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ABSTRACT
Humans exhibit a remarkable ability to learn quickly from a limited
number of labeled samples, a capability that starkly contrasts with
that of current machine learning systems. Unsupervised Few-Shot
Learning (U-FSL) seeks to bridge this divide by reducing reliance
on annotated datasets during initial training phases. In this work,
we first quantitatively assess the impacts of Masked Image Mod-
eling (MIM) and Contrastive Learning (CL) on few-shot learning
tasks. Our findings highlight the respective limitations of MIM and
CL in terms of discriminative and generalization abilities, which
contribute to their underperformance in U-FSL contexts. To ad-
dress these trade-offs between generalization and discriminability
in unsupervised pretraining, we introduce a novel paradigm named
Masked Image Contrastive Modeling (MICM). MICM creatively
combines the targeted object learning strength of CL with the gen-
eralized visual feature learning capability of MIM, significantly
enhancing its efficacy in downstream few-shot learning inference.
Extensive experimental analyses confirm the advantages of MICM,
demonstrating significant improvements in both generalization and
discrimination capabilities for few-shot learning. Our comprehen-
sive quantitative evaluations further substantiate the superiority
of MICM, showing that our two-stage U-FSL framework based on
MICM markedly outperforms existing leading baselines. 1

CCS CONCEPTS
• Computing methodologies → Computer vision.

KEYWORDS
Unsupervised Few-shot Learning, Contrastive Learning, Masked
Image Modeling, Masked Image Contrastive Modeling

1 INTRODUCTION
Achieving high-level performance in deep representation learning
typically requires large datasets, detailed labeling processes, and
significant supervisory involvement. This requirement becomes
even more daunting as the complexity of downstream tasks in-
creases, challenging the scalability of supervised representation
learning methods. In contrast, human learning is remarkably ef-
ficient, managing to acquire new skills from minimal examples
1Codebase is attached to the supplementary material and will be made publicly avail-
able upon acceptance.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(a) Image (b) SimCLR (c) MAE (d) MICM

Figure 1: Illustrating the attentionmapwith SimCLR [9] (CL),
MAE [22] (MIM), MICM.

with little supervision. Few-shot learning (FSL) [33, 40] aims to
narrow this gap between human and machine learning capabilities.
Although FSL has shown promising results in supervised settings,
its dependence on extensive supervision remains a significant limi-
tation. To address this, unsupervised FSL (U-FSL) [10, 32, 33] has
been developed, mirroring the structure of supervised approaches.
It involves pretraining on a wide dataset of base classes and then
quickly adapting to novel, few-shot tasks. The primary goal of U-
FSL pretraining is to develop a feature extractor that understands
the global structure of unlabeled data, and subsequently tailors the
encoder for new tasks. The increasing interest in U-FSL reflects its
practicality and alignment with self-supervised learning methods,
emphasizing its potential to significantly enhance machine learning
processes.

Recent advancements in state-of-the-art (SOTA) methods have
largely employed Contrastive Learning (CL) [10, 32, 33], particu-
larly in transfer-learning scenarios. These methods have achieved
impressive results across various benchmarks. As illustrated in Fig-
ure 2(a), the principle of contrastive representation learning [9]
involves drawing ’positive’ samples closer and pushing ’negative’
ones away in the representation space. This technique focuses on
specific objects within datasets, thus improving representational
learning for image classification tasks, as depicted in Figure 1(b).
Conversely, Masked Image Modeling (MIM) [12, 22] (Figure 2(b))
trains models to predict the original content of intentionally ob-
scured image portions. This approach facilitates comprehensive
learning of features across all image patches, including peripheral
ones, as shown in Figure 1(c). In our research, we quantitatively
assessed the impacts of MIM and CL on FSL tasks, revealing that
while CL prepares models to prioritize features typical in training
datasets, potentially compromising reliability in novel categories, and
MIM fosters a broad and generalized understanding of image features
but struggles to develop discriminative features crucial for accurately
categorizing new classes in few-shot scenarios.

To explore the trade-offs between generalization and discrim-
inability in unsupervised pretraining, we introduce Masked Image
Contrastive Modeling (MICM), a novel method that ingeniously
combines essential aspects of both CL and MIM to boost down-
stream inference performance. Illustrated in Figure 2(c), MICM
utilizes an encoder-decoder architecture akin to MIM but integrates

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: (a) Contrastive Learning is dedicated to learning discriminative data representations by contrasting and differentiating
between similar (positive) and dissimilar (negative) pairs of data samples. This approach emphasizes the relative comparison to
achieve distinctiveness in the learned features. (b) Masked Image Modeling involves training a model to accurately predict the
original content of intentionally obscured (masked) portions of images. This technique focuses on learning comprehensive
and robust feature representations by encouraging the model to infer missing information. (c) Masked Image Contrastive
Modeling implements a decoder that simultaneously enhances features and reconstructs the original content of images. This
method synergistically merges the principles of contrastive representation learning with effective pretext task design, thereby
integrating the strengths of both approaches to achieve more nuanced and effective learning.

a decoder that simultaneously enhances features and reconstructs
images. This method not only merges contrastive learning with
effective pretext task designs but also adapts efficiently to down-
stream task data. We further introduce a U-FSL framework with two
phases: Unsupervised Pretraining and Few-Shot Learning. During
Unsupervised Pretraining, MICM blends CL and MIM objectives in
a hybrid training strategy. In the Few-Shot Learning phase, MICM
adapts to various few-shot strategies, both inductive and trans-
ductive. Extensive experimental analysis confirms the benefits of
MICM, showing it significantly enhances both the generalization
and discrimination capabilities of pre-trained models, achieving
top-tier performance on multiple U-FSL datasets.

