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ABSTRACT

The ability to derive underlying principles from a handful of observations and
then generalize to novel situations—known as inductive reasoning—is central to
human intelligence. Prior work suggests that language models (LMs) often fall
short on inductive reasoning, despite achieving impressive success on research
benchmarks. In this work, we conduct a systematic study of the inductive rea-
soning capabilities of LMs through iterative hypothesis refinement, a technique
that more closely mirrors the human inductive process than standard input-output
prompting. Iterative hypothesis refinement employs a three-step process: propos-
ing, selecting, and refining hypotheses in the form of textual rules. By examining
the intermediate rules, we observe that LMs are phenomenal hypothesis proposers
(i.e., generating candidate rules), and when coupled with a (task-specific) sym-
bolic interpreter that is able to systematically filter the proposed set of rules, this
hybrid approach achieves strong results across inductive reasoning benchmarks
that require inducing causal relations, language-like instructions, and symbolic
concepts. However, they also behave as puzzling inductive reasoners, show-
ing notable performance gaps between rule induction (i.e., identifying plausible
rules) and rule application (i.e., applying proposed rules to instances), suggesting
that LMs are proposing hypotheses without being able to actually apply the rules.
Through empirical and human analyses, we further reveal several discrepancies
between the inductive reasoning processes of LMs and humans, shedding light on
both the potentials and limitations of using LMs in inductive reasoning tasks.1

1 INTRODUCTION

Inductive reasoning, i.e., the ability to identify common patterns and form high-level abstractions
from limited observations, is considered key to human intelligence (Lake et al., 2017; Chollet, 2019).
For instance, humans can quickly identify the generalizable list operation rule “selecting the first
item” based on only a few observations (Figure 1, top). Although the precise cognitive mechanisms
behind inductive reasoning remain unknown, one compelling hypothesis in cognitive science posits
that humans approach this challenge through an iterative process that involves proposing hypothe-
ses, testing them against observations, and refining them accordingly (Heit, 2000; Fränken et al.,
2022). Returning to the above example, while the hypothesis “selecting the smallest item” may
seem plausible based on the first two examples, applying this rule to the final example reveals the
need for refinement, ultimately favoring “selecting the first item” as a more accurate hypothesis.

With the increasing power of state-of-the-art LMs (OpenAI, 2023; Anthropic, 2023), there is grow-
ing interest in exploring these models’ reasoning capabilities vis-à-vis human inductive reasoning.
How are their performances and underlying mechanisms similar to (and contrasted with) those of
humans? This work investigates LMs’ inductive reasoning capabilities through the lens of iterative

∗Work done during an internship at Allen Institute for AI.
1We release our code at https://github.com/linlu-qiu/lm-inductive-reasoning.
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Figure 1: An overview of the iterative hypothesis refinement approach. We generate N hypotheses
per iteration and iterate up to the maximum number of iterations T (top). Example instances and
representative good and bad rules for each task (bottom).

hypothesis refinement: hypotheses generation, selection, and refinement. Specifically, we use an
LM to propose a set of free-form or constrained hypotheses based on observations. The proposed
hypotheses are then verified against observations via off-the-shelf symbolic interpreters2, e.g., gram-
mar parsers or code interpreters, which can determine if an hypothesis applies to specific instances.
The hypothesis that covers most number of observations is then selected to be further refined by the
LM. This process is repeated to induce the final hypothesis.

Results across four distinct tasks, including inducing causal relations (Zhang et al., 2021), language-
like compositional instructions (Lake et al., 2019), symbolic operations (Rule, 2020), and visual
concepts (Kim et al., 2022b), show that this iterative hypothesis refinement process significantly
improves upon standard input-output (IO) prompting. We find that LMs are particularly good at
generating candidate rules, and when coupled with a symbolic interpreter that can provide accurate
feedback with which to refine hypotheses, this hybrid induction approach is effective.

However, a closer inspection of the refinement pipeline reveals a more nuanced view of the putative
inductive reasoning process of LMs. Despite being able to generate plausible candidate rules, LMs
display a range of puzzling counterintuitive behaviors. For one, while we might expect humans to be
able to apply the rules they propose, we find that LMs are often unable to correctly apply their own
proposed rules (§4.1). Moreover, while humans can make robust inductions by abstracting away
from small perturbations present in examples (e.g., different representational forms of examples),
we observe LMs to be highly brittle in the face of even minor perturbations (§4.2). Finally, a human
study reveals that rules induced by LMs generally have different content and form compared to
rules generated by humans. LMs often provide verbose descriptions of patterns but fail to leverage
pragmatic communication strategies commonly seen in human induction (§4.3).

Our study unveils the paradoxical inductive capabilities of LMs: they are simultaneously phenom-
enal hypothesis proposers and puzzling inductive reasoners. Our paper connects to classical ap-
proaches for concept induction (Tenenbaum et al., 2011; Ellis et al., 2023, i.a.), latent language
optimization (Andreas et al., 2018; Mu et al., 2020, i.a.), and instruction induction (Honovich et al.,
2023). While similar in spirit to recent work on exploring inductive reasoning with LMs (Wang
et al., 2023a), our work offers a nuanced exploration of both the potentials and limitations of LMs.

2 INDUCTIVE REASONING WITH LMS: EXPERIMENTAL SETUP

We consider the rule induction problem of inferring a function f : X → Y that maps an input x ∈ X
to an output y ∈ Y . The rule, f , can take various forms, such as mathematical operations, grammar,

2If the hypothesis is in free-form natural language, we additionally ask an LM to translate it into a specific
format, e.g., code, that is interpretable by the symbolic interpreter. See Appendix D for examples.
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and even natural language descriptions (see Appendix D for examples). For each task τ , we have a
set of examples Dτ consisting of input-output pairs (x, y). We further divide Dτ into seen examples,
Ds

τ , and unseen examples, Du
τ . The goal is to induce the f that best describes Dτ using only Ds

τ . A
good rule thus requires a balance between precision and coverage, i.e., it should be simultaneously
expressive enough to capture Ds

τ and generalizable to Du
τ .

We assess an LM’s ability to induce rules through prompting. Let h ∈ Σ∗ be a rule generated by
an LM, where Σ is the LM’s vocabulary. Since we cannot directly apply h to x (h is just a piece
of text), we make use of an interpreter Iτ : Σ∗ → F for each task τ where F is the space of all
functions from X to Y (i.e., f ∈ F). That is, the interpreter Iτ “compiles” h into a function that can
be applied to x.3 The quality of rules is evaluated based on their performance on unseen examples.
Given an induced rule h and n unseen examples Du

τ = {(x1, y1), ..., (xn, yn)}, we derive outputs
y′i by applying Iτ (h) to input xi,

y′i = Iτ (h)(xi). (1)
Although it is ideal to have interpreters that can correctly apply h, such perfect interpreters might not
always be available. Importantly, interpreters have no access to Ds

τ , and thus, the rule must contain
sufficient information for interpreters to achieve strong performance when applying the rule.

We evaluate the quality of a rule h using accuracy. More formally, for a task τ containing a set of
unseen examples Du

τ , we first define the accuracy for this particular task as

aτ =
1

|Du
τ |

∑
(x,y)∈Du

τ

1
[
Iτ (h)(x) = y

]
. (2)

Let T denotes the set of all tasks within a dataset. We define raw accuracy c and task accuracy ct as

c =
1

|T |
∑
τ∈T

aτ ct =
1

|T |
∑
τ∈T

1
[
aτ = 1

]
. (3)

While raw accuracy is the standard metric used in prior work, task accuracy could better estimate an
LM’s induction capability: a model should ideally consistently solve examples within a task. We use
GPT-4 (gpt-4-0613; OpenAI, 2023) for all experiments and analyses. We include additional re-
sults of other models, including GPT-3.5 (gpt-3.5-turbo-0613), Claude-2 (Anthropic, 2023),
and LLaMA2-70B (Touvron et al., 2023) in Appendix B.

2.1 ITERATIVE HYPOTHESIS REFINEMENT

We consider an iterative approach to induce rules from LMs. We use LMs to propose a set of
rules (i.e., hypotheses). We then select the best rule based on scores calculated using the interpreter
function. We provide feedback to LMs for further refinement. See Figure 1 for an overview.

