pydicom ® selenium_wire
® advertools @ biopython
e pat ® meson_python

-15 -10 -5 [5 10 15 ® cassandra_driver

Figure 11: t-SNE visualization of PRD in test set

*https://platform.openai.com/docs/guides/embeddings

17

0.5

skforecast
captum

Package
15 ® num2words mypy_boto3_xray
® mypy_boto3_rds tabcmd
® sphinx mypy_boto3_ssm
1.0 ® networkx hbutils
® python-neo miflow_skinny
® boto3_stubs_lite e mypy_boto3_ec2
051 o e simplejson ® autho_python
py_evm ®
00 xlsxwriter ® Dpyelftools
P> ® mypy_boto3_kinesis ® mypy_boto3_sqs
e ® pystan
—0s ® mypy_boto3_secretsmanager mitmproxy
® types_aiobotocore minio
® xdsl segno
=20 sdmetrics e conan
fhir_resources e pyshacl
-15 proselint ® mypy_boto3_redshift_data
python_quickbooks ® pypyr
® reactivex ® mypy_boto3_sts
-2.0 diint ® mypy_boto3_appflow

pyfunceble_dev

Figure 12: t-SNE visualization of PRD in train set

B Inference Results

To assess the capabilities and limitations of current LLMs on realistic feature-driven development
(FDD) tasks, we conduct comprehensive inference-time evaluations on SWE-Dev. We study both
single-agent and multi-agent systems, measuring their performance under consistent execution-based
evaluation.

B.1 Single-Agent LLM Performance

We evaluate 27 state-of-the-art LLMs, including general-purpose chatbot models (e.g., GPT-4o,
Claude 3.7) and reasoning models, shown in Table EL Models are assessed using Pass@1 and
Pass@3 on SWE-Dev’s test set. To contextualize benchmark difficulty, we also compare results
on HumanEval [20] and ComplexCodeEval [13], using Pass@3 and CodeBLEU respectively. Our
findings show that SWE-Dev poses significantly greater challenges than existing benchmarks, with
leading models achieving under 25% Pass@3 on hard tasks (Table [g).

Table 8: Evaluation of model performance across benchmarks. This table compares 37 general-
purpose and reasoning-focused LLMs on SWE-Dev (Pass@1 and Pass@3 for Easy and Hard splits),
ComplexCodeEval (CodeBLEU), and HumanEval (Pass@1 and Pass@3).

Model SWE-Dev pass@1 SWE-Dev pass@3 ComplexCodeEval HumanEval HumanEval
Easy Hard Easy Hard CodeBLEU pass@1 pass@3
Chatbot Qwen2.5-1.5B-Instruct 8.05% 1.23% 10.76% 2.22% 29.72% 57.20% 69.76%
Qwen2.5-3B-Instruct 1593% 527% 21.99% 7.47% 12.27% 62.68% 75.00%
Qwen2.5-7B-Instruct 2574% 6.68% 33.35% 1.73% 20.00% 82.68% 87.13%
Llama-3.1-8B-Instruct 26.43% 7.94% 33.01% 10.24% 20.18% 68.20% 71.87%
Qwen3-8B 34.04% 12.09% 39.26% 13.33% 17.47% 86.34% 89.09%
Qwen2.5-Coder-14B-Instruct 39.51% 14.82% 52.49% 18.44% 35.52% 90.48% 92.93%
Qwen2.5-14B-Instruct 38.08% 13.16% 46.32% 15.89% 19.90% 82.56% 87.87%
DeepSeek-Coder-V2-Lite-Instruct ~ 21.53% 8.19% 29.68% 11.33% 26.63% 80.98% 85.18%
Qwen3-30B-A3B 35.84% 12.76% 39.45% 15.20% 14.84% 89.27% 90.30%
Phi-4 21.99% 5.57% 27.89% 8.56% 33.85% 86.46% 90.01%
Qwen2.5-32B-Instruct 43.64% 10.15% 51.24% 11.69% 19.76% 88.90% 92.44%
Qwen2.5-72B-Instruct 49.01% 10.62% 57.20% 12.33% 22.15% 83.66% 86.46%
Llama3.3-70B-Instrcut 33.84% 12.85% 39.57% 14.95% 21.29% 84.51% 88.54%
Deepseek-V3 41.95% 1622% 56.719% 21.62% 28.32% 90.36% 92.92%
GPT-40 5437% 19.13% 68.70% 21.91% 33.38% 88.41% 92.93%
GPT-40-mini 3447% 11.09% 41.94% 13.84% 25.00% 85.97% 89.00%
Claude-3.7-Sonnet 53.09% 19.74% 56.35% 24.25% 29.63% 93.66% 95.36%
Reasoning Claude-3.7-Sonnet-thinking 49.47% 22.51% 56.58% 29.28% 29.80% 91.22% 97.62%
Deepseek-R1-distill-Qwen2.5-7B 6.30% 1.29% 10.30% 1.95% 21.05% 86.10% 93.29%
Qwen3-8B-thinking 1947% 636% 2591% 9.22% 20.98% 89.63% 91.89%
Qwen3-30B-A3B-thinking 23.63% 8.30% 31.00% 11.60% 25.00% 93.04% 99.57%
Deepseek-R1-distill-Qwen2.5-32B 24.25% 9.79% 40.53% 19.04% 27.98% 95.17% 97.87%
DeepSeek-R1-distill-Llama-70B 3273% 8.19% 45.72% 11.33% 25.95% 96.95% 98.53%
Deepseek-R1-671B 28.55% 12.84% 37.62% 17.72% 34.47% 98.65% 100%
QwQ-32B-Preview 450% 070% 8.90% 1.22% 24.78% 82.31% 97.01%
grok-3-beta 53.63% 18.97% 59.08% 22.26% 27.96% 87.15% 89.99%
ol 36.36% 11.09% 43.77% 14.27% 33.63% 97.43% 98.78%
03 51.21% 21.86% 59.05% 28.98% 26.53% 98.04% 98.78%