To summarize, the main contributions of our paper are as follows:

• We reveal the limitations of MIM and CL in terms of dis-
criminative and generalization abilities, respectively, to their
consequent underperformance in U-FSL contexts.

• We propose Masked Image Contrastive Modeling (MICM),
a novel structure that blends the targeted object learning
prowess of CL with the generalized visual feature learning
capability of MIM.

• Extensive quantitative and qualitative results show that our
method achieves SOTA performance on several In-Domain
and Cross-Domain FSL datasets.

2 RELATEDWORK
2.1 Few-Shot Learning
Few-shot learning (FSL) in visual classification contends with the
challenge of recognizing objects from very limited samples. Primar-
ily, this task is approached through two principal methodologies:
transfer learning and meta-learning. Transfer learning, as discussed
by Tian et al. [40], leverages knowledge from models pre-trained

on large datasets to adapt to new, less-represented tasks. Meta-
learning, alternatively, encompasses several strategies: model-based
[6], metric-based [39], and optimization-based [1]. Model-based ap-
proaches focus on adapting the model parameters rapidly for new
tasks. Metric-based methods compute distances between samples
to facilitate class differentiation, while optimization-based strate-
gies aim to maximize learning efficiency with scarce examples.
Building upon inductive FSL, transductive FSL seeks to enhance
real-world application by incorporating unlabeled data into the
learning process for pre-classification tuning. Among the various
techniques employed, graph-based methods such as protoLP [52]
utilize graph structures to strengthen the information flow and re-
lationships between support and query samples. Clustering-based
approaches, exemplified by EASY [4], Transductive CNAPS [3], and
BAVARDAGE [26], refine feature representations using advanced
clustering techniques. Additionally, applications of the Optimal
Transport Algorithm, like BECLR [33], are used to align feature
distributions more effectively during testing phases. A novel ap-
proach, TRIDENT [38], integrates a unique variational inference
network to enhance image representation in FSL scenarios.

2.2 Unsupervised Few-Shot Learning
U-FSL broadens the scope of unsupervised learning by requiring
models to not only learn data representations without supervision
but also to rapidly adapt to new few-shot tasks. This challenging
dual requirement has led to the exploration of various innovative
methods. Knowledge distillation and contrastive learning are no-
tably effective in U-FSL, enhancing model adaptability through
robust feature representations [27]. Furthermore, clustering-based
approaches have demonstrated considerable success by optimizing
data groupings to better model task-specific nuances [31]. Despite
these advancements, many traditional unsupervised methods are
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geared towards batch data processing, which may not seamlessly
translate to the dynamic requirements of few-shot scenarios. To
mitigate this, some strategies integrate meta-learning principles to
generate synthetic training scenarios that improve data efficiency
and model responsiveness [2]. However, such approaches can some-
times lead to suboptimal data usage [18]. Recent innovations in
U-FSL also include the use of graph-based structures to map re-
lationships within data [8], the application of Structural Causal
Models (SCM) in the context-aware multi-variational autoencoder
(CMVAE) [34], and the deployment of variational autoencoders
(VAE) in frameworks like CMVAE and Meta-GMVAE [29]. Addi-
tionally, the exploration of rotation invariance in self-supervised
learning enriches the robustness of models against geometric vari-
ations in few-shot learning tasks [45]. Another notable approach is
MlSo, which leverages multi-level visual abstraction features com-
bined with power-normalized second-order base learner streams
to enhance the discriminative capability of models in U-FSL [49].

3 QUALITATIVE STUDY ON UNSUPERVISED
PRETRAINING METHODS FOR U-FSL

This section delves into Unsupervised Few-Shot Learning (U-FSL),
elucidating the task and assessing the impact of different unsuper-
vised pretraining methodologies on model performance.