Specifically, given k exemplars Ds
τ = {(x1, y1), ..., (xk, yk)}, at iteration t, we sample N hypothe-

ses of rules, Ht = {ht
1, ..., h

t
N}, from a prompted LM,
ht ∼ PLM

(
· |dt−1, x1, y1, ..., xk, yk), (4)

where dt−1 is the feedback from previous iterations and which is set to be an empty string at the
initial iteration. Each hypothesis is re-ranked based on a scoring function s(h,Ds

τ ). We use accuracy
over seen examples as the scoring function,

s(h,Ds
τ ) =

1

|Ds
τ |

∑
(x,y)∈Ds

τ

1
[
Iτ (h)(x) = y

]
. (5)

The best hypothesis is selected via,
ht∗ = argmax

h′∈Ht

s(h′,Ds
τ ). (6)

We then obtain feedback dt by passing the best hypothesis to a template-based feedback generator.
The feedback dt is a concatenation of exemplars with incorrect predictions, formatted as input, ex-
pected output, and tentative output. The iteration stops if the interpreter produces correct outputs
for all exemplars using the current hypothesis or if the maximum iteration T is reached. In all ex-
periments, we consider a combination of maximum number of iterations T ∈ {1, 3} and number of
hypotheses per iteration N ∈ {1, 5}. We use greedy decoding when generating a single hypothesis
and set the temperature to 0.7 when generating multiple hypotheses following Wang et al. (2023b).

3For example, if h is the string representation of a Python function, Iτ (h) can be the actual Python function.
Note that the same rule h could be applied differently by different interpreters.
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2.2 DATASETS

The above framework requires three specifications: the rule function f , the representation (i.e., the
format and content) of h, and the interpreter I . We evaluate on 4 datasets (where each dataset
consists of multiple tasks) and formulate these specifications as follows (see examples in Figure 1).
We show the full dataset details in Appendix A.

ACRE. The Abstract Causal REasoning (ACRE; Zhang et al., 2021) is a diagnostic dataset de-
signed to evaluate causal induction ability. It requires identifying a set of “Blicket” objects that will
trigger a special machine. We can view f as an indicator function s.t. f(x;B) = 1[B ∩ x] where
B is the set of Blickets and x is the presented objects. We constrain h to classify each object into
one of three categories: a Blicket, not a Blicket, or undetermined. I

(
h)(x) is thus a deterministic

function that checks the intersections between current objects and predicted Blickets.

MiniSCAN. Lake et al. (2019) developed a sequence-to-sequence task with only 14 training ex-
amples to measure few-shot concept learning ability. We refer to this as MiniSCAN following Nye
et al. (2020).4 Similar to SCAN (Lake & Baroni, 2018), MiniSCAN requires translating an input
command x to an output action sequence y. We consider f as a set of grammar rules that map the
input symbols to the corresponding meaning representations. We use a quasi-synchronous context
free grammar (Smith & Eisner, 2006) as our formalism for h and use a parser as our interpreter I(h).

List Functions. The List Functions dataset (Rule, 2020) is designed to evaluate human and ma-
chine concept learning ability. It requires identifying a function that maps the input list to its corre-
sponding output list. Here f is a primitive or compositional list operation. We represent h as natural
language description and implement the interpreter I using a two-stage process. First, we ask an LM
to translate the natural language hypothesis h into a Python program. Then we execute this program
to produce the corresponding outputs for given inputs.5

MiniARC. The Abstract Reasoning Corpus (ARC; Chollet, 2019) and its variants (Kim et al.,
2022b; Acquaviva et al., 2022; Xu et al., 2023b; Moskvichev et al., 2023) aim to evaluate visual
abstract reasoning over broad concepts. The f here involves a transformation between input and
output 2D grids, such as moving an object or swapping colors. We use natural language hypotheses
h and similarly interpret the hypotheses using a Python interpreter. Given the extensive grid size of
the original ARC tasks and the limited context length of LMs, we consider MiniARC (Kim et al.,
2022b), a 5x5 compact version of the ARC.

3 LMS ARE PHENOMENAL HYPOTHESIS PROPOSERS

Main Results. We compare hypothesis refinement with standard input-output (IO) prompting,
self-consistency prompting (SC; Wang et al., 2023b), and self-refine (SR; Madaan et al., 2023).6 SC
samples multiple outputs and selects the most consistent one by taking a majority vote. SR uses the
same LM as an interpreter and provides feedback to itself, and is a “pure LM” baseline that does
not utilize a symbolic interpreter. The results are shown in Table 1 (see Appendix C for existing
human performance). Iterative hypothesis refinement achieves the strongest performance on 3 out
of 4 datasets, demonstrating the effectiveness of this approach. However, it lags behind the baselines
on raw accuracy of MiniARC, potentially because some tasks in MiniARC are heavily dependent
on pattern matching, for which IO prompting might be more effective (Mirchandani et al., 2023).
Additionally, due to the limited visual understanding capabilities inherent in text-only models, the
performance on MiniARC is still far from optimal for all methods, in comparison to other datasets.7

Similar to prior work (Chen et al., 2023a; Olausson et al., 2023; Peng et al., 2023, i.a.), sampling
more hypotheses and using iterative refinement with external feedback significantly boost LM per-

4This task is also sometimes referred to as “Colors” (Akyurek & Andreas, 2021; Patel et al., 2022).
5Although this method might introduce potential errors due to mistranslations between natural language and

code, in practice, we qualitatively examine the programs and find that LMs can often generate programs that
faithfully represent the natural language hypotheses.

6These cannot be directly compared with our method, as hypothesis refinement is augmented with symbolic
interpreters. We include them as baselines as they are standard approaches used in existing studies.

7We also experimented with a multimodal model on MiniARC but found that it performs worse than text-
only models. See Appendix B.2 for details.
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Table 1: Iterative hypothesis refinement results. T refers to the maximum number of iterations. N
refers to the number of candidate hypotheses per iteration.

Raw Accuracy Task Accuracy
Method ACRE MiniSCAN List Fns MiniARC ACRE MiniSCAN List Fns MiniARC

IO 64.0 61.7 65.1 33.1 28.0 0.0 39.6 13.8
SC (N=5) 65.0 61.1 65.0 31.3 29.0 0.0 38.0 13.1
SR (T=3, N=5) 70.0 46.3 67.4 15.1 32.0 0.0 52.0 9.2

T=1, N=1 78.2 77.0 51.6 5.9 45.0 46.0 42.4 3.8
T=1, N=5 79.8 86.6 62.4 12.8 48.0 70.0 52.4 9.2
T=3, N=1 77.8 98.2 61.7 10.1 47.0 95.0 52.8 6.9
T=3, N=5 82.5 93.3 71.2 18.7 59.0 85.0 61.2 14.6
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Figure 2: Results for IID and OOD examples. For OOD evaluations, we sample longer lists for List
Functions and annotate larger grids for MiniARC. IO prompting generally experiences more signif-
icant performance degradation compared to rule prompting (i.e., iterative hypothesis refinement).

formance, leading to the best accuracy on the majority of datasets.8 It is important to emphasize that
both iterative refinement and external feedback are essential. Simply sampling more predictions and
taking a majority vote (as SC prompting), does not necessarily improve performance. This might
due to the fact that increasing the temperature for sampling results in many incorrect predictions. In
contrast, increasing the number of hypotheses performs better due to the hypotheses selection pro-
cess. An iterative approach that uses the LM itself as an interpreter (i.e., SR) is also insufficient. We
observe performance substantially degrades when replacing the symbolic interpreter with an LM,
suggesting that the LM can excel as a hypothesis proposer but performs poorly as an interpreter.

We also observe a significant discrepancy between raw accuracy and task accuracy, especially for
IO prompting and SC prompting. Since these evaluations directly predict output for each individual
example, there is no guarantee that the LM is solving the task following the underlying rules. In fact,
the mismatch between raw accuracy and task accuracy indicates some correct predictions might be
generated without using the expected computation. In contrast, rule prompting (i.e., applying the
LM-proposed rules) suffers less from this issue as it re-uses the same rule across all examples.

OOD Generalization and Interpretability. In addition to strong performance, iterative hypoth-
esis refinement also enables out-of-distribution (OOD) generalization and improves interpretability
of models. For OOD evaluations, we sample longer examples from the ground-truth programs for
List Functions,9 and annotate examples with a larger grid for MiniARC. We evaluate performance
on these OOD examples while fixing the seen examples. We show the results in Figure 2. We ob-
serve a significant performance drop for OOD examples when using IO prompting. However, the
degradation is less severe for rule prompting except task accuracy on MiniARC, suggesting the LM
likely solves the task using generalizable operations. While IO prompting still achieves better raw
accuracy on MiniARC in OOD evaluations, the performance gap between it and rule prompting is
reduced. Rule prompting also allows us to examine the intermediate operations, thus improving the
interpretability of models. We show examples of LM-induced rules in Table 2 and Table 12.

8We observe T=3, N=1 performs better than T=3, N=5 on MiniSCAN, potentially because the dataset
is designed to evaluate compositional generalization, and thus high accuracy over seen examples does not
necessarily translate to high accuracy on unseen examples. Since iterative refinement only uses accuracy over
exemplars as the scoring function, it might overfit to exemplars and select hypotheses that are less generalizable.