18

Table 9: Information of evaluated LLMs.

Model Size Release Date Open Link
Qwen/Qwen2.5-Coder-14B-Instruct 14B 2024-11-12 v Qwen2.5-Coder-14B-Instruct
deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct 16B 2024-06-17 v DeepSeek-Coder-V2-Lite-Instruct
microsoft/phi-4 14B 2024-12-12 v phi-4
Qwen/Qwen2.5-1.5B-Instruct 1.5B 2024-09-19 v Qwen2.5-1.5B-Instruct
Qwen/Qwen2.5-3B-Instruct 3B 2024-09-19 v Qwen2.5-3B-Instruct
Qwen/Qwen2.5-7B-Instruct 7B 2024-09-19 v Qwen2.5-7B-Instruct
meta-llama/LLlama-3.1-8B-Instruct 8B 2024-07-23 v Llama-3.1-8B-Instruct
Qwen/Qwen3-8B 8B 2025-04-29 v Qwen3-8B
Qwen/Qwen2.5-14B-Instruct 14B 2024-09-19 v Qwen2.5-14B-Instruct
Qwen/Qwen3-30B-A3B 30B 2025-04-29 v Qwen3-30B-A3B
Qwen/Qwen2.5-32B-Instruct 32B 2024-09-19 v Qwen2.5-32B-Instruct
Qwen/Qwen2.5-72B-Instruct 72B 2024-09-19 v Qwen2.5-72B-Instruct
meta-llama/Llama-3.3-70B-Instruct 70B 2024-12-06 v Llama-3.3-70B-Instruct
deepseek-ai/DeepSeek-V3 - 2024-12-26 v DeepSeek-V3

gpt-40 (OpenAl) - 2024-05-13 X opt-4o/
gpt-4o-mini (OpenAl) - 2024-07-18 X gpt-4o-mini
claude-3.7-sonnet (Anthropic) - 2025-02-25 X claude-3.7-sonnet
grok-3-beta (xAl) - 2025-02-19 x grok-3-beta

ol (OpenAl) - 2024-12-05 X ol

03 (OpenAl) - 2025-04-16 X 03
deepseek-ai/DeepSeek-R1-Distill-Qwen-7B 7B 2025-01-20 v DeepSeek-R1-Distill-Qwen-7B
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B 32B 2025-01-20 v DeepSeek-R1-Distill-Qwen-32B
Qwen/QwQ-32B-Preview 32B 2025-03-06 v QwQ-32B-Preview
deepseek-ai/DeepSeek-R1-Distill-Llama-70B ~ 70B 2025-01-20 v DeepSeek-R1-Distill-Llama-70B
deepseek-ai/DeepSeek-R1 - 2025-01-20 v DeepSeek-R1

The structures of Multi Agents

Agentverse MAD CoT EvoMac LLM Debate

(

Figure 13: Multiagent system workflow visualization.