3.1 Unsupervised Few-shot Learning
U-FSL operates under a widely recognized protocol delineated in
recent work [10, 27, 32, 33]. Initially, models undergo an unsuper-
vised pretraining phase using a vast unlabeled dataset𝐷base = {𝒙 𝒊},
which encompasses a variety of base classes. Subsequently, the mod-
els are tested in a few-shot inference phase using a smaller, labeled
test dataset 𝐷novel = {(𝒙 𝒊,𝒚𝒊)} comprising novel classes, ensuring
no overlap exists between the base and novel classes. Each few-shot
task T𝑖 is structured around a support set S = {(𝒙S𝒊 ,𝒚

S
𝒊 )}

𝑁𝐾
𝑖=1 , ad-

hering to the (𝑁 -way, 𝐾-shot) scheme, where 𝐾 labeled examples
from 𝑁 distinct classes are chosen. The query set Q = {𝒙Q𝒋 }𝑁𝑄

𝑗=1 ,
typically unlabeled, comprises 𝑁𝑄 samples (where 𝑄 > 𝐾) and
serves to evaluate the model’s adaptation to novel classes.

3.2 Unsupervised Pretraining Methods
The foundation of U-FSL is significantly influenced by the capa-
bilities of unsupervised pretraining methods to discern intricate
patterns within unlabeled datasets. This segment explores the ef-
fects of two principal unsupervised pretraining strategies: Con-
trastive Learning (CL) and Masked Image Modeling (MIM). Key
exemplars for these methods—SimCLR [9] for CL and MAE [22]
for MIM—were selected due to their prominence and efficacy. Both
methodologies were implemented using the Vision Transformer
Small (ViT-S) architecture on the MiniImageNet dataset. Our analyt-
ical focus is directed towards understanding how these pretraining
approaches modify the model’s capability to transition effectively
to novel tasks. We postulate that the intrinsic nature of the pretrain-
ing method—contrastive, which underscores learning distinctive
features that delineate classes, versus masked, which centers on re-
constructing absent segments of the input—will manifest differing
strengths within the context of few-shot learning.

Figure 3: Histograms depicting the distribution of similar-
ity between features extracted by the model for novel and
base classes. Our model (blue) extracts distinctive features
for novel classes, contrasting with the SimCLR model from
contrastive learning methods, which continues to focus on
discriminative features of base classes for novel classes, re-
sulting in similar features (brown). Fine-tuning with an ade-
quate number of labeled samples is essential to address these
issues in SimCLR and enhance classification accuracy.

Analysis of Contrastive Learning. Recent research [12] has
demonstrated that CL models tend to focus predominantly on the
primary objects within images during pretraining. This concentra-
tion frequently targets small, distinct features that distinctly char-
acterize the primary categories. Such specificity, while beneficial
for initial categorization tasks, adversely affects the generalizability
of the learned features to new, unseen contexts, as evidenced in
Figure 1(b). We propose that this limitation arises from the inherent
design of CL methodologies, which predispose the model to em-
phasize features that are salient in the training dataset but may be
less relevant or even misleading in novel categories. To explore this
proposition, we conducted empirical analyses comparing the fea-
ture representations of base category prototypes with those of novel
category prototypes, both before and after applying SimCLR and its
subsequent fine-tuning. The results, depicted in Figure 3, indicate
that the features extracted for novel categories by SimCLR closely
mirror those associated with the base categories. This similarity
persists when models trained via CL are applied to novel categories,
leading to a continued reliance on the same features identified dur-
ing the training phase. Consequently, there is a notable deficiency
in the model’s focus on principal objects in new categories, which
hampers its adaptability. Building on established protocols [9, 15],
we fine-tuned the SimCLR-trained models on downstream few-shot
classification tasks. Our findings, illustrated in Figure 3, show that
fine-tuning with a minimal set of labeled examples (e.g., in one-shot
learning scenarios) fails to adequately rectify these issues of trans-
ferability. In some instances, this approach may even degrade the
model’s performance on few-shot classification tasks. It becomes
apparent that only with an ample number of labeled samples for
fine-tuning do these challenges begin to mitigate, consequently
improving accuracy in few-shot classification scenarios. This high-
lights the intrinsic difficulties of directly applying CL models to
few-shot learning tasks, especially considering the heightened risk
of overfitting when training data are scarce. Hence, we assert the
following conclusion concerning the impact of contrastive learning:
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Conclusion and Discussion. Contrastive learning fundamentally
predisposes models to prioritize features that are prominent in the
training dataset, potentially at the expense of relevance and utility
in novel categories.

(a) SimCLR (73.33) (b) MAE (38.66) (c) MICM (77.33)

(d) SimCLR 5-shot (70.66) (e) MAE 5-shot (41.33) (f) MICM 5-shot (78.66)

Figure 4: Visualization of t-SNE features for various unsuper-
vised pre-trained models in novel categories. The first row:
before fine-tuning. The second row: after fine-tuning with 5-
shot. Contrary to SimCLR and MICM, the MAEmethod lacks
discriminative features both prior to and following few-shot
learning. The performance of each model in FSL is indicated
in parentheses.