9Although we can theoretically sample longer sequences for MiniSCAN, we did not consider that setup, as
the limited exemplars could lead to underspecification and result in multiple plausible parses due to ambiguity.
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4 LMS ARE PUZZLING INDUCTIVE REASONERS

Despite the strong performance of iterative refinement on inductive reasoning, we identify several
puzzling behaviors of LMs that seems to differ from human intuition (Fukushima, 1986; Heit, 2000).
We include related human studies and human evaluations in Appendix C.10

4.1 LMS STRUGGLE WITH APPLYING THEIR PROPOSED RULES

Previous results demonstrate that LMs perform as effective hypothesis proposers but poor inter-
preters. Here we examine the extent to which LMs “understand” the rules they propose. Specifically,
given the rules induced from previous experiments, we test whether LMs can apply these rules to
novel examples. We should expect comparable performance if LMs understand their own proposed
rules. Results are shown in Figure 3. We observe a consistent performance drop when using the LM
interpreter as opposed to the symbolic interpreter. This issue is especially significant on datasets like
MiniSCAN, where rule application involves complex and recursive operations.

This performance inconsistency between rule induction and rule application reveals a counter-
intuitive behavior of LMs on inductive reasoning. Intuitively, once humans have induced a rule,
they can use this rule in novel scenarios. However, LMs struggle with applying the rule, even if the
rule was derived from themselves. Note that prior work has provided evidence suggesting that LMs
might fall short on solving symbolic tasks (Dziri et al., 2023), and we do not claim that we should
expect using an LM as the interpreter perform as effectively as a symbolic interpreter. However, the
gaps are often so large (e.g., task accuracy dropping from more than 80% to almost-zero in MiniS-
CAN) that they are still nonetheless strong indicators of LMs’ puzzling behaviors.11 In particular,
LMs are able to generate meaningful hypotheses and improve them iteratively, but simultaneously
fail to understand their proposed rules. This observation can be loosely related to other inconsisten-
cies observed between generation and recognition in existing LMs (West et al., 2023). For instance,
while LMs can identify errors in their own generations (Agrawal et al., 2023; Zhang et al., 2023b),
they may also fail to validate a correct answer generated by themselves (Li et al., 2023).
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Figure 3: Raw accuracy (left) and task accuracy (right) when applying the LM’s proposed rules
using symbolic interpreters or the LM itself as the interpreter.

4.2 LMS ARE BRITTLE TO EXAMPLE PERTURBATIONS

Our experiments so far only consider well-formed input-output pairs: we assume there always exists
at least one ground-truth f such that applying f to the inputs will yield the corresponding outputs.
We also assume examples are presented in the format that close to LM’s pre-training distribution.
However, in practice, low-quality examples are ubiquitous. Humans can often reason robustly de-
spite a certain level of noise, such as disregarding typos or a few erroneous examples (Fukushima,
1986; Heit, 2000). We now investigate if LMs can similarly make robust inductions. We use itera-
tive hypothesis refinement with T = 3 and N = 5, which has the strongest performance in our main
experiments. We include results using other models and configurations in Appendix B.3.

Noisiness of Exemplars. We first study LMs’ robustness to noisy examples. Specifically, we use
List Functions and introduce noise into a certain percentage of exemplars by randomly replacing 1-2

10While we tried to provide a head-to-head comparison between LMs and humans, our human studies did
not cover all experiments conducted with LMs. Therefore, we cannot assert how human participants would
perform in certain setups. We leave evaluating human performance more comprehensively as future work.

11More advanced prompting techniques, such as SC prompting and zero-shot chain-of-thought prompting,
also do not bridge the gap (see Appendix B.3 for details).
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elements with other numbers in the outputs. We perturb 12.5%, 25%, and 50% of the examples, out
of a total of 8 exemplars. We show results in Figure 4a. We find the LM performs substantially worse
even with a single noisy example, and its performance consistently decreases as the amount of noise
increases. Although explicitly instructing the LM to consider noisy examples (dashed line) mitigates
this issue, the performance degradation remains significant (see Table 17 for the exact instructions).
This brittleness raises another concerns about their otherwise promising performance.12

Familiarity of Exemplars. Next we study if LMs are robust to example representation. We exam-
ine this by varying the familiarity of exemplars, i.e., how well the examples are represented in the
LMs’ pre-training data. As rules represent higher-level abstraction, ideally we should expect LMs’
performance to be independent of their specific instantiations (Newell, 1980). We use MiniSCAN
dataset and re-generate new examples using the same grammar rules but with varied output vocab-
ularies. We consider two variants: the first involves pseudowords as inputs with abstract English
concepts as outputs (e.g., dax → RED), as the original setup in Lake et al. (2019). The second
uses pseudowords for both inputs and outputs (e.g., dax → zup). The results are shown in Fig-
ure 4b. LMs’ performance drops when the output representation deviates from their pre-training
distribution. In such case, even an iterative approach cannot compensate for this degradation.13
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Figure 4: (a) Varying example noisiness by perturbing a certain percentage of exemplars on List
Functions. Dashed lines refer to results where we explicitly instruct LMs to consider noisy examples.
(b) Varying example familiarity by using English words or pseudo-words as outputs on MiniSCAN.

4.3 LM-INDUCED RULES VS. HUMAN-INDUCED RULES

We have provided empirical evidence suggesting some discrepancies between inductive reasoning
of LMs and humans. We now qualitatively examine if LM-induced rules are distinguishable from
human-induced rules. We conduct analysis on List Functions and MiniARC, as they contain various
concepts and represent tasks where the LM succeeds and fails, respectively. We randomly sample
50 tasks per dataset and conduct similar human studies by asking crowdworkers to write the rules.

We show example LM-induced rules and human-induced rules in Table 2. For List Functions where
the LM achieves strong performance, the LM can often induce rules that are comparable to or even
better than those from humans, with some exceptions where it incorrectly explains the pattern. On
MiniARC, however, it tends to generate rules that are difficult to interpret, often involving verbose
and complex descriptions. In contrast, similar to Acquaviva et al. (2022), we find that humans often
use pragmatic communication strategies that go beyond pattern descriptions. For instance, they
frequently draw upon physical commonsense knowledge (e.g., “drop or lift an object”, “fill in each
box”), use high-level actions (e.g., “copy or extend the block”, “mirror the group”), and connect
to real-world concepts (e.g., “staircase”, “Tetris”). They also pose questions (e.g., “which color is
more common in a row and by how many?”) and utilize algebraic expressions (e.g., “if a number is
repeated n times then only output n− 1 times”) to facilitate effective communications.

12Given the limited number of exemplars, it is possible that our perturbation results in the task being ill-
defined. Humans are not necessarily robust to noisy observations either. Therefore, we conduct human study
using the same setup and compare the performance between the LM and humans. We find that, while both the
LM and humans perform worse on tasks with noisy examples, the relative performance drop of the LM is more
significant. See appendix C for details.

13Dasgupta et al. (2022) has shown LMs demonstrate human-like content effects on reasoning, i.e., they
tend to reason more accurately about situations that align with their existing knowledge and beliefs. Similarly,
humans are not perfect abstract reasoners, but they can remain consistent abstract reasoning given sufficient
time budget (Evans & Curtis-Holmes, 2005). Our iterative approach attempts to mitigate this issue. While we
did observe performance improvement (as compared to the results in Table 7), it does not fully close the gap.
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Table 2: Comparison between LM-induced rules and human-induced rules on List Functions (top)
and MiniARC (bottom). 0 maps to black, 1 maps to blue, and 4 maps to yellow.

Examples LM-induced Rule Human-induced Rules

[97, 97, 97, 97]→ [97, 97, 97]

[4, 4, 4]→ [4, 4]

[33, 0, 4, 1, 2, 24, 66]→ []

[76, 42, 17, 76, 17]→ [76, 17]

. . .

Remove the last occurrence of each unique
number from the input list, but if a number
appears more than twice, keep all instances
except the last.

Annotator 1: Keep the order of the original
list but only include integers that are duplicates
rom earlier in the list.
Annotator 2: Output only the repeated
numbers. If a number is repeated n times
then output only n-1 times.

If an element in the input array is 4,
replace it with 0. If the element is 1 and
its left and right neighboring elements are
0, replace it with 1. If the element is 1 and
positioned in the last row of the array,
replace it with 1. In all other cases, replace
the element with 0.

Annotator 1: Slide yellow down, if it completes
a row, get rid of the row turn the remaining
blocks blue with a 1.
Annotator 2: Drop the object. If a full row
is created, delete it, and drop remaining objects.