B.2 Multi-Agent System Performance

We evaluate 10 multi-agent systems (MAS), including both general-purpose MAS (e.g., AgentVerse,
LLM Debate) and code-specific designs (e.g., EVOMAC, MapCoder). As detailed in Table [3} we
compare each MAS against a single-agent baseline on execution success (Pass@1), total API call
count, and cost-efficiency. Results show that while MAS can outperform single agents on complex
tasks, simple strategies (e.g., Self-Refine) often strike a better balance between performance and
resource usage than workflow-heavy systems like ChatDev. We visualize the MAS in the following

Figure

C Analysis

C.1 Analysis of PRD Quality

Our Project Requirement Descriptions (PRDs) are primarily derived from the original docstrings found
within the repository source code. To enhance the quality and utility of these PRDs, we employed
GPT-4o to refine and improve the original docstrings. To objectively assess this improvement, we
recruited two domain experts to evaluate both the original and GPT-40-enhanced docstrings across
100 randomly selected samples from SWE-Deyv.

19

https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
https://huggingface.co/microsoft/phi-4
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/Qwen/Qwen3-8B
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/Qwen/Qwen3-30B-A3B
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-V3
https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://www.anthropic.com/claude/sonnet
https://x.ai/news/grok-3
https://openai.com/o1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1

80 1
Deepseek-R1 Claude-3.7-Sonnet
751 Claude-3.7-Sonnet-thinking
701
Deepseek-V3
= 651
3 o
-
® 60 GPT-4¢
(0]
g DeepSeek-R1-Distill-Qwen-32B
a 551 \V/
Qwen2.5-32B-Instrcut
501
DeepSeek-R1-Distill-Llama-70B
45
QO Chatbot model Llama-3.3-70B-Instruct
401 Y Reasoning model
60 70 80 90

Instruction Following Rate(%)

Figure 14: Comparison of reasoning and chatbot LLMs’ IFR and performance on SWE-Dev. Reason-
ing models tend to outperform chatbots when they fully follow instructions, though their overall IFR
is lower.

The experts rated each docstring on three critical dimensions—Clarity, Completeness, and Action-
ability—using a 0 to 5 scale, where higher scores indicate superior quality. The human evaluation
guideline is shown in Figure

Participants were fully informed about the evaluation process and the nature of the task. The
assessment involved only reviewing documentation and posed no ethical or privacy risks, adhering
strictly to ethical standards for research involving human subjects. This evaluation provides a rigorous
measure of how GPT-4o-refined docstrings enhance PRD quality in SWE-Dev.

C.2 Explanation on the Underperformance of Reasoning Models

Instruction Following Rate (IFR). Previous experiments have shown that reasoning models perform
poorly on SWE-Dev. To investigate the reasons behind this, we analyzed the instruction-following
ability of these models. We measured the percentage of code files that meet the PRD requirements for
each model’s generated code as a metric of instruction following rate (IFR). The metric is formally
defined as:

1 &G NT
IFR= -y i1l
02T

where n denotes the total number of tasks, G; represents the set of files generated by the model for
task 7, and 7; denotes the set of ground truth files required by the PRD for task .

To further explore this, we compared reasoning models with their chatbot counterparts by evaluating
their instruction following rate. Specifically, in Figure [I4, the x-axis represents the instruction
following rate, and the y-axis shows the performance of both reasoning models and their chatbot
counterparts on tasks where their instruction following rate is 100%.

As shown in the figure, we see that: (i) Reasoning models generally have a lower instruction-
following rate compared to their chatbot version, which explains why they underperform when
handling multiple tasks simultaneously. Reasoning models tend to struggle with tasks on SWE-Dev
that involve performing several steps in a single call, resulting in poorer performance overall. (ii)
However, on tasks where both reasoning models and their chatbot versions have an instruction-
following rate of 100%, reasoning models typically outperform the chatbots. This indicates the
potential of reasoning models when they can fully adhere to instructions. (iii) Claude 3.7-Sonnet is an
exception to this trend, as both its reasoning and chatbot versions exhibit similar instruction-following
rates and performance, which contributes to Claude’s superior results.

20

C.3 Error Analysis

Figure [I5] presents the distribution of failure types for both single-agent and multi-agent systems on
SWE-Dev. We sample 500 samples for error analysis and categorize errors into five types: Incomplete,
Logic, Syntax, Parameter, and Others, see error classification prompt in Figure 2T} Across both agent
types, the most prevalent error is the Incomplete Error, where models fail to implement PRD-required
functions—indicating persistent challenges in task decomposition and execution coverage.