Analysis of Masked Image Modeling. Recent advancements in
MIM underscore a shift towards a more comprehensive feature
extraction methodology, distinct from techniques that prioritize
prominent image features. As detailed in [12], MIMmethods like the
MAE engage systematically with every image patch to reconstruct
absent segments, fostering a broad spatial activation across the
entire image. This approach is vividly illustrated in Figure 1(c),
where feature maps from MAE reveal a widespread distribution
of activation, suggesting a more holistic grasp of image features.
Despite these strengths, the extensive focus on patch reconstruction
in MIM can obscure class-specific feature delineation. Since MIM
models are optimized for predicting missing image parts rather
than distinguishing class features, they frequently lack the sharp,
discriminative capabilities essential for class-specific recognition
tasks. This deficiency is apparent in Figure 4, where the first row
demonstrates that features extracted by MAE are markedly less
discriminative than those derived from our proposed method or the
contrastive learning approach, SimCLR. The adaptability of MIM
techniques to FSL scenarios is also challenged when these models
are fine-tuned with limited labeled data. The second row of Figure 4
indicates that, even after fine-tuning with a modest sample size,
such as in a 5-shot scenario, the discriminability of the features
shows minimal enhancement. This observation implies that while
MIM effectively encodes a rich array of generic visual features, it
struggles to capture the subtleties required for distinguishing novel
classes in few-shot configurations.
Conclusion and Discussion. While MIM techniques cultivate
a broad and generalized understanding of image features, they

encounter significant obstacles in acquiring discriminative features
crucial for accurately categorizing novel classes in few-shot learning
scenarios.

4 MASKED IMAGE CONTRASTIVE MODELING
The preceding comparative analysis in Section 3 elucidates that
while CL prioritizes refining focus on distinct objects within datasets,
enhancing representational efficacy for image classification, MIM
extends its reach to a comprehensive understanding across all image
patches, thus facilitating a broader scope of feature extraction. This
delineation underscores a pivotal trade-off in unsupervised pretrain-
ing between generalization and discriminability. To bridge this gap,
we introduce a novel approach, Masked Image Contrastive Mod-
eling (MICM), which amalgamates the strengths of both method-
ologies to foster robust representation learning coupled with an
effective FSL task.

4.1 Model Structure
Figure 2 illustrates the encoder-decoder architecture of MICM, in-
geniously designed to predict masked patches based on visible
ones within the encoded space, while concurrently ensuring similar
tokens for identical images are decoded effectively. The image un-
dergoes segmentation into visible patches X𝑣 and masked patches
X𝑚 . The encoder F processes X𝑣 to generate latent representa-
tions Z𝑣 , while the decoder G aims to reconstruct X𝑚 using these
encoded representations along with a predefined class token T𝑐 .
Encoder. The encoder F transforms visible patches X𝑣 into latent
representations Z𝑣 . Utilizing the ViT as its backbone, the encoder
begins by embedding the visible patches, projecting each patch
linearly to create a set of embeddings. Positional embeddings P𝑣
are added to maintain spatial context. These embeddings undergo
processing through several transformer blocks, leveraging self-
attention mechanisms to produce the latent representations Z𝑣 ,
which encapsulate the critical features of the visible patches.
Decoder. The decoder serves dual functions in MICM. Its primary
role is to transform the latent representations of visible patches
Z𝑣 and, crucially, those of masked patches Z𝑚 back into the recon-
structed patchesY𝑚 . This transformation process entails a sequence
of transformer blocks culminating in a linear layer that precisely
regenerates the original masked patches. Secondly, the decoder also
refines the input class token Z[cls] into an enhanced representa-
tion Ẑ[cls], pivotal for effective CL. Diverging from conventional
approaches, MICM strategically delays the integration of the class
token until the decoding phase, permitting the encoder to concen-
trate more thoroughly on capturing the nuances of visible patches.
This structural delineation enhances the encoder’s focus on extract-
ing a diverse array of visual features, while the decoder, through
feature reconstruction, fine-tunes the class token, synergistically
balancing the model’s objectives of maximizing discriminability
and ensuring comprehensive feature extraction.

4.2 U-FSL with MICM
Unsupervised Pretraining. Given an input image 𝒙 uniformly
sampled from the training set 𝐷base, we apply random data aug-
mentations to create two distinct views 𝒙1 and 𝒙2. These views
are subsequently processed by the teacher and student networks,
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Figure 5: (a) The Unsupervised Pretraining phase involves
self-supervised learning on a large, unlabeled base dataset,
crucial for developing initial representations. (b) The Few-
Shot Learning phase could adapt to a variety of few-shot
learning approaches, including both inductive and transduc-
tive methodologies.

parameterized by 𝜽 𝒕 and 𝜽 𝒔 , respectively. Notably, the teacher net-
work is updated via an Exponentially Moving Average (EMA) of
the student network, facilitating knowledge transfer by minimizing
the cross-entropy loss between the output categorical distributions
of their augmented token representations, as expressed in the fol-
lowing equation:

L[cls] = H(Ẑ𝑡[cls], Ẑ
𝑠
[cls]), (1)

where H(𝑥,𝑦) = −𝑥 log𝑦, and Ẑ[cls] denotes the output class
token. For MIM, we implement self-distillation as proposed in [50].
A randommask sequence𝑚 ∈ {0, 1}𝑀 is applied over an image with
𝑁[patch] tokens 𝒙 = {𝒙𝑖 }𝑀𝑖=1. The masked patches, denoted by𝑚𝑖 =
1, are replaced by a learnable token embedding Z𝑚 , resulting in a
corrupted image �̂� . The student and teacher networks receive the
corrupted and original uncorrupted images, respectively, to recover
the masked tokens. This is quantified by minimizing the cross-
entropy loss between their categorical distributions on masked
patches:

L[patch] =

𝑀∑︁
𝑖=1

𝑚𝑖 · H (Ẑ𝑡[patch i], Ẑ
𝑠
[patch i]) . (2)

Moreover, we aim for the decoder-generated tokens to predict the
RGB information of the image, incorporating an image reconstruc-
tion loss using Mean Squared Error (MSE) for the reconstruction
targets Ȳ:

LMSE =
∑︁

(Y𝑚, Ȳ𝑚)2 . (3)

Few-shot Learning. During the few-shot learning phase, the
MICM approach is adeptly configured to adapt to diverse few-shot
learning strategies, encompassing both inductive and transductive
methods. TheMICMmethodology enhances feature learning by em-
phasizing generality across base classes and discriminative power.

This dual capability significantly boosts the transferability of the
learned features to few-shot tasks, thereby enabling superior adap-
tation to scenarios with limited labeled data. Further exploration of
this adaptability is discussed in subsequent sections.

5 EXPERIMENTS
5.1 Datasets
Unsupervised few-shot recognition experiments are conducted on
three benchmark datasets widely recognized in the field: MiniIma-
geNet [41], TieredImageNet [35], and CIFAR-FS [5]. MiniImageNet,
derived from the larger ILSVRC-12 dataset [36], consists of 100
categories, each represented by 600 images. It is divided into meta-
training, meta-validation, and meta-testing segments, containing
64, 16, and 20 categories, respectively. TieredImageNet, also a subset
of ILSVRC-12, includes 608 categories segmented into 351, 97, and
160 categories for training, validation, and testing. CIFAR-FS, a sub-
set of CIFAR100 [28], follows a similar structure to MiniImageNet,
with 60,000 images spread across 100 categories. These datasets
provide a robust framework for evaluating few-shot learning algo-
rithms. Additionally, cross-domain experiments use MiniImageNet
as the pretraining (source) dataset and ISIC [16], EuroSAT [24],
and CropDiseases [43] as inference (target) datasets, enhancing the
generalizability assessment of the models.

5.2 Implementation Details
Self-Supervised Learning: The Vision Transformer (ViT) back-
bone and its associated projection head are pre-trained following
the iBOT [50] framework, retainingmost original hyper-parameters.
The training employs a batch size of 640 and a learning rate of 0.0005
on a cosine decay schedule. The MiniImageNet and TieredImageNet
datasets are pre-trained for 1200 epochs, while CIFAR-FS is pre-
trained for 950 epochs. Additional training details are provided in
the appendix.
Few-shot Evaluation: The pre-trained ViT backbone functions
as the feature extractor. We utilize various few-shot learning (FSL)
methods, including the prototypical networks approach [39], for
evaluation. In each N-way K-shot task, class prototypes are calcu-
lated as the mean of the features from K support samples per class.
Query images are then classified based on the highest cosine simi-
larity to these prototypes. The feature set for evaluation combines
the [cls] token with the weighted average [patch] token, using self-
attention values from the last transformer layer. Test accuracies are
reported over 2000 episodes, with each episode featuring 15 query
shots per class, consistent with standard practices in the literature
[10, 32, 33], and presented with 95% confidence intervals for all
datasets.

5.3 Analysis of MICM
Discriminative and Generalization Capabilities. We investi-
gate the critical balance between generalization and discriminability
in unsupervised pretraining through our proposedMICMmodel. As
depicted in Figure 6, MICM surpasses other unsupervised pretrain-
ing methods in capturing comprehensive object information from
novel classes, exhibiting superior overall perception. This is further
corroborated by the distance distribution between the prototypes
of novel and base classes in Figure 3, where MICM’s prototypes
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Figure 6: Attention map visualization for different unsupervised pre-trained models. This figure presents a series of columns,
each corresponding to the attention map output from a distinct model. From left to right, the columns are as follows: (a) the
original image; (b) SimCLR [9]; (c) Moco v3 [15]; (d) CAE [12]; (e) iBOT [51]; (f) MAE [22]; and (g) MICM (ours).

Table 1: Accuracies (in % ± standard deviation) on miniIma-
geNet, comparing our model with various unsupervised pre-
training methods (all models use VIT-S as backbone). CTB
denotes the strategy of inserting a classification cls token
before the processing by the encoder.