We further investigate how LMs refine their hypotheses. While we observe performance improve-
ment over iterations (see Figure 5), we also notice that they tend to make minor modifications, typi-
cally by adding exceptions for a specific example, rather than starting from entirely new hypotheses.
We observe several cases where the LM adds an “if-else” statement to the rules over iterations. For
instance, the LM generates “Remove the value 2 from the input list.” in the first iteration and refines
it to “Remove the value 6 if it is present in the input list. If not, remove the value 2” in the subsequent
iteration. This results in its failure to induce the correct rules if the initial hypothesis is entirely off.

5 LIMITATIONS AND DISCUSSIONS

Tasks. Humans perform inductive reasoning in everyday situations (Hume, 1904). However, our
experiments mainly focus on synthetic and symbolic tasks, differing from the typical scenarios in
which humans perform inductions. We chose our datasets based on two concerns. First, we interact
with LMs using prompting. This restricts the number of seen examples due to LMs’ limited context
lengths. We selected our tasks because they are relatively constrained and well-defined, making it
feasible to induce rules from only a few observations.14 Second, the inaccessibility of the training
data complicates the evaluation of LMs’ inductive learning abilities. It is challenging to distinguish
whether LMs truly induce rules from observed examples or simply recall the fact from their prior
knowledge. Therefore, we chose more synthetic and symbolic tasks, as we hypothesize that they
are less likely to be present in the pre-training data, thus making inducing rules from observations
necessary. Nonetheless, this confounding factor remains unless we fully inspect the training corpus.

Hyperparameters. The goal of this paper is to explore the potentials and limitations of LMs in
inductive reasoning, rather than to improve the performance on specific inductive reasoning tasks.
Therefore, we did not exhaustively tune hyperparameters (T and N ) or prompt templates. Our
experiments use a maximum iteration T = 3 due to the LMs’ limited context lengths and a maximum
number of hypotheses per iteration N = 5. Our results demonstrate the correlations between model
performance and these two hyperparameters. We expect improved performance when increasing
these two hyperparameters, as suggested by Table 1 and recent work by Wang et al. (2023a).

Future Directions. Our study demonstrates the effectiveness of using LMs as hypothesis pro-
posers. We show that, when paired with symbolic interpreters, LMs can achieve strong performance

14The question of how many examples are required for valid induction remains a research question (Osherson
et al., 1990; Heit, 2000). Arguably, one might only obtain partial observation, and there are cases where humans
perform one-shot induction. However, determining the minimum number of examples necessary for induction
is outside the scope of this paper. We believe our tasks suit our evaluation purposes despite their simplicities.
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through iterative hypothesis refinement. However, out-of-the-box LMs struggle to solve inductive
tasks on their own. This strengthens the need to explore neuro-symbolic approaches to utilize the
strengths of both components (Ni et al., 2023; Wong et al., 2023, i.a.). Our study also only focuses
on a fixed set of exemplars. Future work could explore methods to dynamically select the best ex-
emplars. Additionally, our analyses identify several counter-intuitive model behaviors, highlighting
the importance of understanding model behaviors and improving their robustness as future work.

6 RELATED WORK

Inductive Reasoning with LMs. Existing studies on inductive reasoning capabilities of pre-
trained large LMs (Gendron et al., 2023; Yang et al., 2022; Moskvichev et al., 2023; Mirchandani
et al., 2023; Tang et al., 2023; Xu et al., 2023a; Han et al., 2023; Xu et al., 2023b; Alet et al., 2021;
Webb et al., 2023) primarily use IO prompting. They focus on evaluating the accuracy of unseen
examples but often overlook any intermediate operations. As we argue in our study, this evaluation
lacks interpretability and can conflate with LMs’ rule application abilities. We instead investigate
an alternative evaluation by inducing rules from LMs. Similarly, Honovich et al. (2023) uses LMs
to induce instructions from examples, but it only studies dataset-level instructions for simple tasks.
Concurrent work (Wang et al., 2023a) that proposes hypothesis search is closest to ours, but we focus
on understanding the potentials and limitations of LMs rather than improving LMs’ performance.

Language Hypotheses Optimization. Many studies have explored the optimization of hypothe-
ses over the space of natural language. Prior work on latent language for concept learning has mostly
focused on few-shot image classification, and often involves training models (Andreas et al., 2018;
Mu et al., 2020). Vong & Lake (2022) uses a pre-trained LM, but does not involve refining hypothe-
ses iteratively. Some studies adopt similar iterative frameworks but focus on describing differences
between text distributions (Zhong et al., 2022; 2023) or data patterns (Singh et al., 2022). While
these hypotheses are relatively coarse-grained, our tasks require fine-grained hypotheses with high
precision. Our study shows that, in such cases, a symbolic interpreter is essential to ensure the qual-
ity of hypotheses. Additionally, the iterative refinement approach is also related to a line of work on
iterative prompting with execution feedback for synthesizing programs (Chen et al., 2023a; Olaus-
son et al., 2023; Haluptzok et al., 2022; Key et al., 2022; Jiang et al., 2023; Zhang et al., 2023a).
However, most of these studies use natural language descriptions, sometimes supplemented with
optional examples, while ours only use input-output specifications.

Bayesian Concept Learning. Classical approaches to induction primarily follow a Bayesian
paradigm: they start with a hypothesis space, compute the posterior distribution using Bayes’ Rule,
and update beliefs based on observations (Tenenbaum et al., 2011; Lake et al., 2015; Xu & Tenen-
baum, 2007; Tenenbaum, 1999; Thaker et al., 2017; Kemp & Tenenbaum, 2009). The main chal-
lenge of these methods is the trade-off between expressiveness of hypothesis space and computa-
tional cost of posterior inference. Therefore, many of them resolve on searching over a constrained
rule-based hypothesis space, such as probabilistic programs (Nosofsky et al., 1994; Piantadosi et al.,
2016; Goodman et al., 2008; Bramley et al., 2018; Ellis et al., 2022; 2023). However, a domain-
specific formulation of Language of Thought (Fodor, 1975; Erdogan et al., 2015; Saad et al., 2019;
Tian et al., 2020; Sablé-Meyer et al., 2022) is often limited. Ellis (2023) addresses this by per-
forming Bayesian inference over natural language. Our approach shares similar spirits of Bayesian
models, but instead leverages LMs to generate and refine hypotheses via iterative prompting.

7 CONCLUSION

In this paper, we study the inductive reasoning capabilities of LMs and how their inductive reasoning
behaviors differ from those of humans. We conduct this investigation through iterative hypothesis
refinement, an approach that closely mirrors human inductive process. Iterative refinement operates
as a three-step process: hypotheses generation, selection, and refinement. Through our experiments,
we find that LMs excel as hypothesis proposers, achieving strong performance on most datasets
when coupled with symbolic interpreters. However, we also identify several counter-intuitive be-
haviors, suggesting that LMs simultaneously behave as puzzling inductive reasoners. For instance,
they struggle with applying their own proposed rules and are brittle to minor perturbations. Our
study reveals the paradoxical inductive capabilities of LMs and sheds light on both the potentials
and limitations of LMs in inductive reasoning tasks.
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A DATASET DETAILS

We show the dataset statistics in Table 3 and include the full dataset details below.

Table 3: The number of tasks per dataset, the
numbers of seen examples per task, and unseen
examples per task.

Dataset # Tasks # Seen # Unseen

ACRE 100 6 4
MiniSCAN 100 14 10
List Functions 250 8 8
MiniARC 130 3 3

ACRE Following Gendron et al. (2023), we use
textual representations of the original images by
representing each object with its corresponding
natural language description. We also experi-
mented with a symbolic representation in which
each object is represented as an integer, but ob-
served similar performance. We sampled 100 tasks
from the original dataset for our experiments.

MiniSCAN We use examples from Lake et al.
(2019), but randomly sample pseudowords for the
inputs. We did not consider English words because of potential issues of data contamination (Dodge
et al., 2021; Magar & Schwartz, 2022, i.a.) and uncontrolled lexical exposure (Kim et al., 2022a).
The outputs use color names following Akyurek & Andreas (2021); Nye et al. (2020); Patel et al.
(2022). We generated a total of 100 tasks for our experiments.

List Functions We use the original dataset (Rule, 2020), which consists of a total of 250 tasks.
Due to the limited context lengths of LMs, we only use the first 16 examples from BIG-Bench (bench
authors, 2023): 8 for seen examples and 8 for unseen examples. We manually examined the ex-
emplars and found 8 examples are generally sufficient to describe the pattern. Our preliminary
experiments also indicated that adding more examples did not improve performance.

MiniARC We use the data from Kim et al. (2022b). Although the original release contains 149
tasks, we heuristically filter out tasks that require heavy pattern matching, such as mapping one
specific shape to another. Such tasks are typically difficult to describe in natural language at an
abstract level. Therefore, we did not consider them for our evaluations. As we only evaluate text-
only models, we use textual representations of the original visual grids by mapping each cell to a
corresponding integer (Gendron et al., 2023; Moskvichev et al., 2023).