For single-agent models, Logic Errors are the second most common, followed by Parameter Errors
and Syntax Errors. Interestingly, GPT-40 and Claude-3.7 show relatively fewer Syntax Errors,
suggesting better adherence to Python syntax, while smaller models like GPT-40-mini show higher
incidence of both Syntax and Parameter issues, reflecting their limited reasoning capacity and weaker
control over function signatures.

In contrast, multi-agent systems exhibit a different pattern. While they reduce Incomplete Errors
to some extent, they often incur higher Logic or Syntax Errors—especially in methods like MAD
and Self-consistency—suggesting that while agents may cover more PRD content, coordination
breakdown or hallucinated reasoning steps can introduce new failure modes.

Overall, the analysis highlights the need for improved function selection, robust reasoning alignment,
and stronger control over generation structure—especially in collaborative multi-agent settings.

(a) The number of errors (Single-agent) (b) The number of errors (Multi-agent)

18 130

B
|

300 350 a0

50 00 50

260 250 260 250
Error Count Error Count

Figure 15: Failure case distribution of Single and Multi-agent.

C.4 Limitation and Future Work

Language Scope. SWE-Dev currently targets Python, which, while widely used, does not reflect
the full diversity of real-world programming languages. A natural extension is to support other major
languages such as Java, JavaScript, and C++, enabling broader evaluation and enhancing generality.

Training Exploration. Our training experiments focus on standard techniques—SFT, RL, and
role-wise MAS training—which yield modest gains. Future work could explore stronger RL
147)], dynamic agent coordination [48]], and curriculum learning [49]]. Notably, SWE-Dev offers
fine-grained complexity signals via call trees that can guide complexity-aware training.

C.5 Broader impacts

SWE-Dev is the first dataset tailored for autonomous feature-driven software development, addressing
the gap between current automated coding and real-world software engineering demands. By
providing large-scale, realistic tasks based on real repositories with executable tests, it enables
rigorous and reliable evaluation of automated Al coding systems. SWE-Dev promotes the creation of
more capable methods for complex software, driving innovation that can lower development costs
and enhance software quality industry-wide.

D Detailed Benchmark Construction

D.1 Call tree generation

To accurately localize the implementation logic associated with each test case, we construct a call
tree that captures the dynamic execution path from the test to the relevant source functions. This tree
serves as the foundation for identifying the core feature logic and determining task complexity.

21

e

test_cardinal test_ordinal_num

| | T
|

Figure 16: Example of a generated call tree for test_az.py.

Figure|16|shows a generated call tree for the file test_az. py, which contains multiple test functions
such as test_cardinal, test_year, and test_ordinal_num. Each test function serves as a
root for its own call path, triggering downstream functions like Num2Word_AZ.to_cardinal and
Num2Word_AZ.int_to_word. This tree structure reveals the multi-level and cross-functional logic
activated during test execution, illustrating how test files connect to multiple feature implementations
across the codebase.

We use the call tree in two key ways:

1. To select target functions for masking during task generation, enabling controllable task complexity.

2. To trace which source files and logic a model must understand to solve the task, supporting
fine-grained evaluation and curriculum learning.

D.2 Docstring Augmentation Prompt

To ensure high-quality task specifications, we augment original function-level docstrings using GPT-
4o. Figure 22 shows the prompt we use to generate concise, informative docstrings conditioned on
the full code context.

E Extended Related Work

E.1 Multi-agent system

For complex SE tasks that strain the context handling of single agents, Multi-Agent Systems (MAS)
utilizing collaborating LLMs are an emerging research avenue. Existing frameworks like MetaGPT,
ChatDeyv, and AgentVerse often rely on predefined agent roles and fixed interaction protocols. While
effective on specific tasks, their hand-crafted structure limits generalization. Recent research explores
trainable MAS, aiming for agents that dynamically adapt their organization or communication
strategies. However, empirical studies of such adaptive MAS are largely constrained by benchmark
complexity; evaluations are often confined to small-scale or synthetic tasks due to the lack of
benchmarks providing complex interaction scenarios and reliable execution feedback. SWE-Dev’s
scale, complexity, and provision of executable feedback (via unit tests) establish it as the first testbed
capable of supporting the training and evaluation of dynamic MAS on realistic, multi-file feature
development scenarios.

