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Abstract
The PAC model (Probably Approximately Correct) was introduced by Valiant (1984); Vapnik and
Chervonenkis (1964, 1974) and has since been a cornerstone in machine learning theory. The PAC
model is based on the idea that a learning algorithm, given labelled training examples, with high
probability, should be able to learn how to label unseen examples with high accuracy. This means
that the algorithm should generalize well from the training data to new data.

The most well-known PAC-learning setting is the binary realizable setting, where it is assumed
that there exists an unknown true binary labelling function c : X → {−1, 1}, and an unknown
distribution D over X . The goal of the learner A is to determine, given m labelled training examples
S = ((x1, c(x1)), . . . , (xm, c(xm))) by c and x1, . . . ,xm ∼ D, a labelling rule A(S) ∈ {−1, 1}X
that minimizes the error LD(A(S)) = Px∼D[A(S)(x) ̸= c(x)] on new points drawn from D and
labelled by c .

In this setting, Vapnik and Chervonenkis (1974) and Blumer et al. (1989) showed that if there
exists a hypothesis class H ⊆ {−1, 1}X of VC-dimension d such that c ∈ H, then, with prob-
ability at least 1 − δ over random labelled training examples S, all h ∈ H satisfying LS(h) =
1
m

∑
(x,y)∈S 1[h(x) ̸= y] = 0 also satisfy LD(h) ≤ O(d ln(m/d)+ln(1/δ)

m ). Thus, assuming H is
known to the learner, the intuitive learning rule of empirical risk minimization (ERM), choosing
any h ∈ H such that LS(h) = 0, which is possible since the labelling function c ∈ H, leads to the
generalization error LD(ERM(S)) = O(d ln(m/d)+ln(1/δ)

m ).
From a lower bound perspective, Bousquet et al. (2020) showed that there exists a hypothesis

class H of VC-dimension d, a target concept c ∈ H, and a distribution D such that any proper
learner A, always outputting a hypothesis A(S) ∈ H, with probability at least 1−δ has generaliza-
tion error Ω(d ln(m/d)+ln(1/δ)

m ). In contrast, for general learning rules A not restricted to outputting
classifiers in H, the lower bound on the generalization error is Ω(d+ln(1/δ)

m ) due to Ehrenfeucht
et al. (1989).

Thus, a natural question is whether there exists a learner A achieving a generalization error
of Θ(d+ln(1/δ)

m ). This question was positively answered in the seminal work of Hanneke (2016),
which introduced the first optimal PAC learner. Hanneke’s learner A uses a clever deterministic
subsampling scheme that creates ≈ m0.79 sub-training sequences of size Θ(m) from S. The output
of A is a majority vote over ≈ m0.79 hypotheses, where each hypothesis results from running an
ERM algorithm on one of the sub-training sequences, giving an efficient optimal PAC learner.

Moreover, seminal work by Larsen (2023) showed that bagging, introduced by Breiman (1996),
also leads to an optimal PAC learner. Specifically, Larsen (2023) demonstrated that the majority
vote of Θ(ln(m/δ)) hypotheses, each obtained by running an ERM on a bootstrap sample of size
Θ(m), is an optimal PAC learner and more efficient than the algorithm in Hanneke (2016).

We notice that both approaches require running an ERM algorithm on Θ(m) training examples.
Thus, a natural question is whether it is possible to obtain an optimal PAC learner A that only calls
a black-box ERM algorithm on O(m) training examples.

*Extended abstract. Full version appears as (Høgsgaard, 2025).
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In this work aim to answer this question, concretely we show that by calling the black-box
ERM algorithm O(ln( m

δ(d+ln(1/δ)) ) ln(
m
δ )) times, each time with 550d training examples, one can

construct an optimal PAC learner as a majority vote over O(ln( m
δ(d+ln(1/δ)) )) hypotheses. This new

optimal PAC learner gives an alternative trade-off in computational cost compared to the efficient
optimal PAC learner of Larsen (2023), which is more favorable if the ERM algorithm’s computa-
tional cost scales poorly with the number of training examples.
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