B ADDITIONAL RESULTS

B.1 OTHER LANGUAGE MODELS

We use GPT-4 for the main experiments, but our observations remain consistent across other LMs, as
shown in Table 4. We evaluate GPT-4, GPT-3.5, Claude-2, and LLaMA2-70B using IO prompting
and iterative hypothesis refinement, as they are best representatives of two different evaluations.
For GPT-3.5 and Claude-2, we observe similar trends except both models underperform GPT-4.
Rule prompting achieves higher accuracy than IO prompting on ACRE and MiniSCAN and shows
better consistency between raw accuracy and task accuracy. However, these models sometimes lag
behind the baseline on tasks involving complex rules, such as List Functions and MiniARC. For
LLaMA2-70B, we only observe improvement using rule prompting on ACRE. For tasks where we
constrain hypothesis representations, some models’ rules appear ill-formed. Many responses from
GPT-3.5 and LLaMA2-70B are also truncated due to their limited context length. This suggests
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that iterative hypothesis refinement is most effective when coupled with an LM that is capable of
proposing meaningful hypotheses and tracking long context.

Table 4: Results on IO prompting and rule prompting (i.e., hypothesis refinement) using different
models. We use T=3, N=5 configuration for iterative hypothesis refinement.

Raw Accuracy Task Accuracy
Model Method ACRE MiniSCAN List Fns MiniARC ACRE MiniSCAN List Fns MiniARC

GPT-4 IO 64.0 61.7 65.1 33.1 28.0 0.0 39.6 13.8
Rule 82.5 93.3 71.2 18.7 59.0 85.0 61.2 14.6

GPT-3.5 IO 56.2 14.3 55.1 18.6 12.0 0.0 27.6 8.5
Rule 71.5 29.3 42.2 4.6 44.0 8.0 35.6 3.8

Claude-2 IO 51.7 23.4 51.4 24.7 6.0 0.0 24.4 10.8
Rule 79.2 41.2 42.8 7.2 55.0 13.0 36.0 6.2

LLaMA2-70B IO 51.7 6.8 30.5 9.0 10.0 0.0 8.4 1.5
Rule 64.5 0.0 9.2 2.1 29.0 0.0 6.0 0.8

Similar to experiments in §4, we show the comparisons between symbolic interpreters and LMs as
interpreters for rule application using other models in Table 5. We show results on varying example
distribution using different models and configurations in Table 6 and Table 7. All results remain
consistent with the findings in the main experiments.

Table 5: Results on applying the LM’s proposed rules using symbolic interpreters or the LM itself
as the interpreter using different models.

Raw Accuracy Task Accuracy
Model Interpreter ACRE MiniSCAN List Fns MiniARC ACRE MiniSCAN List Fns MiniARC

GPT-3.5 Symbolic 71.5 29.3 42.2 4.6 44.0 8.0 35.6 3.8
LM 65.0 3.0 36.8 3.1 25.0 0.0 24.0 1.5

Claude-2 Symbolic 79.2 41.2 42.8 7.2 55.0 13.0 36.0 6.2
LM 75.8 4.0 36.0 3.1 43.0 0.0 24.8 0.0

LLaMA2-70B Symbolic 64.5 0.0 9.2 2.1 29.0 0.0 6.0 0.8
LM 59.2 0.0 7.1 1.7 12.0 0.0 2.0 0.0

Table 6: Results on varying example noisiness using different models and configurations. We intro-
duce noise by perturbing a certain percentage of exemplars on List Functions.

Raw Accuracy Task Accuracy
Model Configuration 0% 12.5% 25% 50% 0% 12.5% 25% 50%

GPT-4 T=1, N=1 51.6 49.6 36.7 23.1 42.4 38.8 23.6 12.4
GPT-3.5 T=3, N=5 42.2 27.0 23.2 20.6 35.6 15.6 12.8 12.0
Claude-2 T=3, N=5 42.8 25.9 19.8 15.4 36.0 13.2 8.0 4.4

Table 7: Results on varying example familiarity using different models and configurations. We use
English words or pseudo-words as outputs on MiniSCAN.

Raw Accuracy Task Accuracy
Model Configuration English Pseudo English Pseudo

GPT-4 T=1, N=1 77.0 72.0 46.0 38.0
GPT-3.5 T=3, N=5 29.3 19.5 8.0 3.0
Claude-2 T=3, N=5 41.2 41.0 13.0 9.0

B.2 MULTIMODAL MODEL

Since the MiniARC dataset requires visual understanding, evaluating text-only models using textual
representations may not be optimal. Therefore, we also evaluate the performance of the multimodal
model that allows visual inputs. We use GPT-4V (gpt-4-vision-preview), which was re-
leased in November 2023, for our experiments. We consider two representations of the visual grids:
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Table 8: Results on MiniARC using GPT-4V. We show the results of IO prompting and rule prompt-
ing, as well as the results when applying the model’s proposed rules using the symbolic interpreter
or GPT-4V as the interpreter. We use a T=3, N=5 configuration for iterative hypothesis refinement.

Raw Accuracy Task Accuracy
Method Interpreter Color Number Color Number

IO - 1.3 12.2 0.0 3.8

Rule Symbolic 6.0 9.7 4.6 8.5
Rule GPT-4V 0.5 3.1 0.0 0.8

color and number. We use an individual image for each input and output (see Table 18 for prompts
and examples). For iterative hypothesis refinement, we use GPT-4 to translate hypotheses due to
the rate limit of GPT-4V. For IO prompting and rule application, we ask the model to generate the
textual representation of the visual grid, representing each cell as an integer.15 We show results in
Table 8. The performance of GPT-4V is significantly worse than that of GPT-4, which is consistent
with the results in Mitchell et al. (2023). Performance with color representation lags behind when
compared to numerical representation. Similarly, we find that using GPT-4V as a rule interpreter
consistently underperforms using the symbolic interpreter.

B.3 ABLATIONS

Prompting Techniques for Rule Application. We only use standard prompting for rule applica-
tion in §4.1. Here, we study whether more advanced prompting techniques improve LMs’ rule ap-
plication performance. We consider two alternatives: self-consistency prompting (SC; Wang et al.,
2023b) and zero-shot chain-of-thought prompting (0-CoT; Kojima et al., 2022; Nye et al., 2021; Wei
et al., 2022). Similar to our main experiments, SC selects the most consistent output from multiple
responses by taking a majority vote. Following Kojima et al. (2022), 0-CoT adds “Let’s think step
by step.” at the end to encourage LMs to reason. We show results in Table 9. We do not observe
significant performance differences across these methods, except on ACRE, where 0-CoT underper-
forms other methods in task accuracy. This could potentially be attributed to the possibility that LMs
do not truly understand their own proposed rules; therefore, encouraging reasoning might result in
worse performance.

Table 9: Results on using LMs as interpreters for rule application with different prompting tech-
niques. We compare standard prompting, zero-shot chain-of-thought (0-CoT) that adds “Let’s think
step by step” at the end, and self-consistency (SC) that selects the output by taking a majority vote.

Raw Accuracy Task Accuracy
Method ACRE MiniSCAN List Fns MiniARC ACRE MiniSCAN List Fns MiniARC

Standard 77.8 67.6 65.8 10.8 47.0 0.0 50.0 5.4
0-CoT 73.2 65.5 61.2 12.1 25.0 0.0 48.4 6.9
SC (N=5) 77.0 67.5 66.3 9.7 46.0 0.0 50.8 4.6

Representation of Hypothesis. We investigate how the representation of hypothesis affects rule
induction. We use programming language hypotheses for List Functions and MiniARC. We consider
this alternative as existing studies have shown that prompting LMs to generate programs improves
the model’s performance on complex reasoning task (Gao et al., 2023; Chen et al., 2022; Hu et al.,
2023, i.a.). Directly using programming language hypotheses also eliminates the potential issue of
mistranslation between natural language and code. As shown in Table 10, both programming lan-
guage and natural language hypotheses achieve comparable performance, suggesting programming
language can be a powerful alternative for these tasks.

15We also experimented with using a single image for all exemplars and using an image for each input-
output pair, but found that neither approach achieved good results, similar to findings in Mitchell et al. (2023).
Our preliminary experiments also suggested that representing each cell as a color string performs worse than
representing each cell as an integer.
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Table 10: Results on using alternative hypothesis representation. We compare natural language
hypotheses (NL) and programming hypotheses (Python) on List Functions and MiniARC.