F Experiment Settings

F.1 Inference

LLMs. We evaluate 17 chatbot LLMs with different model size, including Qwen2.5-Instruct
models 1.5B/3B/7B/14B/32B/72B [50]], Qwen3 models 8B/30B-A3B [51]], Llama 3.1-8B/3.3-70B-
Instruct [S2], Phi 4 [53]], Claude-3.7-Sonnet [11], Deepseek-V3 [54], GPT-4o [12], Deepseek-Coder-
V2-Lite-Instruct [55]], Qwen2.5-Coder-14B-Instruct [56]. Additionally, We extend the evaluation to
reasoning models, including Deepseek-R 1-distill models (Qwen2.5 7B/32B, Llama-70B) [57]], Qwen3

22

8B/30B-A3B (thinking) [S1], QwQ-32B-Preview, Deepseek-R1 [57], OpenAl-ol [58]], Claude-3.7-
Sonnet-thinking [[11], and Grok-3-Beta [59].

Multi-Agent Systems. To provide a more comprehensive evaluation of SWE-Dev, we expand our
study to include multi-agent systems (MAS) built on LLMs. Prior research has demonstrated that
MAS can enhance performance on tasks requiring multi-step reasoning and coordination [48 160} 40].
In our experiments, all MAS are implemented using GPT-40-mini [61] as the underlying model to
ensure consistency across methods. And for fair comparison, we utilize MASLab [62], a unified
framework integrating multiple MAS implementations. We evaluate coordination-based MAS such
as LLM Debate [36], Self Refine [34], Multi-Agent Debate (MAD) [37]], and Self Consistency [35]]
that feature relatively simple agent interaction strategies. We further include structured, workflow-
oriented MAS designed for code generation, including Agentverse [38], MetaGPT [60], ChatDev [40],
MapCoder [39], and EvoMAC [18]].

F.2 Training
F.3 Single-Agent Supervied Fine-tuning

We fine-tune the model using LoRA, applying low-rank adaptations (rank » = 16, scaling a = 16,
dropout = 0.05) to the query, key, value, and output projection matrices of each attention sublayer.
Training is performed with a learning rate of 6 x 10~% and a batch size of 32 sequences per gradient
step, for up to 4 epochs. Checkpoints are saved every 50 steps, and the best model is selected based
on validation loss over a held-out set of 100 examples. Fine-tuning is initialized from Qwen2.5-
7B-Instruct and completed within 20 hours using 8 NVIDIA A100 GPUs. We leverage DeepSpeed
Ulysses and Flash Attention to support efficient training with long input contexts.

F.4 Single-Agent Reinforcement Learning

For reinforcement learning (RL) training, we sampled 2k instances from the SWE-Dev to balance
computational feasibility and the ability to capture RL benefits. Specifically, we used Proximal
Policy Optimization (PPO) [42] and Direct Preference Optimization (DPO) [43] for training the
Qwen2.5-7B-Instruct using 8 NVIDIA A100 GPUs.

PPO: The training was conducted using a batch size of 256 and trained for 5 epochs, with a learning
rate of 1 x 1076 for the actor and 1 x 10~ for the critic. The training was set to save checkpoints
every 10 steps. We used a maximum prompt length of 8192 tokens and set a micro-batch size of 32.
The reward for PPO is calculated based on the pass rate of the test cases.

DPO: For DPO training, we applied LoORA with a rank of 64, scaling factor o = 128, and dropout
set to 0. The preference loss function (pref_loss) was set to sigmoid, which is commonly used in
DPO for preference-based optimization. Training was performed for 5 epochs, using a batch size of 8
and a learning rate of 1 x 107°.

For a fair comparison with SFT in §4.2.2, we used the same 2k training samples for both SFT and
RL. The details for SFT training are outlined in Appendix [F3.

These methods allow us to assess the impact of RL on model performance using the SWE-Dev dataset
while maintaining efficient training..

F.5 Mingle-Agent Supervied Fine-tuning

In our multi-agent fine-tuning experiments, we utilize a simplified version of EvoMAC [18]], retaining
only two core roles: Organizer and Coder, see Figure [I7. The fine-tuning process follows an
iterative workflow. Initially, the Organizer processes the Project Requirement Description (PRD)
and breaks it down into clearly defined subtasks or instructions. Subsequently, the Coder generates
corresponding code implementations for these subtasks. The generated code is then evaluated using
the provided ground truth (GT) test cases. Feedback from these evaluations informs subsequent
iterations, enabling iterative refinement of both the task decomposition by the Organizer and the code
generation by the Coder. Fig.[I9 and Fig. 20 respectively show the prompts used for the Coder and
Organizer.

