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A IMPLEMENTATION DETAILS

Following Huang et al. 2024, we modify the rasterization renderer to output depth and normal maps
for regularization. For parameters setup, we follow the basic setup of learning rates in (Kerbl et al.,
2023). Particularly, to enhance training stability, we reduce the learning rates of V̄ α and V̄ p from
2e−4 to 0 during first 300 iterations of every 3000 iterations within the initial 15000 iterations. For
mesh extraction during evaluation, we use truncated signed distance fusion (TSDF) to extract meshes
from depth maps (Huang et al., 2024). In our implementation, we set the voxel size to 0.004 and
the truncation threshold to 0.02. All of our experiments are conducted on a single 24GB NVIDIA
RTX3090 GPU.

B DETAILS OF REGULARIZATION TERMS

Depth distortion loss. Optimizing solely on Lc (Kerbl et al., 2023) can result in noisy surfaces, so
we follow Huang et al. 2024 to introduce depth distortion loss. Depth distortion loss Ld reduces the
depth disparity along the ray, concentrating the Gaussian splats to be closer to each other:

Ld =
∑
i,j

λd
i λ

d
j |ti − tj |, (12)

where λd
i = α′

iG′
i(x)

∏i−1
j=1

(
1− α′

jG′
j(x)

)
is the blending weight of i-th Gaussian and ti is its

depth. Since directly using the depth of Gaussian’ center p can introduce errors (Dai et al., 2024),
we follow Dai et al. 2024 to use the depth at the ray-Gaussian intersection instead.

Normal loss. Normal consistency loss Ln (Huang et al., 2024) helps the Gaussians to align with the
actual surfaces by ensuring consistency between the Gaussians’ normal and the surface normal:

LN =
∑
i

λN
i (1− n⊤

i N), (13)

where ni denotes the normal of Gaussian and N is the surface normal estimated with the gradients
of the depth maps (Huang et al., 2024). To smooth the estimated surface normal, we further apply a
bilateral filter (Elad, 2002) on the depth maps.

Total variance loss. Following (Karnieli et al., 2022; Turkulainen et al., 2024), we apply the edge-
aware total variance loss on depth maps to smooth the surface representation:

Lt =
∑
ij

|∂xd̂ij |e−∥∂xĪij∥ + |∂yd̂ij |e−∥∂y Īij∥, (14)

where ∂x and ∂y are the gradients in the horizontal and vertical directions, d̂ij is the estimated depth
at pixel (ui, vj) on depth maps, and Ī is the average color of ground truth images. This regularization
term improves smoothness of depth maps while offers a faster convergence. Note that we apply the
non-edge-aware form of Eq. (14) for the Dex-NeRF dataset (Ichnowski et al., 2021) as a further
regularization.
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Table 6: Ablation study on NeRF-Synthetic dataset (Mildenhall et al., 2021). We compare the
proposed Spiking GS (Full) with its 5 alternatives (i.e, ‘w/o Lα’, ‘w/o Lp’, ‘w/o Ls’, ‘w/ GP’, ‘w/o
c’).

Full w/o Lα w/o Lp w/o Ls w/ GP w/o c
CD↓ 0.87 0.91 0.89 1.03 1.07 0.92
#G↓ 69k 245k 74k 55k 68k 64k

Figure 7: The qualitative comparison between the Spiking GS and its alternatives. From top to
down: ablation on the necessity of a local FIF neuron on each Gaussian representation function,
ablation on scale loss Ls, and ablation on scale-based clone.

C ADDITIONAL ABLATION STUDIES

Necessity of a local FIF neuron on each Gaussian representation function is validated by a com-
parison with the alternative, ‘w/ GP’. Specifically, ‘w/ GP’ uses a global threshold shared by all
Gaussians. As shown in Tab. 6, a shared threshold will dramatically downgrade the accuracy of the
reconstructed surface. Through a qualitative comparison (Fig. 7), we identify that the downgrading
in accuracy is caused by unnecessary extension of surface (e.g., the base board of LEGO). The anal-
ysis above indicates the necessity of a isolate FIF neuron on each Gaussian representation function
to fit the geometry at different locations.