Raw Accuracy Task Accuracy
Hypothesis List Fns MiniARC List Fns MiniARC

NL 71.2 18.7 61.2 14.6
Python 72.5 18.1 65.6 13.8

Task-specific Heuristics. One reason why humans can learn new concepts from limited examples
is their strong inductive biases or prior knowledge (Lake et al., 2017). We evaluate whether impos-
ing task-specific heuristics influences LMs’ inductive reasoning behaviors. Specifically, we use the
MiniARC dataset, which involves visual understanding, and thus object-related heuristics could po-
tentially be beneficial. Similar to Wang et al. (2023a), we provide explicit task-specific heuristics16

in the prompt for hypothesis generation, as shown in Table 11. We observe that the LM-induced rules
become more human-readable. The LM starts to use visual concepts (e.g., “square”, “rectangle”,
“L-shape”, “U-shape”) and common transformations (e.g., “reflection”, “mirror”, “rotate the grid
90 degrees clockwise”). We show example LM-induced rules in Table 12. However, this behavior
appears only in a fraction of examples, and the rules induced by LMs are still generally distinguish-
able from those induced by humans. It is possible that incorporating additional guidance or adding
human-induced rules as few-shot examples could encourage LMs to use pragmatic communication
strategies. We leave exploring these alternatives as future work.

Importantly, imposing task-specific heuristics does not necessarily improve performance. Iterative
hypothesis refinement with T = 3 and N = 5 achieves a raw accuracy of 17.8% and task accuracy
of 14.6%, comparable to results without task-specific heuristics. One possible reason is the integer-
color mapping introducing additional overhead, as LMs frequently refer to both simultaneously
in the rule (e.g., “if a pixel is green (3), then change it to red (2)”). This could also potentially
be explained by observations in Acquaviva et al. (2022): human communication is expressive yet
ambiguous. Therefore, the more human-readable rules might require extra efforts to ensure precision
and improve performance.

Table 11: Task-specific hypothesis generation prompt for MiniARC.

Generate a rule that maps the following inputs to their corresponding outputs.
Both the input and output are 5x5 grids of integers, with each integer
representing a colored pixel in the visual grid. The integers can be mapped to
colors as follows:

0: Black; 1: Blue; 2: Red; 3: Green; 4: Yellow; 5: Grey; 6: Fuchsia;
7: Orange; 8: Teal; 9: Brown.

The black cells represent the background.

Hints: The transformations might include, but are not limited to:

- Movement: Flipping, rotation, reflection, etc.
- Color: Swapping and rotating colors between objects, etc.
- Object: Moving and copying objects, etc.
- Number: Counting the number of colors, comparing the number of two colors, etc.
- Geometry: Aligning or completing objects, etc.
- Common sense: Finding mazes paths, playing Tetris, simulating raindrops, etc.

Please format your rule as follows:

Rule: <Your rule>

16We provide descriptions of the representative transformations from different categories in Kim et al.
(2022b), as well as the mapping between integers and colors. In most cases, the color of an object does
not have a specific meaning. However, in certain categories, such as common sense, specifying the color can
provide a useful cue. For instance, in a transformation that simulates raindrops, recognizing an object with blue
color as rain could help reasoning.
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Table 12: Comparison between LM-induced rules on MiniARC with and without task-specific
heuristics. We show examples where heuristics are helpful (top) and not helpful (bottom) for rule
induction. 0 maps to black.

Examples w/o Heuristics w/ Heuristics

For each row in the input array, the
corresponding output row is generated by
taking the first element from the current row,
the second element from the first row, the
third element from the current row, the fourth
element from the second row and the fifth
element from the first row. If the first element
of the current row is 0, then the entire output
row becomes 0.

The input grid is mirrored along its main
diagonal, i.e., the diagonal from the top-left
corner to the bottom-right corner. The color
mapping remains the same.

For a given 5x5 matrix, copy the first two
values of the first row to the third and fourth
positions of the fourth row and the first two
values of the second row to the third and
fourth positions of the third row. Then, copy
the second value of the second row to the last
position of the last row. Leave all the other
positions unchanged.

The output grid is formed by taking the existing
colored cells (non-zero numbers) from the top-
left corner of the input grid, and creating a
mirror image of this pattern in the bottom-right
corner. This mirror image involves not only
flipping the pattern along the central vertical and
horizontal axes, but also rotating the position of
the colors one position to the right in each cell.
The rest of the cells remain black (0).

B.4 ANALYSIS

Our main experiments demonstrate the effectiveness of the iterative approach. In Figure 5, we show
the changes of accuracy over iterations. We observe consistent performance improvements across
all datasets, indicating that LMs are capable of refining their hypotheses iteratively. For tasks where
LMs achieve strong performance, such as ACRE and MiniSCAN, a limited number of iterations is
already sufficient. For tasks like MiniARC, where LMs perform poorly, the trends remain positive
after the maximum number of iterations. This suggests potential for further improvements with
more iterations when using LMs with longer context lengths.
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Figure 5: Raw accuracy and task accuracy over iterations.

B.5 COSTS

We show the average number of API calls and the average cost per task in Table 13. For GPT-4,
the cost is computed using $0.03/1K tokens for input and $0.06/1K tokens for output. For GPT-3.5,
the cost is computed using $0.0015/1K tokens for input and $0.002/1K tokens for output. Iterative
hypothesis refinement, when augmented with a symbolic interpreter, is more cost-efficient than SR,
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Table 13: The average number of API calls and the average cost per task.

# API Calls Cost (cent)
Model Method ACRE MiniSCAN List Fns MiniARC ACRE MiniSCAN List Fns MiniARC

GPT-4

IO 4.0 10.0 8.0 3.0 2.0 7.9 9.1 6.4
SC (N=5) 19.8 50.0 40.0 14.8 2.0 7.9 9.1 6.4
SR (T=3, N=5) 16.5 31.6 22.2 31.0 6.5 26.7 8.1 28.1
T=3, N=5 8.2 6.3 17.4 27.2 2.3 4.5 12.0 36.5

GPT-3.5 IO 4.0 10.0 8.0 3.0 0.1 0.5 0.5 0.3
T=3, N=5 9.8 11.2 21.4 27.4 0.1 0.7 0.8 1.6

Claude-2 IO 4.0 10.0 8.0 3.0 – – – –
T=3, N=5 8.7 14.4 20.2 26.2 – – – –

as it reduces the number of API calls required to apply hypotheses. It is also more cost efficient for
tasks with a larger number of test examples, e.g., MiniSCAN, as it re-uses the same rule across all
examples.

C HUMAN STUDIES

C.1 EXISTING HUMAN PERFORMANCE

Our experiments are largely motivated by cognitive science literature. Here, we collect results from
existing human studies to better calibrate the performance of LMs and humans. It is important to
note that the exact setups, data, and evaluations in these studies might differ from ours. Therefore,
the reported human performance can only be used as a reference but not for direct comparison.

For ACRE, Gopnik et al. (2001) and Sobel et al. (2004) found that 3-4 year-old children are able to
identify if an object is a Blicket within 2 trials. For MiniSCAN, Lake et al. (2019) conducted sim-
ilar human experiments and found humans achieve around 80% average accuracy, with the lowest
performance at around 65% and the highest at 88%. For List Functions, Rule (2020) reported the av-
erage human performance of 45.9%.17 For MiniARC, Kim et al. (2022b) did not provide any human
experiment results. However, Johnson et al. (2021) evaluated a subset of tasks from ARC (Chol-
let, 2019) and found that human participants can solve 80% of the tasks, with 65% of tasks being
solved by more than 80% of participants. Moskvichev et al. (2023) evaluated human participants on
ConceptARC, a variant of ARC, and reported an average human performance of 90.9% in solving
test examples. Additionally, Acquaviva et al. (2022) found that human annotators were able to write
correct instructions for 88% of the ARC tasks.

C.2 SETUP

We randomly sample 50 tasks for List Functions and MiniARC and ask crowdworkers to write and
evaluate rules. For each task, we ask 3 annotators to write the rule, and for each rule pair, we ask
another 3 annotators to evaluate them. For rule evaluation, following prior work (Saha et al., 2022;
Chen et al., 2023b), we consider two metrics: clarity and supportiveness. Clarity evaluates whether
the rule provides a clear explanation of the transformation from input to output. Supportivenss
measures how well the rule align with examples.18 We use pairwise comparison with 4 labels:
LM-induced rule is better, human-induced rule is better, equally good, and equally bad.

We use Amazon Mechanical Turk for all human studies. We select crowdworkers who are located
in the US with a HIT approval rate higher 97% and at least 10000 HIT approved. We pay our
annotators at a minimal hourly wage of $15. We show the instructions and annotation interfaces for
rule induction in Figure 8 and Figure 9, and for rule evaluation in Figure 10 and Figure 11.

17The human performance was obtained by asking human participants to play a guessing game. It only
requires solving unseen examples and did not involve writing rules. See Rule (2020) for details.