Rejection Sampling Procedure.

23

Multi-agent Fine-tuning

Textual backpropagtion

EvoMAC
Workflow
/ Generated 6T
task |—> organizer ——> % — Code —>| Testcase
\/ execution
Updates
Gradient backpropagtion
Organizer
Collect correct trajectory from Organizer SFT
o Collect correct trajectory from Coder SFT
fp o correct trajectory from Code

Figure 17: Overview of Multi-agent Fine-tuning in EvoMAC. This framework leverages both textual
and gradient-based supervision to improve multi-agent collaboration. During inference, an organizer
assigns roles and coordinates a team of coders to generate code, which is then validated using ground
truth test cases. Successful execution trajectories are collected and used to fine-tune both the organizer
and coders individually via supervised learning, enabling role-specific optimization for complex
software development tasks.

To effectively leverage the feedback from GT test cases, we employ rejection sampling—a method
widely adopted in reinforcement learning and language model fine-tuning [63} [64]. The detailed
procedure is as follows:

1. Iterative Reasoning with EvoMAC: For each training instance, EvoMAC executes multiple
rounds of reasoning. In each iteration, the generated code from the Coder is tested against
the GT test cases to compute its performance.

2. Selection of High-quality Trajectories: Trajectories that show improved performance over
previous iterations (as indicated by an increased pass rate on GT test cases) are selectively
retained. Conversely, trajectories that do not demonstrate progress or degrade in performance
are discarded. This ensures that only beneficial and constructive data is used for fine-tuning.

3. Role-wise Fine-tuning: The retained high-quality trajectories are utilized to separately fine-
tune the Organizer and the Coder. Specifically, the Organizer is trained to better structure
and decompose tasks from PRDs, while the Coder is refined to enhance code generation
capabilities for defined subtasks. This role-specific fine-tuning promotes specialization and
improves overall performance.

As shown in §4.2.3] through this simplified EvoMAC and structured rejection sampling approach, our
multi-agent fine-tuning effectively enhances the capabilities of each agent, contributing to significant
performance gains on SWE-Dev.

24

Single LLM inference prompt

AIM: You need to assist me with a Python package feature development task.
I will provide a Product Requirements Document (PRD) that details the
functionality and lists the empty functions that need to be implemented
across different file paths. I will also provide the complete "Code
Context" of all files mentioned in the PRD.

Your task is to implement ONLY the empty functions described in the PRD while
preserving ALL OTHER CODE in the provided files exactly as is. This is
absolutely critical - you must keep all imports, class definitionms,
functions, comments, and other code that is not explicitly mentioned in
the PRD for implementation.

When implementing the functioms:

1. Carefully identify which functions from the PRD need implementation.
Implement them based on the docstrings and specifications in the PRD

2. Do not add any new "import" statements unless absolutely necessary

3. Do not modify ANY existing code structure, only implement the empty
functions

For each file mentioned in the PRD, you MUST output the COMPLETE file code
with your implementations inserted. Your output format must follow this
exact pattern:

OUTPUT FORMAT FOR EACH FILE:

@ [relative path/filename]

¢ ¢‘python

[COMPLETE file code including ALL original code plus your implementations]
€c¢

@ [relative path/filename]

¢ ¢‘python

[COMPLETE file code including ALL original code plus your implementations]

ccc¢

IMPORTANT: Make sure your output includes EVERY function, class, import
statement, and comment from the original code context. The only
difference should be that the empty functions specified in the PRD are
now implemented.

PRD:
{PRD}

Code Context:
{code_snippet}

Figure 18: Single LLM Inference Prompt.

G Licensing

All codebases and data used in this work are sourced from publicly available GitHub repositories. We
have ensured compliance with the corresponding licenses of these repositories, respecting all terms
of use and attribution requirements.

H Prompts

This section includes all prompts used in the generation, evaluation and analysis process.

25

EvoMAC Coding Agent Prompt

You are Programmer. we are both working at ChatDev. We share a common
interest in collaborating to successfully complete a task assigned by a
new customer.

You can write/create computer software or applications by providing a
specific programming language to the computer. You have extensive
computing and coding experience in many varieties of programming
languages and platforms, such as Python, Java, C, C++, HTML, CSS,
JavaScript, XML, SQL, PHP, etc,.

