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1 MODEL ROBUSTNESS
1.1 Further Cross-Domain Few-Shot Comparing
In addition, cross-domain experiments were conducted on the CUB
dataset [11], characterized by a relatively minor domain gap. Ad-
hering to the protocols of Poulakakis et al. [10], we trained MICM
on the miniImageNet and evaluated it on the CUB dataset’s test
set for both 5-way 1-shot and 5-way 5-shot classification tasks. We
present the performance results of our MICM model compared to
existing unsupervised methods.

As reported in Table 1, our model not only surpasses existing
unsupervised methods but also achieves a significant improvement
of 4 / 4.3 points over the SOTA Transductive U-FSL method BE-
CLR [10] in 1-shot and 5-shot tasks, respectively.

Table 1: Accuracies (in % ± std) onminiImageNet→ CUB. The
results of the existing model are cited from BECLR [10]

Method miniImageNet → CUB
5-way 1-shot 5-way 5-shot

Meta-GMVAE [9] 38.04±0.47 55.65±0.42
SimCLR [3] 38.25±0.49 55.89±0.46
MoCo v2 [7] 39.29±0.47 56.49±0.44
BYOL [6] 40.63±0.46 56.92±0.43
SwAV [1] 38.34±0.51 53.94±0.43
NNCLR [5] 39.37±0.53 54.78±0.42

Barlow Twins [13] 40.46±0.47 57.16±0.42
Laplacian Eigenmaps [2] 41.08±0.48 58.86±0.45

HMS [12] 40.75 58.32
PsCo [8] - 57.38±0.44

BECLR [10] 43.45±0.50 59.51±0.46
MICM (OURS) 47.44±0.65 63.86±0.42

1.2 Sample Bias
Sample bias is an important factor that influences few-shot learning.
To evaluate the robustness of our method against sample bias, we
investigate two strategies for its mitigation: 1) augmenting the
number of support samples, and 2) refining the class prototype
using an increased number of query samples (Here, we choose
to refine the class prototype using the OpTA algorithm [10]). To
assess the effectiveness of these strategies, we analyze performance
variations of both our model and the baseline across different N-
way, K-shot, Q-query configurations. This analysis involves, as
illustrated in Figure 1, incrementally increasing 1) the number of
support samples (K) and 2) the number of query samples (Q). From
these experiments, a clear trend emerges: as the count of support
or query samples rises – effectively reducing sample bias – the
superiority of our model over the baseline becomes increasingly

Figure 1: Performance comparison for varying numbers of
shots and queries.

evident. This observation underscores the enhanced adaptability
of our approach, especially in scenarios characterized by smaller
sample bias, where our model demonstrates a more substantial
performance improvement compared to the baseline.

2 MICM+
We further developed a hybrid method, MICM+, by integrating
pseudo-label learning [10] with the transductive OpTA FSL tech-
nique [10]. This approach exploits the synergistic potentials of both
methods to enhance performance in scenarios with limited labeled
data.

2.1 Pseudo Label Training
BECLR’s Pseudo Label Training Stage. The SOTA BECLR [10]
utilizes a memory bank alongside clustering techniques to facilitate
pseudo-label training. Despite its effectiveness, this method faces
challenges such as increased storage requirements and slow con-
vergence rates, stemming from continuous updates between the
memory bank and current samples during training.

Table 2: Our MICM model’s inductive few-shot performance
on theMiniImageNet dataset after incorporating two pseudo-
label training methods.

Method Training time 5-way 1-shot 5-way 5-shot
MICM 31.25 Hours 61.37±0.62 81.68±0.43

MICM + BECLR (From scratch) 46.25 Hours 57.43±0.62 77.34±0.51
MICM + BECLR (A new stage) 31.25 + 1.50 Hours 61.30±0.59 81.65±0.37
MICM + Pseudo (A new stage) 31.25 + 0.16 Hours 66.69±0.65 84.03±0.45
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In our architecture, we experimented with integrating BECLR’s
pseudo-label training either from scratch or into a pre-trained
MICM model. Our findings, detailed in Table 2, reveal that starting
from scratch prolongs training times and diminishes performance,
as does introducing pseudo-labeling to a pre-trained model. To
address these issues, we propose a novel pseudo-label training
strategy using BCE loss, as shown in Figure 2. This method avoids
additional storage costs and can be seamlessly added to existing
pre-trained models.

Figure 2: Our pseudo label training stage: further refines
samples representations using pair comparison techniques,
thereby enhancing the model’s ability to differentiate be-
tween various image representations.

Our Pseudo Label Training Stage. Building upon the robust rep-
resentations developed during the self-supervised learning stage,
our primary objective is to enhance the inter-class distinction. To
achieve this, we have incorporated a pseudo-label learning method
aimed at increasing intra-class compactness. This approach is de-
tailed in Figure 2 and employs a pairwise objective to promote
similarity between instance pairs, ensuring effective clustering of
instances within the same class.

Pseudo-labels are generated by calculating the cosine distances
among all pairs of feature representations, Z[cls], within a mini-
batch. These distances are ranked, and each instance is assigned a
pseudo-label based on its closest neighbor. Pseudo-labels are thus
generated from the most confidently paired positive instances in
the mini-batch. Given a mini-batch, S, containing 𝐵 instances with
their features Z[cls], we denote the subset of closest pairs as S′.
The pairwise objective is defined using a binary cross-entropy loss
(BCE) as follows:

LBCE =
1
𝐵

𝐵∑︁
𝑖=1

− log⟨𝜎 (Z(𝑖 )
[cls]), 𝜎 (Z

′(𝑖 )
[cls])⟩ (1)

where 𝜎 is a normalization function applied to each feature vector
in S and S′.