Method Setting Inductive (ProtoNet) [39] Transductive (OpTA) [33]

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

SimCLR [9] CL 54.30±0.62 75.03±0.35 65.83±0.64 78.09±0.40
MoCo V3 [23] CL 56.06±0.43 76.78±0.33 71.45±0.64 82.04±0.35

MAE [22] MIM 29.11±0.44 37.01±0.31 25.36±0.48 35.21±0.42
CAE [12] MIM 57.33±0.46 79.25±0.33 70.34±0.67 81.36±0.39
iBOT [50] MIM 60.93±0.21 80.38±0.16 74.58±0.66 83.95±0.34

MICM w/ CTB MIM+CL 62.85±0.17 82.37±0.11 77.89±0.62 86.36±0.33
MICM MIM+CL 60.78±0.19 81.39±0.14 78.40±0.61 86.90±0.33

distinctly differ more from the base class, affirming its enhanced
generalization for novel classes. Additionally, Figure 4 demonstrates
MICM’s superior discriminative capabilities compared to models
like MAE, with a clearer distinction in feature distributions between
MICM and SimCLR. Notably, MICMmaintains leading performance
in small-sample scenarios, both pre- and post-fine-tuning. The ex-
perimental validations highlight MICM’s adept integration of the
strengths of CL and MIM, achieving remarkable discriminability
and generalization.
Improving FSL. Our exploration focuses on the synergy between
MIM and CL, designed to overcome the limitations inherent to each

Table 2: Accuracies (in % ± std) on miniImageNet → CUB.,
comparing our model with various unsupervised pretraining
methods (all models use VIT-S as backbone). CTB denotes
the strategy of inserting a classification cls token before the
processing by the encoder.

Method Setting Inductive (ProtoNet) [39] Transductive (OpTA) [33]

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

SimCLR [9] CL 39.80±0.32 55.72±0.37 38.99±0.40 53.09±0.42
MoCo V3 [23] CL 42.12±0.33 59.33±0.37 41.83±0.41 57.36±0.42

MAE [22] MIM 30.13±0.25 37.94±0.31 25.37±0.25 31.89±0.32
CAE [12] MIM 38.10±0.43 51.56±0.53 38.31±0.56 49.01±0.58
iBOT [50] MIM 42.71±0.33 59.33±0.38 43.30±0.43 58.56±0.43

MICM w/ CTB MIM+CL 45.06±0.34 62.83±0.37 46.85±0.45 62.75±0.42
MICM MIM+CL 44.95±0.34 63.05±0.37 47.42±0.46 63.86±0.42

approach individually. The MICM model we introduce effectively
integrates the strengths of these methodologies, emphasizing the
extraction of relevant feature scales within images. This integra-
tion not only enhances category discrimination but also bolsters
robustness in subsequent FSL tasks. The effectiveness of MICM is
demonstrated through its superior performance in both inductive
and transductive few-shot classification settings, detailed in Table 1.
Enhancing Cross-Domain FSL. In cross-domain scenarios, MICM
also significantly excels, notably on the CUB dataset (Table 2). Un-
like traditional CLmodels, which often overfit to base classes, MICM
maintains generalization across varied domains without the need
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Table 3: Accuracies (in % ± standard deviation) on miniIm-
ageNet, comparing our model with various unsupervised
pretraining methods, which are adapted to several FSL meth-
ods [11, 33, 39, 44, 46].

Pretrained Model FSL method 5-way 1-shot 5-way 5-shot

MAE [22]

ProtoNet [39]

28.88 ± 0.43 37.19 ± 0.51
SimCLR [9] 54.42 ± 0.66 75.03 ± 0.35
iBOT [50] 61.26 ± 0.66 80.64 ± 0.45
MICM 61.37 ± 0.62 81.68 ± 0.43

MAE [22]

Fine-tuning [11]

28.50 ± 0.32 38.29 ± 0.50
SimCLR [9] 54.47 ± 0.59 75.01 ± 0.36
iBOT [50] 61.11 ± 0.59 80.91 ± 0.39
MICM 61.41 ± 0.52 81.72 ± 0.32

MAE [22]

SimpleShot [44]

30.30 ± 0.47 38.65 ± 0.50
SimCLR [9] 57.13 ± 0.64 74.88 ± 0.46
iBOT [50] 61.98 ± 0.65 80.56 ± 0.45
MICM 62.53 ± 0.63 81.79 ± 0.43

MAE [22]

DC [46]

37.06 ± 0.47 52.95 ± 0.51
SimCLR [9] 60.86 ± 0.58 75.79 ± 0.39
iBOT [50] 65.84 ± 0.67 83.77 ± 0.43
MICM 67.19 ± 0.65 85.12 ± 0.41

MAE [22]

OpTA [33]