18Saha et al. (2022) use three metrics for evaluation: clarity, supportiveness, and generalizability. We did not
consider generalizability as we directly evaluate on unseen examples. Our pilot experiments also suggest that
crowdworkers found it challenging to distinguish between supportiveness and generalizability.
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C.3 RESULTS

Human Preferences. We show results of human pairwise comparisons in Figure 6. For List Func-
tions, where the LM achieves high accuracy, LM-induced rules and human-induced rules are com-
parably clear, but the former are sometimes less supportive. On MiniARC, where the LM performs
poorly, we observe a significant performance gap between LM-induced rules and human-induced
rules on both clarity and supportiveness. The average inner-annotator agreement, measured by Co-
hen’s Kappa, is 0.13 for clarity and 0.53 for supportiveness.
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Figure 6: Comparisons of LM-induced rules versus human-induced rules in terms of clarity (left)
and supportiveness (right).

Impacts of Noisy Exemplars. We conduct similar human experiments using the data with 12.5%
noise from §4.2. We consider two setups: one with a hint indicating some examples might be
incorrect (comparable to the dashed line in Figure 4a) and one without any hint (comparable to the
bar in Figure 4a). We measure the percentage of rules that are preferred or equally good for either
the LM or humans, and show the relative performance difference in Table 14. We also show the
original human preferences in Figure 7. While both the LM and humans perform worse on tasks
with noisy examples, the relative performance drop of the LM is generally more significant. The
average inner-annotator agreement, measured by Cohen’s Kappa, is 0.15 for clarity and 0.54 for
supportiveness.
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Figure 7: Human preferences for LM-induced rules versus human-induced rules on List Functions,
using exemplars without noise, with noise and a hint, and with noise only.

D PROMPTS AND EXAMPLES

Our experiments use several types of prompts. For rule induction, we query LMs for hypotheses
generation and hypotheses refinement. For rule application, we query LMs to apply the rules. We
also ask LMs to translate natural language hypotheses to Python programs. We show different types
of prompts in Table 15. The values that fill in the placeholders for each dataset along with examples
are shown in Table 16, Table 17, and Table 18.
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Table 14: Percentage of rules induced by the LM and humans on List Functions that are preferred
or equally good, along with the relative difference, when using exemplars without noise, with noise
and a hint, and with noise only.

Clarity Supportiveness
w/ + Hint w/ w/ + Hint w/

w/o abs. rel. ∆ abs. rel. ∆ w/o abs. rel. ∆ abs. rel. ∆

LM 74.9 62.2 -16.9 61.3 -18.1 54.0 37.1 -31.3 22.9 -57.6
Humans 78.9 80.0 1.4 72.9 -7.6 79.3 52.7 -33.6 48.4 -38.9

Table 15: Prompts used in our study. {} refers to a placeholder.

Type Prompt

Hypothesis
Generation

Generate a rule that maps the following inputs to their
corresponding outputs. {Task description}

{Examples}

Please format your rule as follows:

{Rule format}

Hypothesis
Refinement

Your rule: {Rule}

This rule does not work for the following examples.

{Feedback}

Generate a new rule that maps the given inputs to their
corresponding outputs. {Feedback description} Please
format your rule as follows:

{Rule format}

Hypothesis
Translation

You are an expert Python programmer. Write a Python
function ‘fn‘ for the following rule. {Translation
Example description}

Rule: {Rule}

Rule
Application

Generate an output corresponding to the given input based
on the rule. {Application Example description}

Rule: {Rule}

Input: {Test input}
Output:
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Table 16: Prompts and examples for ACRE and MiniSCAN.

ACRE MiniSCAN

Task
Description

Each example is an
input-output pair. The input
is a list of objects. The
presence of certain objects
will trigger the light to turn
on. The output is either "on"
or "off", indicating the state
of the light. For each object,
determine whether it triggers
the light to turn on, does not
trigger it, or if it’s
undetermined.

Your grammar rules should follow
the format "<input> -> <output>".
Use the prefix "##" to denote a
nonterminal symbol. For instance,
"##A twice -> ##A ##A". The
left-hand side cannot contain
repetitive nonterminal symbols;
i.e., rules like "##A ##A ->
##A twice" or "##A and ##A ->
##A twice" are not allowed.
Ensure that the number of unique
nonterminal symbols on the
left-hand side matches that on the
right-hand side in your rules.
For each rule, assign an integer as
its priority. A higher priority
indicates that the rule should be
considered first when generating
parses. Try to make your rules
as minimal as possible.

Application
Example
Description

Each example is an
input-output pair. The input
is a list of objects. The
presence of certain objects
will trigger the light to turn
on. The output is either "on",
"off", or "undetermined",
indicating the state of the light
or if the state of the light
cannot be determined. The rule
indicates whether each object
triggers the light to turn on,
does not trigger it, or if it’s
undetermined.

The grammar rules follow the format
"<input> -> <output>". The "##"
prefix denotes a nonterminal symbol.
For instance, ##A twice -> ##A ##A.
Each rule has an associated priority.
A higher priority indicates that the
rule should be considered first when
generating parses. The output is a
sequence of tokens joined by spaces.

Feedback
Description / /

Rule format

Rule: {"object 1": <"on"/"off"/
"undetermined">, "object 2":
<"on"/"off"/"undetermined">,
...}

Rule 1: <Your rule>
Priority 1: <Your priority>
...

Rule {"blue rubber sphere": "on",
"red metal cube": "off"}

Rule 1: siun -> BLUE
Priority 1: 2
Rule 2: #A mcneilt -> #A #A #A
Priority 2: 1

Examples
Input: blue rubber sphere
Output: on
...

Input: siun mcneilt
Output: BLUE BLUE BLUE
...

Test input blue rubber sphere siun mcneilt

Feedback

Input: blue rubber sphere
Expected output: on
Actual output: off
...

Input: siun mcneilt
Expected output: BLUE BLUE BLUE
Actual output: BLUE BLUE
...
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Table 17: Prompts and examples for List Functions and MiniARC. {} is added if we use noisy
examples (§4.2).

List Functions MiniARC

Task
Description / /

Translation
Example
Description

The input is a list of integers.
The output is also a list of
integers.

The input is a nested list that
represents a 2D grid of integers.
The output is also a nested list that
represents a 2D grid of integers.

Application
Example
Description

The input is a list of integers.
The output is also a list of
integers.

The input is a 2D grid of integers.
The output is also a 2D grid of
integers.

Feedback
Description

{Note that some examples may be
noisy, and you should take this
into account when proposing
the rule.}

/

Rule format Rule: <Your rule> Rule: <Your rule>

Rule Remove the first element and the
last two elements

For each cell in the input, if the
cell value is 1 and all cells in the
3x3 grid surrounding it (including
diagonally) are also 1s, then the output
value for that cell is 0. If the cell
value is 0 and it is surrounded by 1s
on all four sides (up, down, left, and
right), then the output value for that
cell is 7. All other cells in the output
should match the corresponding cells in
the input.

Examples
Input: [9, 7, 1, 8, 2, 3]
Output: [7, 1, 8]
...

Input:
[1, 1, 1, 1, 1]
[1, 0, 0, 0, 1]
[1, 0, 0, 0, 1]
[1, 0, 0, 0, 1]
[1, 1, 1, 1, 1]
Output:
[0, 0, 0, 0, 0]
[0, 7, 7, 7, 0]
[0, 7, 7, 7, 0]
[0, 7, 7, 7, 0]
[0, 0, 0, 0, 0]
...

Test input [3, 8, 2, 5, 4]

[0, 1, 1, 1, 1]
[1, 1, 0, 0, 1]
[1, 0, 0, 0, 1]
[1, 1, 0, 0, 1]
[0, 1, 1, 1, 0]

Feedback

Input: [9, 7, 1, 8, 2, 3]
Expected output: [7, 1, 8]
Actual output: [7, 1, 8, 2, 3]
...

Input:
[1, 1, 1, 1, 1]
[1, 0, 0, 0, 1]
[1, 0, 0, 0, 1]
[1, 0, 0, 0, 1]
[1, 1, 1, 1, 1]
Expected output:
[0, 0, 0, 0, 0]
[0, 7, 7, 7, 0]
[0, 7, 7, 7, 0]
[0, 7, 7, 7, 0]
[0, 0, 0, 0, 0]
Actual output:
[1, 1, 1, 1, 1]
[1, 0, 0, 0, 1]
[1, 0, 0, 0, 1]
[1, 0, 0, 0, 1]
[1, 1, 1, 1, 1]
...
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Table 18: Prompts and examples for MiniARC when using multimodal models.