Here is a new customer’s task: {task}.

To complete the task, you must write a response that appropriately solves the
requested instruction based on your expertise and customer’s needs.

According to the new user’s task and you should concentrate on accomplishing
the following subtask and pay no heed to any other requirements within

the task.

Subtask:
{subtask}.

Programming Language: python,

Codes:
{codes}

Figure 19: Role Prompt for EvoMAC Coding Agent.

26

EvoMAC Organizing Agent Prompt

As the Leader of a coding team, you should analyze and break down the problem
into several specific subtasks and assign a clear goal to each subtask.
Ensure each subtask is extremely detailed, with a clear description and
goal, including the corresponding PRD statement where necessary.

The workflow should be divided into minimal, executable subtasks, each
involving one method implementation. The target_code should only contain
the relative paths and function names for the specific code that is
required for that subtask.

Each subtask should be assigned a unique task_id, and the description should
reflect the exact requirements of the PRD corresponding to that method or
task. The target_code should be precise, containing only the specific
Python code (relative path and method/function name) that corresponds to
the subtask’s scope.

The format should strictly follow the JSON structure below:

(33 (json
[
{

"task_id" : n 1" s

"description":"Task Description",

"target_code": [
"relative_python_path:function_name",
"relative_python_path:class_name.method_name"

]

X

Use the backticks for your workflow only.
Note:

(1) Each subtask should be self-contained and represent one method’s
implementation.

(2) The ‘description‘ should be based on specific statements from the PRD,
and it must explain what the subtask is aiming to achieve.

(3) The ‘target_code‘ should only reference the code paths and function names
for the methods to be implemented for the subtask.

(4) The number of subtasks should not exceed 5. Some tasks might combine
multiple smaller functions if needed to fit within the limit.

(5) Each subtask is handled independently by different agents, so the
description should be thorough, ensuring clarity even without the full
context of the PRD.

Figure 20: Role Prompt for EvoOMAC Organizing Agent.

27

Error Classification Prompt

You are an error classification expert. Based on the provided PRD, LLM-
generated code, and error message, your task is to analyze and categorize
the primary issue.

1. Analyze the root cause of the problem using the PRD, the code, and the
error message.

2. If multiple issues exist, return only the most severe and primary one (
return exactly one ProblemType) .

3. Return the result in strict JSON format with the following structure:

"ProblemType": {

"MainCategory": "Main error category",
"SubCategory": "Specific sub-category of the issue",
"Reasoning": {
"SymptomAnalysis": "Observed abnormal behavior (in Chinese)",
"RootCause": "Attribution analysis combining PRD and code (in
Chinese)",
"ErrorMechanism": "Technical explanation of how the error occurs (
in Chinese)"
}
}
}
Below is the data provided to you:
PRD:
{prd}

Generated Code:
{results}

Error Message:
{input_text}

Please ensure your response strictly follows the JSON format above.

The allowed values for MainCategory are limited to the following five options
- read them carefully and choose the most appropriate one:

1. Logic Error: Logical errors such as assertion failures or failure to meet
PRD requirements.

2. Syntax Error: Syntax issues such as unexpected tokens, indentation
problems, etc.

3. Parameter Error: The function required by the PRD is present, but input/
output parameters are incorrect or missing.

4. Incomplete Error: Some required functions are entirely missing as per the
PRD. Make sure to distinguish between a truly missing function and one
that exists but contains logic or syntax errors.

5. Others: Any other issues that do not fit the above categories.

You must carefully select the MainCategory to ensure accuracy.
Do not return any MainCategory that is not listed above.
Do not return an empty MainCategory.

Figure 21: Prompt Template for Error Type Classification.

28

Docstring Augmentation Prompt

Context: The following Python code is provided for reference. It includes
functions, classes, and other elements that provide context for the
function or class below. Additionally, any constants or variables defined

outside functions/classes are considered as part of the context and
should be explained if used.

Full Code:
¢ ¢ ‘python
{full_code}

(3

Code for {name}:
¢ ¢‘python
{code_snippet}

ccc¢

Docstring:

Please generate a concise and clear docstring for the above {name} based on
the full code context. Ensure the docstring briefly explains the {name}’s
purpose, parameters, return values, and any relevant dependencies or
interactions with other parts of the code. If there are any constants or
variables used within the {name}, explain their role and significance,
including where they are defined and how they interact with the function
or class.