Effectiveness of proposed loss is assessed by comparison between Spiking GS and its three alterna-
tives (i.e, ‘w/o Lα’, ‘w/o Lp’, and ‘w/o Ls’). As can be seen on Tab. 6, both the number of Gaussians
and Chamfer distance increase without Lα and Lp, proving the loss on V̄ α and V̄ p boosting the ef-
fect of FIF neurons. Additionally, a quantitative (Tab. 6) and qualitative (Fig. 7) comparison between
the full model and ‘w/o Ls’ demonstrate the effect of Ls in improving surface’s details.

Effectiveness of scale-based clone is proved by a comparison between the full model and alternative
without the scale-based clone strategy (w/o c). As shown in the Fig. 7, artifacts (e.g., holes and pits)
are caused by the blind spots regions (i.e, the inner side of stone pillars) with less opportunity to
be cloned in original density control process. The proposed scale-based clone compensates for
insufficient Gaussian points in those regions, resulting in higher surface reconstruction accuracy. A
quantitative result without such strategy, shown in Tab. 6, further validates our analysis.
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Table 7: Additional quantitative Comparison on NeRF-Synthetic (Mildenhall et al., 2021) dataset
between Spiking GS, PGSR (Chen et al., 2024), and its alternative (S-PGSR, integrated with our
method). We show the Chamfer distance (× 10−2) for the reconstructed mesh in 8 scenes, as well
as the number of Gaussians used for geometry reconstruction (#G) and training time.

CHAIR DRUMS FICUS HOTDOG LEGO MATERIALS MIC SHIP AVG #G Time
Ours 0.47 1.38 0.69 1.13 0.81 0.94 0.61 0.96 0.87 69k 10.0 m
PGSR 0.38 1.17 0.54 1.06 0.74 1.41 0.66 0.73 0.84 205k 24.3 m
S-PGSR 0.38 1.15 0.52 1.01 0.74 1.30 0.66 0.70 0.81 77k 23.5 m

D ADDITIONAL DISCUSSION

Although some concurrent works (Fan et al., 2024; Chen et al., 2024) reconstruct accurate geometry
on the DTU dataset (Jensen et al., 2014), we find that these methods still suffer from issues caused by
excessive LOPs and poor reconstruction results on some challenging scenes (e.g., semi-transparent
objects from the Dex-NeRF dataset), where both methods fail to generate reasonable results.

Discussion about TrimGS (Fan et al., 2024). Fan et al. 2024 introduced a novel density control
strategy to trim inaccurate Gaussians based on a pre-trained Gaussian model. However, it tends to
overly split and generate numerous Gaussians if the pre-trained model contains excessively large
LOPs. According to our experiment, the number of Gaussians of the trimmed 2DGS (Fan et al.,
2023; Huang et al., 2024) could exceed ten million in NeRF-Synthetic (Mildenhall et al., 2021)
and Dex-NeRF (Ichnowski et al., 2021) datasets, which severely undermine training efficiency and
consume a significant amount of VRAMs.

Discussion about PGSR (Fan et al., 2024).Chen et al. 2024 utilized a multiview geometry con-
sistency prior constraint to regularize the reconstructed surface, exhibiting strong performance in
smooth surface reconstruction. Nevertheless, they overlooked the prevalence of LOPs and the issues
associated with. Our method can be implemented into their pipeline. Specifically, we integrate our
FIF spiking neurons into their method. Through a quantitative comparison among our method, the
original PGSR, and PGSR with spiking neurons (S-PGSR) on the NeRF-Synthetic dataset in Tab. 7,
we observe an improvement in reconstruction accuracy and efficiency in surface reconstruction,
further validating the need to reduce the number of LOPs.
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E ADDITIONAL RESULTS

We shown additional qualitative comparisons result on Dex-NeRF dataset (Ichnowski et al., 2021),
NeRF-Synthetic dataset (Mildenhall et al., 2021), and DTU dataset (Jensen et al., 2014).

Figure 8: Additional qualitative comparisons of surface reconstruction performed on Dex-
NeRF (Ichnowski et al., 2021), NeRF-Synthetic (Mildenhall et al., 2021), and DTU (Jensen et al.,
2014) datasets. We show the Chamfer distance in the bottom left corner of the image.
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