25.36 ± 0.48 35.21 ± 0.42
SimCLR [9] 65.83 ± 0.64 78.09 ± 0.40
iBOT [50] 74.58 ± 0.66 83.95 ± 0.34
MICM 78.40 ± 0.61 86.90 ± 0.33

for fine-tuning, as illustrated in Figures 3 and 4. This capability
underscores MICM’s effectiveness in capturing discernible features
within an optimal range, thus boosting its adaptability and classifi-
cation performance in few-shot learning across different domains.
Broad Adaptation to FSL Methods. As a versatile pre-training
model, MICM adapts seamlessly across a spectrum of FSL strate-
gies. Comprehensive evaluations show thatMICM invariably boosts
performance, with notable improvements such as a nearly 4% en-
hancement over the iBOT model when utilizing the transductive
method OpTA. These results affirm the robust generalization ability
of MICM across a range of FSL approaches.
cls token Variation. In exploring variations, we introduced a cls to-
ken as an input to the Encoder, with performance outcomes detailed
in Tables 1 and 2. Although this variant achieves commendable
results in the inductive setting, it does not outperform the configu-
ration where the cls token is input into the Decoder, especially in
transductive scenarios. This suggests that introducing the cls token
early in the encoder may impede the encoder’s ability to learn com-
prehensive visual features effectively. Conversely, positioning the
cls token in the decoder helps alleviate potential negative impacts
by CL on learning holistic visual features.

5.4 Comparison with SOTA Method
To assess the efficacy of MICM in FSL scenarios, particularly under
the U-FSL framework, we developed and evaluated a novel method-
ology that combines unsupervised pre-training with pseudo-label
training techniques. We integrated pseudo-label learning [33] with
the transductive OpTA FSL method [33], forming a hybrid approach
designed to leverage the combined strengths of these methods
to boost performance in scenarios with scarce labeled data. Our

method’s performance was benchmarked against SOTA models
across various datasets, with detailed methodological descriptions
provided in the Appendix.
In-Domain Setting. Our model was evaluated against a broad
range of baselines including established SSL baselines [7, 9, 14, 19,
20, 48], prominent U-FSL methods [8, 10, 25, 27, 32, 37], leading
supervised FSL approaches [3, 30], and a recent transductive U-
FSL model [33]. Our model demonstrates superior performance,
outperforming both inductive and transductive U-FSL methods as
evidenced in Tables 6 and 4, showing a notable accuracy improve-
ment on the CIFAR-FS dataset.

Our implementation utilizes the ViT architecture, which con-
trasts with the commonly used ResNet in U-FSL studies. To facilitate
comprehensive evaluation, we compared results from models using
both ResNet18 and ResNet50 architectures, and additionally, we
benchmarked against a ViT-S model trained using the MIM method
for transductive classification (MIM+OpTA), providing a baseline
for ViT-based transductive U-FSL models.

Table 4: Accuracies (in % ± std) for CIFAR-FS dataset.

Method 5-way 1-shot 5-way 5-shot

SimCLR [9] 54.56±0.19 71.19±0.18
MoCo v2 [13] 52.73±0.20 67.81±0.19
LF2CS [31] 55.04±0.72 70.62±0.57
HMS [47] 54.65±0.20 73.70±0.18
BECLR [33] 70.39±0.62 81.56±0.39
MICM 79.20±0.61 86.35±0.39

Regarding CIFAR-FS performance comparisons (Table 4), sourced
from [33], we note that the BECLR model reported results using
ResNet18. Hence, our model’s reported performance is achieved
with a scaled-down version of ViT-S, comprising 6 layers (4 encoder
layers and 2 decoder layers) as opposed to the full 12 layers in
standard ViT-S.

Table 5: 5-way 5-shots accuracies (in % ± std) onminiImageNet
→ Cross-Domain Few-Shot Learning.

Method ChestX ISIC EuroSAT CropDiseases Mean

SwAV [7] 25.70±0.28 40.69±0.34 84.82±0.24 88.64±0.26 60.12
NNCLR [19] 25.74±0.41 38.85±0.56 83.45±0.53 90.76±0.57 59.70

SAMPTransfer [37] 26.27±0.44 47.60±0.59 85.55±0.60 91.74±0.55 62.79
PsCo [27] 24.78±0.23 44.00±0.30 81.08±0.35 88.24±0.31 59.52

UniSiam + dist [32] 28.18±0.45 45.65±0.58 86.53±0.47 92.05±0.50 63.10
ConFeSS [17] 27.09 48.85 84.65 88.88 62.36
BECLR [33] 28.46±0.23 44.48±0.31 88.55±0.23 93.65±0.25 63.78

MICM 27.11±0.36 46.85±0.52 90.08±0.36 94.61±0.27 64.66

Cross-Domain Setting. Following established methodologies [21,
33], we pretrained on the miniImageNet dataset and evaluated
our approach in cross-domain few-shot learning settings. The re-
sults, detailed in Table 5, demonstrate that MICM sets new SOTA
benchmarks on the EuroSAT and Crop Diseases datasets, while
maintaining competitive performance on the ISIC dataset. MICM’s
adaptive training mechanism enables superior performance over
BECLR in cross-domain settings, highlighting its robustness and
adaptability across diverse datasets.
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Table 6: Accuracies (in % ± standard deviation) on miniImageNet and tieredImageNet, comparing our model with various
baselines categorized into Inductive (Ind.) and Transductive (Transd.) approaches. Performance is delineated by backbone
architectures, namely Residual Networks (RN) and Vision Transformers (ViT), with the number of parameters (Param) for
each model included for an extensive comparison.