For functions: describe the input parameters, expected output, and any
important side effects in a few sentences. Also, explain any constants
used inside the function (if applicable).

For class.methods: describe the input parameters, expected output, and any
important side effects in a few sentences. Also, explain any constants
used inside the function (if applicable).

For classes: describe the main attributes and methods, along with the general
purpose of the class in a brief summary. Mention any constants used in
the class and explain their purpose and how they interact with class
methods and attributes. Keep the docstring focused, avoiding unnecessary
details or repetition.

Output format

Your response should strictly follow the format below, without any other text
or comments.

\n\u\n

docstring

\n\u\n

Figure 22: Docstring Augmentation Prompt in Task Generation.

29

Categories for Classifying Packages

You are a Python expert. Given the name of a PyPI package, classify it into
ONE category from the list below based on its MOST central and primary
purpose.

Categories:

1. Web & Network Automation

Packages that support automation of web browsing, API communication, and
network protocols.

Criteria: Enables browser control, HTTP requests, network operations, or web
server handling.

2. Data Processing & Integration
Packages that extract, parse, or convert structured/unstructured data formats.

Criteria: Handles parsing or converting text, JSON, YAML, XML, or dates.

3. Security & Access Control

Packages that focus on authentication, authorization, or access control
mechanisms.

Criteria: Implements rules, policies, or authentication methods.

4. Command-Line & Developer Tools

Packages that assist in building CLI tools, test frameworks, or code quality
analysis.

Criteria: Aimed at improving the development experience, command-line
interfaces, or code quality.

5. Cloud & Data Storage

Packages interacting with cloud services, databases, or data storage
solutions.

Criteria: Provides interfaces or tools to access, manage, or validate remote
data or cloud resources.

6. Data Science & Visualization

Packages used for scientific computing, visualization, or statistical
evaluation.

Criteria: Supports data analysis, visualization, or scientific research.

7. Others

Packages that do not clearly belong in the other categories or are too
general/specialized.

Criteria: Doesn’t strongly align with the definitions above or serves a
unique/niche purpose.

Please output only the category number (only one category), no explanation
unless asked. Choose the single best fit.

Package name: {package_name}

You must strictly follow the format below, only a number no other text:
1

Figure 23: Prompt Template for Classifying Packages.

30

Human Evaluation Guideline for PRD Quality

Each docstring is evaluated independently along the following three
dimensions, using a 0-5 scale (0 = very poor, 5 = excellent):

Clarity - How easy the docstring is to understand for a competent software
engineer. Consider language clarity, readability, and absence of
ambiguity.

Completeness - Whether the docstring provides all necessary information to
understand the function’s behavior. Consider whether inputs, outputs,
parameters, and important logic are described.

Actionability - How effectively the docstring guides actual implementation.
Consider whether a developer could use the docstring alone to reasonably
implement the function.

Rating Scale:

: Excellent - No issues; highly clear, complete, and actionable.
Good - Minor improvements possible.

Fair - Understandable but lacking in one area.

Poor - Vague or missing key information.

Very Poor - Hard to follow or largely unhelpful.

Unusable - Cannot inform implementation at all.

O, N WO,

If the original docstring is missing or boilerplate-only, please rate
accordingly. Docstrings are to be rated individually without direct
comparison.

Figure 24: Human Evaluation Guideline for PRD Quality.

31

	Introduction
	Related Work
	Coding benchmarks
	Code LLMs Training

	SWE-Dev
	Dataset Construction
	Dataset Features
	Statistics

	Experiment
	Testing Results
	Single LLM Inference
	Multi-Agent Inference

	Training Results
	Single LLM SFT
	Single LLM RL
	Multi-Agent Training

	Dataset Analysis
	Conclusion
	Dataset
	Dataset Information
	Dataset Distribution
	Dataset Diversity

	Inference Results
	Single-Agent LLM Performance
	Multi-Agent System Performance

	Analysis
	Analysis of PRD Quality
	Explanation on the Underperformance of Reasoning Models
	Error Analysis
	Limitation and Future Work
	Broader impacts

	Detailed Benchmark Construction
	Call tree generation
	Docstring Augmentation Prompt

	Extended Related Work
	Multi-agent system

	Experiment Settings
	Inference
	Training
	Single-Agent Supervied Fine-tuning
	Single-Agent Reinforcement Learning
	Mingle-Agent Supervied Fine-tuning

	Licensing
	Prompts