Color Number

Translation
Example
Description

The input is a nested list that
represents a 2D grid of integers.
The output is also a nested list that
represents a 2D grid of integers.
The integers can be mapped to colors
as follows:

0: Black; 1: Blue; 2: Red;
3: Green; 4: Yellow; 5: Grey;
6: Fuchsia; 7: Orange; 8: Teal;
9: Brown.

The input is a nested list that
represents a 2D grid of integers.
The output is also a nested list that
represents a 2D grid of integers.

Application
Example
Description

Represent your output as a 2D grid
of integers, using the format below.

[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]

The integers can be mapped to colors
as follows:

0: Black; 1: Blue; 2: Red;
3: Green; 4: Yellow; 5: Grey;
6: Fuchsia; 7: Orange; 8: Teal;
9: Brown.

Represent your output as a 2D grid
of integers, using the format below.

[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]

Rule

If a blue square is adjacent
(horizontally or vertically) to the
central black 2x2 square, change its
color to orange. Then, change all
other squares to black.

For each cell in the matrix that is
‘1’, change it to ‘7’ if it is
neither on the border of the matrix
nor adjacent to a ‘0’. Change all
other cells to ‘0’.

Examples

Input:

Output:

...

Input:

Output:

...

Test input

Feedback

Input:

Expected output:

Actual output:

...

Input:

Expected output:

Actual output:

...
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Instructions (click to expand/collapse)

Thanks for participating in this HIT! Please read the instructions carefully.

Let’s say you have a mystery machine. You know what goes in (input) and what comes out (output). You are told that the machine works
by a particular rule. Your task is to figure out what the rule is. Please try your best to find the rule. If unsure, answer your best guess.
We will give bonus if you figure out a hard rule.

Examples (click to expand/collapse)

Examples:

[2, 2, 3] -> [2]
[4, 5, 6, 1] -> [4]
[0] -> [0]

Rule:

Only keep the first element of the list.

Examples:

[1, 2, 3] -> [6]
[2, 2] -> [4]
[1, 0, 4] -> [5]

Rule:

Output the sum of the input in a new list.

Task

Examples:

${examples}

Rule:

(Optional) Please let us know if anything was unclear, if you
experienced any issues, or if you have any other feedback for us. If
you found this HIT difficult to answer, please let us know why.

Submit

Figure 8: Annotation interface for human rule induction on List Functions.

27



Published as a conference paper at ICLR 2024

Instructions (click to expand/collapse)

Thanks for participating in this HIT! Please read the instructions carefully.

Let’s say you have a mystery machine. You know what goes in (input) and what comes out (output). You are told that the machine works
by a particular rule. Your task is to figure out what the rule is. Please try your best to find the rule. If unsure, answer your best guess.
We will give bonus if you figure out a hard rule.

Examples (click to expand/collapse)

Examples:

Rule:

Swap the colors of two objects.

Examples:

Rule:

Drop the object.

Task

Examples:

${examples}

Rule:

(Optional) Please let us know if anything was unclear, if you
experienced any issues, or if you have any other feedback for us. If
you found this HIT difficult to answer, please let us know why.

Submit

Figure 9: Annotation interface for human rule induction on MiniARC.
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Instructions (click to expand/collapse)

Thanks for participating in this HIT! Please read the instructions carefully.

Let’s say you have a mystery machine. You know what goes in (input) and what comes out (output). You are told that the machine works
by a particular rule.

You will be presented with two rules and a set of examples. The rule describes a pattern in the examples. The rule might use one of the
following indexing system.

0-based Indexing: The index starts from 0. Example: In [1, 2, 3, 4], '3' is indexed as 2.

1-based Indexing: The index starts from 1. Example: In [1, 2, 3, 4], '3' is indexed as 3.

You need to first figure out which indexing system the rule uses. Both indexing systems are valid as long as it is consistent within the
rule and examples.

Your task is to evaluate the rules based on the following criteria.

Clarity: The rule explains things clearly and is grammatically correct (ignoring minor spelling issues and typos).

Supportiveness: The rule matches all given examples.

Examples (click to expand/collapse)

Examples:

[2, 2, 3] -> [2]
[4, 5, 6, 1] -> [4]
[0] -> [0]

Rule 1:

The output is the first element of the list.

Rule 2:

The output is the 0th item of the list.

Q1. Clarity: Which one is better? Equally good  (Both rules explain things clearly and are grammatically correct)

Q2. Supportiveness: Which one is better? Equally good  (Both rules match all examples)

Input Output Rule 1 Explanation Rule 2 Explanation

[2, 2, 3] [2]
Correct, [2] is the first element of the list using 1-based

indexing.

Correct, [2] is the 0th element of the list using 0-based

indexing.

[4, 5, 6,

1]
[4]

Correct, [4] is the first element of the list using 1-based

indexing.

Correct, [4] is the 0th element of the list using 0-based

indexing.

[0] [0]
Correct, [0] is the first element of the list using 1-based

indexing.

Correct, [0] is the 0th element of the list using 0-based

indexing.

Examples:

[2, 2, 3] -> [2]
[4, 5, 4, 1] -> [4]
[0, 2, 0] -> [0]

Rule 1:

The output is the first element of the list.

Rule 2:

The output is the second element of the list.

Q1. Clarity: Which one is better? Equally good  (Both rules explain things clearly and are grammatically correct)

Q2. Supportiveness: Which one is better? Rule 1 is better.  (Rule 1 matches all examples using 1-based indexing, but Rule 2 does not

match all examples using either 0-based or 1-based indexing)

Input Output Rule 1 Explanation Rule 2 Explanation

[2, 2, 3] [2]
Correct, [2] is the first element of

the list using 1-based indexing.

Incorrect, [2] is NOT the second element of the list using 0-based indexing.

Although it works using 1-based indexing, it is not consistent with other

examples.

[4, 5, 4,

1]
[4]

Correct, [4] is the first element of

the list using 1-based indexing.
Correct, [4] is the second element of the list using 0-based indexing.

[0, 2, 0] [0]
Correct, [0] is the first element of

the list using 1-based indexing.
Correct, [0] is the second element of the list using 0-based indexing.

Task

Examples:

${examples}

Rule 1:

${rule_1}

Rule 2:

${rule_2}

Q1. Clarity: Which one is better?

Rule 1 is better

Rule 2 is better

Equally good

Equally bad

Q2. Supportiveness: Which one is better?

Rule 1 is better

Rule 2 is better

Equally good

Equally bad

(Optional) Do you have any feedback on either Rule 1 or Rule 2? For example, did you find any thing hard to understand? Did you find

anything interesting? Is the rule missing any important information?

(Optional) Please let us know if anything was unclear, if you
experienced any issues, or if you have any other feedback for us. If
you found this HIT difficult to answer, please let us know why.

Submit

Figure 10: Annotation interface for human rule evaluation on List Functions.
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Instructions (click to expand/collapse)

Thanks for participating in this HIT! Please read the instructions carefully.

Let’s say you have a mystery machine. You know what goes in (input) and what comes out (output). You are told that the machine
works by a particular rule.

You will be presented with two rules and a set of examples. Each color is associated with a number. The rule might use either the color
or the number. Both the color and the number should be treated equally. You should not have a preference for either.

Your task is to evaluate the rules based on the following criteria.

Clarity: The rule explains things clearly and is grammatically correct (ignoring minor spelling issues and typos).

Supportiveness: The rule matches all given examples.

Examples (click to expand/collapse)

Examples:

Rule 1:

Swap the colors of two objects.

Rule 2:

Exchange 1 and 3. Exchange 4 and 6. Exchange 7 and 8.

Q1. Clarity: Which one is better? Equally good  (Both rules explain things clearly and are grammatically correct) 

Q2. Supportiveness: Which one is better? Equally good  (Both rules matches all examples)

Examples:

Rule 1:

Drop the object.

Rule 2:

Vertically �ip the object.

Q1. Clarity: Which one is better? Equally good  (Both rules explain things clearly and are grammatically correct) 

Q2. Supportiveness: Which one is better? Rule 1 is better.  (Rule 1 matches all examples. Rule 2 matches none.)

Task

Examples:

${examples}

Rule 1:

${rule_1}

Rule 2:

${rule_2}

Q1. Clarity: Which one is better?

Rule 1 is better.

Rule 2 is better

Equally good

Equally bad

Q2. Supportiveness: Which one is better?

Rule 1 is better.

Rule 2 is better

Equally good

Equally bad

(Optional) Do you have any feedback on either Rule 1 or Rule 2? For example, did you �nd any thing hard to understand? Did you

�nd anything interesting? Is the rule missing any important information?

(Optional) Please let us know if anything was unclear, if you
experienced any issues, or if you have any other feedback for us. If
you found this HIT di�cult to answer, please let us know why.

Submit

Figure 11: Annotation interface for human rule evaluation on MiniARC.
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