Method Backbone Param Setting miniImageNet tieredImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

SwAV [7] RN18 (×1) 11.2M Ind. 59.84 ± 0.52 78.23 ± 0.26 65.26 ± 0.53 81.73 ± 0.24
NNCLR [19] RN18 (×2) 22.4M Ind. 63.33 ± 0.53 80.75 ± 0.25 65.46 ± 0.55 81.40 ± 0.27
CPNWCP [42] RN18 (×1) 11.2M Ind. 53.14 ± 0.62 67.36 ± 0.5 45.46 ± 0.19 62.96 ± 0.19
HMS [47] RN18 (×1) 11.2M Ind. 58.20 ± 0.23 75.77 ± 0.16 58.42 ± 0.25 75.85 ± 0.18

SAMPTransfer [37] RN18 (×1) 11.2M Ind. 45.75 ± 0.77 68.33 ± 0.66 42.32 ± 0.75 53.45 ± 0.76
PsCo [27] RN18 (×1) 11.2M Ind. 47.24 ± 0.76 65.48 ± 0.68 54.33 ± 0.54 69.73 ± 0.49

PDA-Net [10] RN50 (×1) 23.5M Ind. 63.84 ± 0.91 83.11 ± 0.56 69.01 ± 0.93 84.20 ± 0.69
UniSiam + dist [32] RN50 (×1) 23.5M Ind. 65.33 ± 0.36 83.22 ± 0.24 69.60 ± 0.38 86.51 ± 0.26

Meta-DM + UniSiam + dist [25] RN50 (×1) 23.5M Ind. 66.68 ± 0.36 85.29 ± 0.23 69.61 ± 0.38 86.53 ± 0.26

CPNWCP + OpTA [42] RN18 (×1) 11.2M Transd. 60.45 ± 0.81 75.84 ± 0.56 55.05 ± 0.31 72.91 ± 0.26
HMS + OpTA [47] RN18 (×1) 11.2M Transd. 69.85 ± 0.42 80.77 ± 0.35 71.75 ± 0.43 81.32 ± 0.34
PsCo + OpTA [27] RN18 (×1) 11.2M Transd. 52.89 ± 0.71 67.42 ± 0.54 57.46 ± 0.59 70.70 ± 0.45

UniSiam + OpTA [32] RN18 (×1) 11.2M Transd. 72.54 ± 0.61 82.46 ± 0.32 73.37 ± 0.64 73.37 ± 0.64
BECLR [33] RN18 (×2) 22.4M Transd. 75.74 ± 0.62 84.93 ± 0.33 76.44 ± 0.66 84.85 ± 0.37
BECLR [33] RN50 (×2) 47M Transd. 80.57 ± 0.57 87.82 ± 0.29 81.69 ± 0.61 87.82 ± 0.32
MICM VIT-S (×2) 42M Transd. 81.05 ± 0.58 87.95 ± 0.34 83.30 ± 0.61 89.61 ± 0.35

(a) iBOT [50]

(b) MICM

Figure 7: Feature distribution maps comparing various meth-
ods before and after applying OpTA.

Feature Distribution Analysis. To deepen our understanding of
the MICM mechanism, we employed iBOT [50] as a baseline for
comparative analysis. A critical observation, illustrated in Figure 7,
is that MICM significantly enhances the compactness and cohesion
of feature distributions within the same category. Compared to the
baseline, where feature clusters are dispersed and misaligned (as
shown in Figure 7(a)), our model demonstrates a notably tighter

clustering. This improvement is especially evident in the align-
ment of support samples with the corresponding query samples
within each category. The application of the OpTA method no-
tably rectifies sample bias, further refining feature distribution, and
alignment. This adjustment, combined with the advanced feature
representation capabilities of our MICM model, yields a substantial
enhancement in performance relative to the baseline. The precise
clustering of category-specific features and the effective mitigation
of sample bias by OpTA underline the robustness and effectiveness
of our model in generating highly discriminative feature represen-
tations, which is pivotal for few-shot learning applications.

6 CONCLUSION
In this paper, we have delineated the limitations of Masked Im-
age Modeling (MIM) and Contrastive Learning (CL) in terms of
their discriminative and generalization capabilities, which have
contributed to their underperformance in Unsupervised Few-Shot
Learning (U-FSL) contexts. To tackle these challenges, we intro-
duced Masked Image Contrastive Modeling (MICM), a novel ap-
proach that effectively integrates the strengths of MIM and CL. Our
results demonstrate that MICM adeptly balances discriminative
power with generalizability, particularly in few-shot learning sce-
narios characterized by limited sample sizes. MICM’s flexibility in
adapting to various few-shot learning strategies highlights its po-
tential as a versatile and powerful tool for unsupervised pretraining
within the U-FSL framework. Extensive quantitative and qualitative
evaluations show MICM’s clear superiority over existing methods,
confirming its ability to enhance feature discrimination, robustness,
and adaptability across diverse few-shot learning tasks.
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