In addition to the BCE loss, we continue to use the mean squared
error (MSE) loss, LMSE, from the self-supervised stage to maintain
a balance between classification efficacy and model generalization.

Furthermore, we have opted to remove the patch-level loss,
L[patch], for two primary reasons: Firstly, our pseudo-label train-
ing does not involve comparing two views of the same image, mak-
ing patch-level alignment infeasible. Secondly, maintaining two
views and computing patch loss would significantly increase stor-
age demands, necessitating a reduction in batch size. Larger batch
size is essential for effective pseudo-label training. This modifica-
tion, as documented in Table 3, involved reducing the batch size
from 128 to 80, leading to a degradation in model performance.

Table 3: MICM+’s transductive few-shot performance after
pseudo-label training with/withotL[patch]. WhenL[patch] is
retained, a smaller batch size is required due to the increased
GPU memory consumption.

Method 5-way 1-shot 5-way 5-shot
MICM+ w/ Patch loss 77.96±0.65 85.46±0.41

MICM+ 81.05±0.58 87.95±0.34

2.2 Optimal Transport-based Distribution
Alignment (OpTA)

In line with BECLR’s task setting [10], we employ the OpTA al-
gorithm for transductive few-shot classification tasks. The OpTA
process is expressed as follows:

Let T = S ∪ Q be a downstream few-shot task. We first extract
the support 𝑍S (of size NK × d) and query 𝑍 Q (of size NQ × d)
embeddings and calculate the support set prototypes 𝑷S (class
averages of size N × d). Firstly, an optimal transport problem is
defined from 𝑍 Q to 𝑷S as:

𝚷 (𝒓, 𝒄 ) =
{
𝝅 ∈ R𝑁𝑄×𝑁

+ | 𝝅1𝑁 = 𝒓,𝝅⊤1𝑁𝑄 = 𝒄, 𝒓 = 1 · 1/𝑁𝑄, 𝒄 = 1 · 1/𝑁
}

(2)

To find a transport plan 𝜋 (out of Π) mapping 𝑍 Q to 𝑷S . Here,
𝒓 ∈ R𝑁𝑄 denotes the distribution of batch embeddings [𝒛𝑖 ]𝑁𝑄

𝑖=1 , 𝒄 ∈
R𝑁 is the distribution of prototypes [𝑷𝑖 ]𝑁𝑖=1. The last two conditions
in Eq. 2 enforce equipartitioning (i.e., uniform assignment) of Z
into the P partitions. Obtaining the optimal transport plan, 𝝅̂★, can
then be formulated as:

𝝅★ = argmin
𝝅 ∈𝚷 (𝒓,𝒄 )

⟨𝝅 ,𝑫⟩𝐹 − 𝜀H(𝝅), (3)

and solved using the Sinkhorn-Knopp [4] algorithm. Here, 𝐷 is
a pairwise distance matrix between the elements of 𝑍 Q and 𝑷S

(of size NQ × N), ⟨·⟩𝐹 denotes the Frobenius dot product, 𝜀 is a
regularisation term, and H(·) is the Shannon entropy.

After Obtaining the optimal transport plan 𝝅̂★, we use 𝝅̂★ to
map the support set prototypes onto the region occupied by the
query embeddings to get the transported support prototypes 𝑷̂S

as:

𝑷̂
S
= 𝝅̂★𝑇𝒁Q , 𝝅̂★

𝑖, 𝑗 =
𝝅★
𝑖, 𝑗∑

𝑗 𝝅
★
𝑖, 𝑗

,∀𝑖 ∈ [𝑁𝑄], 𝑗 ∈ [𝑁 ], (4)

and a comprehensive description of this algorithm is provided in
BECLR [10]. Our application of MICM+ with OpTA has led to im-
proved transductive few-shot performance, discussed in subsequent
sections.
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Table 4: Ablating main components of MICM.

OpTA MICM LMSE LCL Pseudo 5-way 1-shot 5-way 5-shot

- - - - - 60.93 ± 0.61 80.38 ± 0.34
✓ - - - - 74.58 ± 0.66 83.95 ± 0.34
✓ ✓ ✓ - - 26.81 ± 0.43 32.94 ± 0.47
✓ ✓ - ✓ - 75.73 ± 0.64 85.06 ± 0.35
✓ ✓ ✓ ✓ - 78.40 ± 0.61 86.90 ± 0.30
✓ ✓ ✓ ✓ ✓ 81.05 ± 0.58 87.95 ± 0.34

3 ABLATION STUDY
The proposed MICM+ model integrates five key components incud-
ing: OpTA [10], MICM, (LMSE), (LCL) and pseudo-label learning
(pseudo). As detailed in Table 4, the baseline model employing
OpTA for transductive classification tasks exhibits a notable im-
provement of 13.6% and 3.5% over traditional inductive classifi-
cation approaches. This marked enhancement, especially in the
1-shot scenario, can be attributed to OpTA’s effective mitigation
of sample bias. Our model MICM combines the LCL from CL and
the LMSE from MIM, but in the ablation experiments, we separate
these two loss functions. It can be observed that the model using
only LMSE has no classification ability, while the model using only
LCL shows relatively good classification performance. However,
by combining LMSE and LCL, the model’s performance improves
by approximately 2.7 / 1.9 points. This result highlights the impor-
tance of utilizing generalized features learned during the image
reconstruction process. Integration of pseudo-label training con-
tributes additional gains of 2.5% and 1.0% in the 1-shot and 5-shot
setups. This enhancement, facilitated by pseudo, further elevate the
representational capabilities of features from the pre-training stage
and their adaptability to small sample data in downstream tasks.
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